Click here to load reader
View
562
Download
0
Embed Size (px)
B GIO DC V O TO
Cc nh gi o v cn b qun l c s gi o dc
NGUYN TH HOA NG QUANG SN TRN TRUNG
TI LIU BI DNG PHT TRIN NNG LC NGH NGHIP GIO VIN
Tng cng nng lc
s dng thit b dy hc
v ng dng cng ngh thng tin
trong dy hc
Module THCS 20:
S dng cc thit b dy hc
Module THCS 21:
Bo qun, sa cha, sng to thit b dy hc
Module THCS 22:
S dng mt s phn mm dy hc
(Dnh cho gio vin trung hc c s)
NH XUT BN Gio dc Vit Nam
NH XUT BN I HC S PHM
2 |
DANH MC VIT TT
BTD : Bn tucth duy
CNTT : Cng ngh thng tin
CNTT&TT : Cng ngh thng tin v truyn thng
CSVC : C s v!t ch#t
DCTNG : Duthnangng cuthnang th nghim n gin
DDH : dng d*y h+c
GV : Gio vin
HS : H+c sinh
PMDH : Ph1n mm d*y h+c
PPDH : Phucthng php d*y h+c
TBDH : Thi3t b5 d*y h+c
THCS : Trung h+c c s
Bn quyn thuc B Gio duthnangc v o to Cuthnangc Nh gio v Cn b qun l c s gio duthnangc.
C"m sao chp ducth(i m)i hnh thucthsacc.
| 3
MC LC
Trang
LI GII THIU ........................................................................................................5
Module THCS 20: S dng cc thit b dy hc .....................................................7
A. GII THIU TNG QUAN.....................................................................................8
B. MC TIU TI LIU .............................................................................................9
C. NI DUNG..........................................................................................................10
Hot ng 1: Tm hiu vai tr ca thit b dy hc trong i mi
phng php dy hc mn hc...............................................10
Hot ng 2: Nghin cu s dng cc thit b dy hc theo mn hc ..........13
Hot ng 3: Phi hp s dng cc thit b dy hc truyn thng
v hin i lm tng hiu qu dy hc mn hc .....................16
Hot ng 4: T lm mt s dng dy hc theo mn hc .........................17
Hot ng 5: Tng kt .................................................................................19
D. TI LIU THAM KHO .......................................................................................73
Module THCS 21: Bo qun, sa cha, sng to thit b dy hc .......................75
A. GII THIU TNG QUAN...................................................................................76
B. MC TIU TI LIU ...........................................................................................77
C. NI DUNG..........................................................................................................78
Hot ng 1: Tng quan v thit b dy hc.................................................78
Hot ng 2: Tm hiu danh mc thit b dy hc cho tng mn hc
trng trung hc c s.........................................................80
Hot ng 3: Bo qun, sa cha mt s loi hnh thit b dy hc
trng trung hc c s.........................................................83
Hot ng 4: Tm hiu vai tr ca cng ngh thng tin v truyn thng
vi cc loi hnh thit b dy hc .............................................91
Hot ng 5: Tng cng thit k thit b dy hc t lm.............................97
Hot ng 6: ng dng bn t duy trong dy hc
trng trung hc c s.......................................................105
Hot ng 7: Tm hiu cu trc phng thit b dy hc ..............................114
D. KIM TRA, NH GI TON B MODULE .....................................................117
E. TI LIU THAM KHO .....................................................................................119
4 |
Module THCS 22: S dng mt s phn mm dy hc ......................................121
A. GII THIU TNG QUAN.................................................................................122
B. MC TIU TI LIU .........................................................................................122
C. NI DUNG........................................................................................................123
Ni dung 1. Vai tr ca phn mm trong dy hc ..........................................123
Hot ng 1: Tm hiu khi nim phn mm dy hc ................................123
Hot ng 2: Tm hiu nhng tc ng ca phn mm
n qu trnh dy hc...........................................................124
Ni dung 2. Mt s cch phn loi phn mm dy hc ..................................128
Hot ng 1: Tm hiu nhng cn c phn loi phn mm dy hc ......128
Hot ng 2: Phn loi phn mm dy hc theo mn hc .........................129
Ni dung 3. nh gi hiu qu s dng phn mm dy hc ..........................134
Hot ng 1: Tm hiu tiu ch nh gi v la chn phn mm dy hc ...134
Hot ng 2: nh gi gi ging c ng dng cng ngh thng tin ...........136
Hot ng 3: Tm hiu nhng yu cu v k nng cng ngh thng tin
i vi gio vin ...................................................................139
Ni dung 4. S dng mt s phn mm dy hc chung.................................143
Hot ng 1: S dng phn mm LectureMaker bin son
mt bi ging in t c th dy hc trn lp........................144
Hot ng 2: S dng phn mm Concept Draw Mind Map thit k
mt bn t duy nhm ging dy mt bi hc c th trn lp
hc .......................................................................................165
Ni dung 5. S dng phn mm dy hc theo mn hc.................................173
Hot ng 1: S dng phn mm dy hc cc mn khoa hc t nhin
trng trung hc c s.......................................................173
Hot ng 2: S dng phn mm dy hc cc mn khoa hc x hi
trng trung hc c s.......................................................178
D. KIM TRA, NH GI TON B MODULE .....................................................181
E. TI LIU THAM KHO .....................................................................................183
| 5
LI GII THIU
Gio vin l m7t trong nhucthngang nhn t: quan tr+ng quy3t 5nh ch#t lucth=ng
gio duthnangc v o t*o ngun nhn lucthnangc cho #t nucth?c. Do v!y, ng, Nh nucth?c
ta Bc bit quan tm 3n cng tc xy ducthnangng v pht triDn 7i nguthnga gio
vin. M7t trong nhucthngang n7i dung ucth=c ch tr+ng trong cng tc ny l bi
ducthGng thucthHng xuyn (BDTX) chuyn mn, nghip vuthnang cho gio vin.
BDTX chuyn mn, nghip vuthnang cho gio vin l m7t trong nhucthngang m hnh
nhMm pht triDn ngh nghip lin tuthnangc cho gio vin v ucth=c xem l m
hnh c ucthu th3 gip s: ng gio vin ucth=c ti3p c!n v?i cc chucthng trnh
pht triDn ngh nghip.
Ti3p n:i chu k II, chu k III BDTX gio vin m1m non, phR thng, B7
Gio duthnangc v o t*o xy ducthnangng chucthng trnh BDTX gio vin v quy
ch3 BDTX gio vin theo tinh th1n Ri m?i nhMm nng cao ch#t lucth=ng v
hiu qu cuthhoia cng tc BDTX gio vin trong thHi gian t?i. Theo , cc
n7i dung BDTX chuyn mn, nghip vuthnang cho gio vin ucth=c xc 5nh,
cuthnang thD l:
Bi ducthGng p ucthsacng yu c1u thucthnangc hin nhim vuthnang nWm h+c theo c#p h+c
(n7i dung bi ducthGng 1);
Bi ducthGng p ucthsacng yu c1u thucthnangc hin nhim vuthnang pht triDn gio duthnangc 5a
phucthng theo nWm h+c (n7i dung bi ducthGng 2);
Bi ducthGng p ucthsacng nhu c1u pht triDn ngh nghip lin tuthnangc cuthhoia gio vin
(n7i dung bi ducthGng 3).
Theo , hMng nWm m\i gio vin phi xy ducthnangng k3 ho*ch v thucthnangc hin
ba n7i dung BDTX trn v?i thHi lucth=ng 120 ti3t, trong : n7i dung bi
ducthGng 1 v 2 do cc c quan qun l gio duthnangc cc c#p ch^ *o thucthnangc hin
v n7i dung bi ducthGng 3 do gio vin lucthnanga ch+n D tucthnang bi ducthGng nhMm
pht triDn ngh nghip lin tuthnangc cuthhoia mnh.
B7 Gio duthnangc v o t*o ban hnh Chucthng trnh BDTX gio vin m1m
non, phR thng v gio duthnangc thucthHng xuyn v?i c#u trc gm ba n7i dung
bi ducthGng trn. Trong , n7i dung bi ducthGng 3 ucth=c xc 5nh v thD
hin ducth?i hnh thucthsacc cc module bi ducthGng lm c s cho gio vin tucthnang lucthnanga
ch+n n7i dung bi ducthGng ph h=p D xy ducthnangng k3 ho*ch bi ducthGng hMng
nWm cuthhoia mnh.
6 |
D gip gio vin tucthnang h+c, tucthnang bi ducthGng l chnh, B7 Gio duthnangc v o t*o
giao cho Cuthnangc Nh gio v Cn b7 qun l c s gio duthnangc chuthhoi tr xy
ducthnangng b7 ti liu gm cc module tucthng ucthsacng v?i n7i dung bi ducthGng 3
nhMm phuthnangc vuthnang cng tc BDTX gio vin t*i cc 5a phucthng trong c
nucth?c. _ m\i c#p h+c, cc module ucth=c x3p theo cc nhm tucthng ucthsacng v?i
cc chuthhoi trong n7i dung bi ducthGng 3.
M\i module bi ducthGng ucth=c bin so*n nhucth m7t ti liu hucth?ng d`n tucthnang
h+c, v?i c#u trc chung gm:
Xc 5nh muthnangc tiu c1n bi ducthGng theo quy 5nh cuthhoia Chucthng trnh BDTX
gio vin;
Ho*ch 5nh n7i dung gip gio vin thucthnangc hin nhim vuthnang bi ducthGng;
Thi3t k3 cc ho*t 7ng D thucthnangc hin n7i dung;
Thng tin c bn gip gio vin thucthnangc hin cc ho*t 7ng;
Cc cng cuthnang D gio vin tucthnang kiDm tra, nh gi k3t qu bi ducthGng.
Tuy nhin, do Bc th n7i dung cuthhoia tucthhuyenng lbnh vucthnangc c1n bi ducthGng theo
Chucn ngh nghip gio vin nn m7t s: module c thD c c#u trc khc.
Ti liu ucth=c thi3t k3 theo hnh thucthsacc tucthnang h+c, gip gio vin c thD h+c
m+i lc, m+i ni. BMng cc ho*t 7ng h+c t!p chuthhoi y3u trong m\i module
nhucth: +c, ghi chp, lm bi thucthnangc hnh, bi t!p tucthnang nh gi, bi kiDm tra
nhanh, bi t!p tnh hu:ng, tm lu