242
fred harris 30 November - 3 December 2010 MODEMS

MODEMS - Wireless Innovation Forum · The Radio Channel Frequency Band VLF LF MF HF VHF UHF SHF EHF Infrared Visible Light 10 kHz 1 MHz 100 MHz 100 kHz 10 MHz 1 GHz 10 GHz 100 GHz

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • fred harris

    30 November - 3 December 2010

    MODEMS

    http://www.sdsu.edu/

  • What The Customer Wants

  • What The Customer Expects to Pay

    MO R EMO R E

    MO R EMO R E

    MO R E MO R E MO R E MORE MO R E

    MO RE

    MO R E

    MOREMORE

    MORE MORE

    MORE

    MORE MORE MORE

    MORE MORE

    MOREMORE

    MORE MORE

    MOREMORE

    MORE MORE

    MOREMORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    M MO

    O

    R

    RE

    E

    MORE

    MORE

    MORE

    S LESSS LESSS EVEN

    LESS

  • When The Customer Wants it

    MO R EMO R E

    MO R EMO R E

    MO R E MO RE MO R E MORE MO R E

    MO RE

    MO R E

    MOREMORE

    MORE MORE

    MORE

    MORE MORE MORE

    MORE MORE

    MOREMORE

    MORE MORE

    MOREMORE

    MORE MORE

    MOREMORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    MORE

    M MO

    O

    R

    RE

    E

    MORE

    MORE

    MORE

    NEXTWEEKTOMORROW THISAFTERNOON

  • What Size Customer Wants

  • Why Digital Communications?

    But Let Your Communications Be

    Yea, Yea: Nay, Nay:

    Sermon on the Mount,

    Matthew, Ch. 5, verse. 37

    For What So Ever is More Than

    These Cometh of Evil.

  • To Paraphrase

    the Great Bard

    The World is an Analog Stage

    In Which Digital

    Plays A Bit Part

  • The Basic Communication System

    MODULATORINFORMATION SOURCE

    INFORMATION DESTINATION

    DEMODULATORCHANNEL

    BANDLIMITED

    AWGN

    fx

    AmplitudeDistribution

    SpectralDistribution

  • The Radio Channel Frequency Band

    VLF LF MF HF VHF UHF SHF EHF Infrared Visible Light

    10kHz

    1MHz

    100MHz

    100kHz

    10MHz

    1GHz

    10GHz

    100GHz

    30km

    3km

    300 m

    30 m

    3m

    30cm

    3cm

    3mm

  • The Electromagnetic Spectrum

    Visible Light

    Radio Microwave Infrared UV X-Ray Gamma Ray

    1010 10 10 10 10 10 10 10 10 10 10 101026242220181614121086420f(Hz)

    f(Hz)FiberSatellite

    TerrestrialMicrowave FM

    Radio AMRadio

    Twisted Pair

    Coax

    Maritime

    TV

    Optics

    Band LF MF HF VHF UHF SHF EHF THF

    10 10 10 10 10 10 10 10 10 10 10 10 1016151413121110987654

  • Spectral Utilization

    Band Frequency Wavelength Some Uses

    VLF 3 - 30 kHz 100 km - 10 kmLong range navigation and marine

    radio

    LF 30 - 300 kHz 10 km - 1 km Aeronautical and marine navigation

    MF 300 kHz - 3 MHz 1 km - 100 mAM radio and radio

    telecommunication

    HF 3 - 30 MHz 100 m - 10 m Amateur radio bands, NRC time signal

    VHF 30 - 300 MHz 10 m - 1 mTV, FM, cordless phones, air traffic

    control

    UHF 300 MHz - 3 GHz 1 m - 10 cm UHF TV, satellite, air traffic radar, etc

    SHF 3 - 30 GHz 10 cm - 1 cm Mostly satellite TV and other satellites

    EHF 30 - 300 GHz 1 cm - 1 mm Remote sensing and other satellites

  • Radio Spectrum

  • Radio Spectrum Wavelength

  • Parts of the Electromagnetic Spectrum

    The ISM bands in the United States.

    ...

    ...

    ...

    ...

    Bandwidth

    26MHz

    83.5MHz

    125MHz

    Freq 902MHz

    928MHz

    2.42 GHz

    2.4835 GHz

    5.735 GHz

    5.860 GHz

  • Cross-Over Probabilities0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    1

    1

    11

    1

    1

    1

    1

    2

    23 3

    4

    4

    e

    p(0|0)

    p(0|0)

    p(1|1)

    p(1|1)

    p(1|0)

    p(1|0)

    p(0|1)

    p(0|1)

    p(e|1)

    p(e|0)e

  • ES/N0 Required for Specified BER

  • QPSK, 16-QAM, & 64-QAM Constellations

    for 10-5 BER

  • Spectral Levels of Signal and Noise for QPSK,

    16-QAM, & 64-QAM for 10-5 BER

  • Channel Coding:

    Add Structured Redundancy

    Source

    Source

    Source

    Source

    Source

    Source

    ChannelEncoder

    ChannelEncoder

    ChannelDecoder

    ChannelDecoder

    Modulator

    Modulator

    Modulator

    Demodulator

    Demodulator

    Demodulator

    Channel

    Channel

    Channel

    1

    1 1

    1

    1

    1

    0

    0

    0

    e1

    1 1

    1

    1

    1 11 1

    1

    1

    e0

    0 0

    0

    0

    0 0

    0

    0

    e1

    1 1

    1

    1

    1 1

    1

    1

    e1

    0 00 0

    1

    x x

    Super Channel

  • Bit Error Performance Waterfall

  • Other Channel Impairments

    ChannelIn

    In

    Out

    Out

    f f fff

    G( ) C( )

    Gain PhaseDistortion

    fixedfrequency offset

    FadingFreq Dep Flat

    Non Uniform Gain Amplitude- to-Phase

    doppler

    interefernce

    noise

    t

  • Modern Physical Layer Modem Recipe:

    Add these Ingredients, Stir, Bake for 20 Minutes at 300o.

    Let Cool! Enjoy your Modem!

    First Tier Processing: Modulation and Demodulation Shaping Filters

    Spectral Translation

    Signal Conversion

    Second Tier Processing: Parameter Estimation Carrier Frequency and Phase Synchronization

    Timing Frequency and Phase Synchronization

    Automatic Gain Control

    SNR Estimate

    Third Tier Processing: Channel and Hardware (Dirty RF) Equalization

    I-Q Balance

    DC-Cancel

    Peak-to-Average Ratio Control

    Predistortion

    Interference Suppression

    Intrusion Suppression

    Diversity

    http://schools-demo.clipart.com/search/close-up?oid=3786885&q=witches&s=1&a=a&cid=&fic=0

  • Modulator and Demodulator

    DATATRANSFORMS

    WAVEFORMTRANSFORMS

    SPECTRALTRANSFORMS

    BITS

    M-ARYALPHABET

    BASEBANDWAVEFORM

    RADIOFREQUENCYWAVEFORM

    DIGITAL ANALOG

    MODULATOR

    MODULATOR CHANNEL DEMODULATORBITS RF RF BITS

    DATATRANSFORMS

    WAVEFORMTRANSFORMS

    SPECTRALTRANSFORMS

    BITS M-ARYALPHABET

    BASEBANDWAVEFORM

    RADIOFREQUENCYWAVEFORM

    DIGITALANALOG

    DEMODULATOR

  • Claude Shannon

    Information is measurable.

    Noise Does not Limit Fidelity.

    'The world has only 10

    kinds of people.

    Those who get binary,

    and those who don't.'

  • DISCRETE CHANNEL DIGITALMODULATOR

    DIGITALDEMODULATOR

    BITS

    M-ARYALPHABET

    M-ARYALPHABET

    DATATRANSFORMS

    WAVEFORMTRANSFORMS

    SPECTRALTRANSFORMS

    SPECTRALTRANSFORMS

    WAVEFORMTRANSFORMS

    DATATRANSFORMS

    BASEBANDWAVEFORM

    RF

    CH

    AN

    NEL

    RF

    BASEBANDWAVEFORM

    BITS

    Shannon’s Communication System

  • Shannon’s Model

    BITS

    BITS

    BANDWIDTH REDUCING

    BANDWIDTHPRESERVING

    BANDWIDTHEXPANDING

    CH

    AN

    NEL

    SOURCEENCODING

    CHANNELENCODING

    CHANNELDECODING

    SOURCEDECODING

    ENCRYPTION

    DECRYPTION

  • Shannon’s Legacy

    Communication System Resources

    Bandwidth

    Signal to Noise Ratio

    Memory and Computations

    A Communication System needs a

    Computer in Modulator and Demodulator!

    We have a Computer on Board!

    We can use it to do some other Heavy Lifting!

  • Four Pillars of Modern Communications

    BAN

    DW

    IDTH

    SIG

    NAL t

    o N

    OIS

    E R

    ATIO

    DATA T

    RAN

    SFO

    RM

    S

    SIG

    NAL T

    RAN

    SFO

    RM

    S

    MODERN

    COMMUNICATIONS

  • The Modulator Digital to Analog

    Interface Moves Towards the RF

    BASEBAND

    BASEBAND

    BASEBAND

    RF

    RF

    RF

    M-ARY

    M-ARY

    M-ARY

    TUNER

    TUNER

    TUNER

    ANALOG

    ANALOG

    ANALOG

    DIGITAL

    DIGITAL

    DIGITAL

    SIGNALCONDITIONER

    SIGNALCONDITIONER

    SIGNALCONDITIONER

  • The Demodulator Analog to Digital

    Interface Moves Towards the RFBASEBAND

    BASEBAND

    BASEBAND

    RF

    RF

    RF

    M-ARY

    M-ARY

    M-ARY

    ANALOG

    ANALOG

    ANALOG

    DIGITAL

    DIGITAL

    DIGITAL

    TUNER

    TUNER

    TUNER

    SIGNALCONDITIONER

    SIGNALCONDITIONER

    SIGNALCONDITIONER

  • SECOND GENERATION

    DSP CENTRIC MODEL

    SAMPLED DATA CHANNEL DIGITAL MODULATOR

    DSP MODULATOR

    DSP DEMODULATOR

    DIGITALDEMODULATOR

    BITS

    M-ARYALPHABET

    M-ARYALPHABET

    DATATRANSFORMS

    WAVEFORMTRANSFORMS

    SPECTRALTRANSFORMS

    SPECTRALTRANSFORMS

    WAVEFORMTRANSFORMS

    DATATRANSFORMS

    BASEBANDWAVEFORM

    RF

    CH

    AN

    NEL

    RF

    BASEBANDWAVEFORM

    BITS

    ANALOGSIGNALS

    DIGITALSIGNALS

    DATASIGNALS

  • THIRD GENERATION

    DSP CENTRIC MODEL

    ANALOG CHANNEL DIGITAL MODULATOR

    DSP MODULATOR

    DSP DEMODULATOR

    DIGITALDEMODULATOR

    BITS

    M-ARYALPHABET

    M-ARYALPHABET

    DATATRANSFORMS

    WAVEFORMTRANSFORMS

    SPECTRALTRANSFORMS

    SPECTRALTRANSFORMS

    WAVEFORMTRANSFORMS

    DATATRANSFORMS

    BASEBANDWAVEFORM

    RF

    CH

    AN

    NEL

    RF

    BASEBANDWAVEFORM

    BITS

    ANALOGSIGNALS

    DIGITALSIGNALS

    DATASIGNALS

  • Modem: Bits In - RF Out, RF In - Bits Out

    ANALOG CHANNEL DIGITALMODULATOR

    DSPMODULATOR

    DIGITALDEMODULATOR

    DSPDEMODULATOR

    BITS BITS M-ARYALPHABET

    M-ARYALPHABET

    SourceEncoding

    SourceDecoding

    ChannelEncoding

    ChannelDecoding

    WaveformTransforms

    WaveformTransforms

    SpectralTransforms

    SpectralTransforms

    Encryption

    Decryption

    BASEBANDWAVEFORM

    RF

    CH

    AN

    NEL

    RF BASEBANDWAVEFORM BITS BITS

    DATASIGNALS

    DIGITALSIGNALS

    ANALOGSIGNALSMODEM

  • Early Radios Were Mechanical:

    (Many Moving Parts)

    Spark Transmitter and Early Receiver

  • Spark Transmitter: Damped Oscillations

  • Arc Transmitter: Continuous Oscillation

    Replace Sparks with an ArcNegative Resistance Injects EnergyAs Opposed to Dissipates Energy

    Valdemar Poulsen, 1869-1942

  • Poulsen 100 KW Arc Transmitter

  • The path to the Triode Thermonic Valve,

    Thomas Edison, John Fleming, Lee de Forest

  • Lee De Forest, 1877-1961 Patent No. 879532

  • Regenerative Receiver:

    A Little Feedback Goes a Long Way

  • Tuned RF (TRF) Radio

  • Edwin Armstrong’s

    Super Heterodyne Receiver

  • Vacuum Tube Replacement

    Solid State Amplifier

    John Walter William

    Bardeen Brattain Shockley

    1908-1991 1902-1987 1910-1989

    1947

    Noble Prize 1956

  • Integrated Circuits

    Robert Noyce,

    Intel

    Jack Kilby

    TI

    1958

    1923-2005 1928-1990

    Noble Prize 2000 Noyce Founded Intel

    Ted Hoff worked for Noyce

  • 20102000199019801970196019501947

    1,000

    10,000

    100,000

    1,000,000

    10,000,000

    100,000,000

    1,000,000,000

    10,000,000,000

    Trans

    istor

    s

    per c

    hip

    8080 4,500

    8088 29,000

    286 134,000

    386 275,000

    486 1.2 Million

    Pentium 3.1 Million

    Pentium II

    Celeron 7.5 Million

    Pentium 4

    Itanium

    Xeon 42 Million

    Itanium 2

    Itanium2

    8008 3,500

    4004 First

    processor 2,000

    7.5 Million

    5.5 MillionPentium Pro

    42 Million

    25 Million

    220 Million

    592 Million

    1977Apple II

    1947TransistorInvented

    1965Gordon MooreStates his famousaxiom, later calledMoore’s law

    1958Jack Kilby (TI) &Robert Noyce (intel) InventIntegrated Circuit

    1983 Motorola FirstMobile Phone

    1991 Kodak FirstDigital Camera

    1996 DVDPlayers

    1999 Blackberry

    Moo

    re’s

    Law:

    The

    dens

    ity o

    f tra

    nsist

    ors o

    n a

    chip

    dou

    bles

    eve

    ry 24

    mon

    ths

    More, More, MooreCritics have predicted the imminentdemise of Moore’s law ever sinceGordon Moore stated it in 1965.Electrical Engineers continue todefy physical challenges, squeezing ever morecircuitry into less spaceand making informationfly ever moreswiftly.

  • We all own

    a billion Transistors

    We have an amazing wealth of

    resources at our disposal!

    Just how big is a Billion?

    A stack of a billion bank notes would be

    76.2 kilometers High.

    A billion seconds is 32.5 years!

  • For Comparison, the Eiffel Tower

    Contains 18,084 Parts. It is

    Fastened Together by 2.5 Million Rivets

  • The world manufactures more

    transistors than it grows grains of rice.

    0.13-micron, Intel Pentium 4

    300-mm silicon wafer.

    Long Grain Jasmine Rice

    Wow!

  • How big is a billion grains of rice?

    8mm x 2mm x 2mm (Long Grain)

    1-billion grains of rice

    8 Meters x 2 Meters x 2 Meters

    Or 32 Cubic Meters

    Or a cube 3.2 Meters on a side

    It weighs 24,000 kg (26.6 tons)

    It costs $26,000 (3-rd week April 2008)

    CLS-350 Mercedes Benz weighs 2,200 kg

  • A Billion Transistors costs $20.0

    0.00000001

    Gordon_Moore_ISSCC-02-10-03

  • Adam @ HomeBrian Basset

  • It’s all done with Computer Chips

  • Harry Nyquist, (1889-1960)

    The Sampling Theorem

    fS>BW

  • Analog-to-Digital

    Converter

    A-to-D

    ADC

  • Digital-to-Analog

    Converter

    DAC

    D-to-A

  • Communication over Band

    Limited, AWGN Channel

    Shaping Filter

    Band Limited Channel

    Matched Filter

    AWGN

    d(n) s(t) r(t) d(n)^H1(w)

    H2(w)

    H2( ) = H1*( ) e j

    Hd(w)

    Hd( ) = H1( ) H1*( ) e j = |H1( )|

    2 e j

    |H1( )|2 e j = HNYQ( ) e

    j t

    H1( ) = SQRT{HNYQ( )}

    (Maximize SNR)

    (Zero ISI)

  • Band Limited Channel

    Zero ISI and Causal Response

    f f

    t t

    Tsym1

    Tsym1

    Tsym

    Tsym

    Tsym

    Tsym

    Tsym

    ........

    2

    Nyquist Spectrum Nyquist Spectrum

    With Cosine Taper

    Infinite Duration

    Nyquist Pulse

    Finite Duration

    Nyquist Pulse

  • It’s not what you don’t know that gets you in trouble!

    It’s what you know for sure to be true that just ain’t so!

    Samuel Clemens

  • Spectral Resolution

    Gaussian Window

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

    0.2

    0.4

    0.6

    0.8

    1

    Gaussian Window and Spectrum, Maximum Level Sidelobe -60 dB

    Am

    plit

    ud

    e

    Normalized Time Interval

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-80

    -60

    -40

    -20

    0

    Normalized Frequency

    Atte

    nu

    atio

    n (

    dB

    )

    -0.1 -0.05 0 0.05 0.1-80

    -60

    -40

    -20

    0

    Frequency

    (dB

    )

    Zoom to Main Lobe

  • -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

    0.2

    0.4

    0.6

    0.8

    1

    Kaiser Window and Spectrum, Maximum Level Sidelobe -60 dB

    Normalized Time Interval

    Am

    plitu

    de

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-80

    -60

    -40

    -20

    0

    Normalized Frequency

    Atte

    nu

    atio

    n (

    dB

    )

    Spectrum

    -0.1 -0.05 0 0.05 0.1-80

    -60

    -40

    -20

    0

    Frequency

    (dB

    )

    Zoom to Main Lobe

    Spectral Resolution

    Kaiser-Bessel Window

  • Spectral Resolution, Remez Minimum

    BW Window with -6-dB/Oct. Side Lobes

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    0

    0.2

    0.4

    0.6

    0.8

    1

    Remez Window and Spectrum, -6 dB/Octave, Maximum Level Sidelobe -60 dB

    Normalized Time

    Am

    plit

    ud

    e

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-80

    -60

    -40

    -20

    0

    Spectrum

    Normalized Frequency

    Atte

    nu

    atio

    n (

    dB

    )

    -0.1 -0.05 0 0.05 0.1-80

    -60

    -40

    -20

    0

    Zoom to Main Lobe

    Frequency

    dB

  • Cosine Tapered Nyquist Spectrum

    2

    sin( ) cos( )1

    ( ) ( )2

    ( ) [1 ( ) ]RC

    tt

    T Th ttT

    tT T

    0 2(1- ) (1+ )1

    2 22fsym

    f

    1

    2

  • Square-Root

    Cosine Tapered Nyquist Filter

    0 2(1- ) (1+ )1

    2 22fsym

    f

    1

    22

    Discontinuous

    First Derivative

    2

    2

    (4 )cos( (1 ) )1

    ( ) ( )

    ( )[1 (4 ) ]

    sin( (1 ) )1

    ( )

    ( )[1 (4 ) ]

    SR RC

    t t

    T Th tt tT

    T T

    t

    Tt tT

    T T

  • SQRT-RC Impulse Response

    Finite Duration, Rectangle Window

    0.08 dB

    (0.009)

    -35 dB

    (0.0178)

  • Spectra of SR-hM and

    SR-RC Nyquist Filter

    SR-RC

    SR-RC

    SR-hM

    SR-hM

  • ISI Levels: RC-RC and hM-hM

  • Transmitter and Receiver

    Modulator and Demodulator

    Modulator Band Limited Channel

    Demodulator

    AWGN

    b(n) s(t) r(t) d(n)^

    ( )

    ( ) Re{[ ( )] }

    Re{ ( ) }

    c

    c

    j t

    k

    k

    j tj t

    s t I g t kT e

    R t e e

    ( )( )( )

    ( )

    ( ) Re{[ ( )* ( ) ] }

    ( )

    c

    c

    j tj t

    j t

    r t A t R t e e

    n t e

  • First Tier, Primary Signal Processing Tasks

    in a Typical Transmitter and Receiver

    IFSTAGE

    RFSTAGE

    IFSTAGE

    DDS

    DDS

    S-P

    P-S

    Clock

    Clock

    CARRIER PLL

    TIMING PLL

    DAC

    ADC

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    Shape &Upsample

    Matched Filter

    Interpolate

    Decimate

    I-Q Table

    Detect

    cos( n)

    cos( n)

    sin( n)

    sin( n)

    Modulator

    Demodulator

    f

    Analog Analog

    Analog

    Oscillator

    PA

    RF Carrier

    GainControl

    Oscillator

    CarrierWaveform

    VGALNA

    RF Carrier

    IF

    Channel Channel

  • BPSK Phase Error

    x

    y

    A exp(j )

    A cos( )

    A sin( )

    2

    2

    ( )* ( ) cos( )*sin( )

    sin(2 )2

    x n y n A

    AConsider x(n) y(n)

  • -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -

    Inputs to Product Detector

    cosine

    sgn(cosine)

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -

    S-Curve Product Detector sign(x)*y

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -

    S-Curve Product detector x*y

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -

    Inputs to Product Detector

    Phase Detectors for Modulated BPSK

  • Second Tier Signal Processing Task,

    Carrier Recovery Phase Locked Loop

    Matched Filter

    Polyphase

    Polyphase

    Matched Filter

    Tanh( )

    Phase Accumulator

    PI Loop FilterCLK

    r(t, ) r(nT, )

    x(nT, )

    y(nT, )

    KI

    KP

    ZZ-1-1exp(-j )^

    ^

    ^

    2-to-1

    2-to-1

    DDS

    SNR

    SNR

  • Phase Detectors for Modulated QPSK

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -

    S-Curve Product Phase Detector: sign(x)*y-sign(y)*x

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -

    Inputs to Phase Detector

  • QPSK PLL

    FIRLPF

    r(n)

    LoopFilter

    FIRLPF

    cos( + )0

    -Sin( + )0

    ^

    ^

    Direct Digital Synthesizer

    x(n) I(n)

    y(n)Q(n)

    DDS

    +

    -

    ^

    ^

    ^ ^I(n)y(n)-Q(n)x(n)

    ~sin( (n))

    ^ ^

    x(n)+jy(n)

    I(n)+jQ(n)(n)

  • Maximum Likelihood Timing Recovery

    Matched Filter

    Tanh( )

    VCO LOOPFILTER

    2E N

    B

    0

    2E N

    B

    0

    SAMPLE

    SAMPLE

    r(t, ) y(t, )

    y(t, )

    ddt

    .

  • Derivative with Help of Nearby Neighbors

    (Early and Late)

    Advance Pointer

    RetardPointer

    HoldPointer

    Derivative

    DerivativeD

    erivat

    ive

  • Early-Late Gate Derivative

    Matched Filter

    Early Filter

    Late Filter

    Tanh( )

    VCO LOOPFILTER

    2E N

    B

    0

    2E N

    B

    0

    SAMPLE

    SAMPLE

    r(t, ) y(t, )

    y(t, ).

    -

  • Combining Early and Late Gates in a

    One Derivative Filter

    Matched Filter

    Early-Late Filter

    Derivative Filter

    Tanh( )

    VCO LOOPFILTER

    2E N

    B

    0

    2E N

    B

    0

    SAMPLE

    SAMPLE

    r(t, ) y(t, )

    y(t, ).

  • Slide Sampler to Input and Perform Timing

    Offset with Polyphase Digital Filter

    Matched Filter

    Polyphase

    Polyphase

    DerivativeMatched Filter

    Tanh( )

    VCO LOOPFILTER

    2E N

    B

    0

    2E N

    B

    0

    SAMPLE

    r(t, ) r(nT, )

    y(nT+ T, )

    y(nT+ T, ).

    T

    T

  • Approximating Tanh(x)

    -4 -3 -2 -1 0 1 2 3 4

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Tanh(x) and Piecewise Linear Approximation

    x

    tan

    h(x

    )

  • Sub Optimal Approximations

    Replace 2Eb/N0, SNR Gain with a Constant.

    Replace tanh(x) with Large SNR Approximation:

    tanh(x) ~ sign(x)

    Replace tanh(x) with Piecewise Approximation:

    tanh(x) ~ x for |x| < 1

    tanh(x) ~ sign(x) for |x| > 1

  • Sub Optimal Approximation

    Matched Filter

    Polyphase

    Polyphase

    DerivativeMatched Filter

    f(x)

    VCO LOOPFILTER

    SAMPLE

    r(t, ) r(nT, )

    y(nT+ T, )

    y(nT+ T, ).

    T

    T

    x

  • Second Tier Signal Processing Task,

    Timing Recovery Phase Locked Loop

    Matched Filter

    Polyphase

    Polyphase

    DerivativeMatched Filter

    Tanh( )

    Phase AccumulatorLoop Filter

    CLK

    r(t, )

    r(nT, )

    y(nT+ T, )

    y(nT+ T, ).

    T k

    T k

    Integer Part

    KI

    KP

    ZZ-1-1

    k

    k

    SNR

    SNR

  • Band Edge Filter: BE( )=dH( )/d

    Spectrum: Matched Filter

    Spectrum:Frequency Derivative of Matched Filter

    Spectrum: Output of Frequency Matched Filter

    G ( )

    G ( )

    MF

    FMF

  • Band Edge Filter Based

    Frequency Locked Loop

    Matched Filter

    FrequencyMatched Filter

    DDSLoopFilter

    Re(--)

    ^

    {R(n)e }j (n) j n

    e *

    *

  • Energy Difference in Band Edges

    Sufficient Statistic to Frequency Lock Spectrum: Frequency Matched Filter

    Spectrum: Frequency Matched Filter

    Spectrum: Centered Input Signal

    Spectrum: Shifted Input Signal

    Spectrum: Response to Centered Input Signal

    Spectrum: Response to Non Centered Input Signal

  • Mean and Variance of DC Term of

    Function of Frequency Offset

  • Spectra of

    Shaping and Band Edge Filters

  • Spectra of Signals From Band Edges

    Combined to form Two New Signals

    f

    f

    f

    -f

    symbol

    symbol

    symbol

    symbol

    2

    2

    2

    2

    A(f- )

    B(f+ )

    v (f)1 v (f)2

    f

    f

    f

    f

  • Eye Diagrams of Matched Filter and

    Sum and Difference Band-Edge Filters

  • Spectra of SQRT Nyquist Shaped Modulation

    Signals over Range of Excess BW

  • Eye Diagrams Matched Filter Output

  • Cyclostationary Mean and Variance

    Eye Diagrams Magnitude Matched Filter

  • Spectral Lines from Excess BW: MF( )xMF( )*

  • Eye Diagrams Band Edge Filter Output

  • Cyclostationary Mean and Variance

    Eye Diagrams Magnitude Band Edge Filter

  • Spectra of BE( )xBE( )*

  • Amplitude of Spectral Timing Line

    from Excess Bandwidth

  • What Happens if there is no excess BW?

    As we reduce excess BW to obtain more efficient use of spectrum, we reduce the ability of the receiver to synchronize.

    When there is no excess BW we need to allocate a fraction of transmitted energy to pilot signals.

    Example: OFDM Has No excess Energy in Modulation Waveform: Excess Energy Resides in added secondary signals: Preamble, Cyclic Prefix, Unmodulated Stationary and Moving Pilots.

    Interesting Question: Is this energy accounted for when people discuss error correcting codesoperating near Shannon Limit? (I’m sure it is not!)

  • The Synchronizers’ Needle Point

  • Band Edge Filters and Approximations

  • Linear and Minimum Phase BE Filters

  • Frequency Offset Spectra and BE Filters in

    Frequency Lock Loop

  • Phase Profiles of Freq Lock Loop

  • Time Series from BE Filters During Frequency Acquisition

  • Frequency Offset Spectra and Minimum Phase

    BE Filters in Frequency Lock Loop

  • Phase Profiles of Freq Lock Loop

  • Time Series from BE Filters During Frequency Acquisition

  • Frequency Offset Spectra and Linear Phase FIR

    Substitute for BE Filters in Frequency Lock Loop

  • Phase Profiles of Freq Lock Loop

  • Time Series from BE Filters During Frequency Acquisition

  • Asymmetric Processing

    BITS

    INPUTCLOCK

    CARRIERREFERENCE

    OUTPUTCLOCK

    BITS

    TIMING

    TIMINGCONTROL

    EQUALIZECONTROL

    CARRIERCONTROL

    GAINCONTROL

    TIMING

    CARRIER

    CARRIER

    MAP

    DETECT

    NOISE

    CHANNEL

    UNKNOWN TIME DELAY andATTENUATION

    MAP

    SHAPING FILTER

    SHAPING FILTEREQUALIZER

    AMPLITUDE and PHASE

    TRANSMITTER

    RECEIVER

    AMPLITUDEQUANTIZEDAMPLITUDE

    BASEBANDWAVEFORM

    BASEBANDWAVEFORM

    CARRIERWAVEFORM

    CARRIERWAVEFORM

    VGA

  • First Generation Receiver

    Analog Signal Conditioning

    LOW-PASS FILTER

    LOOPFILTER

    LOOPFILTER

    I-F FILTER

    IMAGEREJECT FILTER

    MATCHED FILTER

    FIRST LO

    SAMPLER

    DATADETECTOR

    PHASEDETECTOR

    CARRIER VCO

    TIMING VCO

    LNA

    TUNING

    GAIN

  • Second Generation Receiver

    DSP Based Signal Processing

    LOW-PASS FILTER

    LOOPFILTER

    LOOPFILTER

    I-F FILTER

    IMAGEREJECT FILTER

    MATCHED FILTER

    FIRST LO

    SAMPLER

    DATADETECTOR

    PHASEDETECTOR

    CARRIER VCO

    TIMING VCO

    LNA

    TUNING

    GAIN

  • Third Generation Receiver DSP Based

    Signal Conditioning

    LOW-PASS FILTER

    LOOPFILTER

    LOOPFILTER

    I-F FILTER

    IMAGEREJECT FILTER

    MATCHED FILTER

    FIRST LO

    SAMPLER

    DATADETECTOR

    PHASEDETECTOR

    SECOND LO

    SAMPLING CLOCK

    CARRIER DDS

    TIMING DDS

    LNA

    TUNING

    GAIN

    INTERPOLATOR

  • Build Your Own Carrier

    for Final Down Conversion

    AMPAMP

    AMPAMP

    ANT

    /2

    BASEBANDPROC

    TUNE

    RF IF

    CARRIER

  • First Generation Digital Receiver

    AMPAMP

    AMP

    ADC

    ADC

    AMPAMP

    ANT

    /2

    BASEBANDPROC

    TUNE

    RF IF

    TIMINGCARRIER

  • Second Generation Digital Receiver

    AMPAMPADC

    AMPAMP

    ANT

    BASEBANDPROC

    TUNE

    IFRF

    ACCUM

    TRIGTABLE

    DIRECT DIGITAL

    SYNTHESIZER

    DIGITAL

    TIMINGCARRIER

    DIGITAL

    M:1

    M:1

  • Third Generation Digital Receiver

    AMPAMPADC

    AMPAMP

    ANT

    BASEBANDPROC

    TUNE

    IFRF

    ACCUM

    ACCUM

    TRIGTABLE

    DDS

    DIGITAL

    CLOCK CARRIER

    Timing

    M:1

    M:1

  • Signals and Underlying Structure of Analog

    Radio, DSP Radio, and Software Defined Radio

    AnalogModulation

    Software Control and Upgrades

    DigitalModulation

    New WaveformsEvolving Standards

    Modulation

    Analog Radio

    DSP Radio

    Software Defined Radio

    Modulation Type BandwidthFrequency Band

    Modulation Type Bandwidth

    Frequency Band Source CodingChannel Coding

    Modulation Type Bandwidth

    Frequency Band Source Coding Channel Coding Configuration Control

    Fixed Parameters

    Fixed Parameters

    Programmable Parameters

    Software Defined Radio: A Tutorial

    IEEE Instrumentation and Measurement

    Magazine, February 2010

    fred harris and Wade Lowdermilk

  • High Level Block Diagram of Software Defined Radio. Radio is

    segmented into RF Processing Front End Block, Baseband

    Waveform Digital Signal Processing Back End Block, and

    Interface to Data Processing Higher Level User Application and

    Interface Blocks.

    Tunable Filters and LNA

    Tunable Filters and LNA

    User Interface Periphials

    Power Manager

    Tunable Filters &Power Amplifier

    Mixer

    Mixer

    IF/AGC

    IF/AGC

    ADC

    DAC

    DSPs GPPs

    SpecializedCo-Processors

    FPGAs

    D

    up

    lexe

    r, A

    nte

    nna

    Ma

    na

    ge

    me

    nt

    & T

    une

    r

    RF-Front End Digital Back End

  • First Tier, Primary Signal Processing Tasks

    in a Typical Transmitter and Receiver

    IFSTAGE

    RFSTAGE

    IFSTAGE

    DDS

    DDS

    S-P

    P-S

    Clock

    Clock

    CARRIER PLL

    TIMING PLL

    DAC

    ADC

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    Shape &Upsample

    Matched Filter

    Interpolate

    Decimate

    I-Q Table

    Detect

    cos( n)

    cos( n)

    sin( n)

    sin( n)

    Modulator

    Demodulator

    f

    Analog Analog

    Analog

    Oscillator

    PA

    RF Carrier

    GainControl

    Oscillator

    CarrierWaveform

    VGALNA

    RF Carrier

    IF

    Channel Channel

  • Second Tier Signal Processing Task,

    Carrier Recovery Phase Locked Loop

    Matched Filter

    Polyphase

    Polyphase

    Matched Filter

    Tanh( )

    Phase Accumulator

    PI Loop FilterCLK

    r(t, ) r(nT, )

    x(nT, )

    y(nT, )

    KI

    KP

    ZZ-1-1exp(-j )^

    ^

    ^

    2-to-1

    2-to-1

    DDS

    SNR

    SNR

  • Second Tier Signal Processing Task,

    Timing Recovery Phase Locked Loop

    Matched Filter

    Polyphase

    Polyphase

    DerivativeMatched Filter

    Tanh( )

    Phase AccumulatorLoop Filter

    CLK

    r(t, )

    r(nT, )

    y(nT+ T, )

    y(nT+ T, ).

    T k

    T k

    Integer Part

    KI

    KP

    ZZ-1-1

    k

    k

    SNR

    SNR

  • Estimate Signal Mean and Variance

    at High SNR and Low SNR

    ConditionalDensities

    ConditionalDensities

    Density ofObservableMAG

    Density ofObservableMAG

    AA

    AA M1

    -A-A

    Estimate of Mean is too High

    Estimate of variance is too Low

  • Estimates of Moments and SNR as Function of SNR

  • Skewness: A Measure of Estimated SNR Error

    Skewness : the third central moment of X,

    divided by the cube of its standard deviation

  • BPSK Large SNR Approximation to ML

    0 100 200 300 400 500 600 700 800 900 1000-2

    -1

    0

    1

    2Input and Output Phase Slopes, and Detected Phase Error

    det(n) = sign(I(n))*Q(n): Large SNR Approximation to ML Carrier Recoverysnr = 10.21dB

    -2 0 2-2

    -1

    0

    1

    2

    Constellation Diagram

    0 500 10000

    0.2

    0.4

    0.6

    0.8

    1

    Variance Estimate

    -1 -0.5 0 0.5 1-4

    -2

    0

    2

    4

    Eye Diagram

    0 20 40 60 80 100 120-2

    -1

    0

    1

    2

    De-Spun Matched Filter Outputerror rate = 0.00 %

    MF Resp.

    Det. Data

    Input Data

  • BPSK Large SNR Approximation to ML

    0 100 200 300 400 500 600 700 800 900 1000

    0

    0.2

    0.4

    0.6

    0.8

    1

    Error Locations

    0 100 200 300 400 500 600 700 800 900 1000-40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    Phase Error for det(n) = sign(I(n))*Q(n)

    (de

    g)

  • BPSK ML Carrier Recovery Loop

    0 100 200 300 400 500 600 700 800 900 1000-2

    -1

    0

    1

    2Input and Output Phase Slopes, and Detected Phase Error

    det(n) = tanh[snr*sign(I(n)]*Q(n): ML Carrier Recoverysnr = 10.02dB

    -2 0 2-2

    -1

    0

    1

    2

    Constellation Diagram

    0 500 10000

    0.5

    1

    1.5

    Variance Estimate

    -1 -0.5 0 0.5 1-4

    -2

    0

    2

    4

    Eye Diagram

    0 20 40 60 80 100 120-2

    -1

    0

    1

    2

    De-Spun Matched Filter Outputerror rate = 0.00 %

    MF Resp.

    Det. Data

    Input Data

  • BPSK ML Carrier Recovery Loop

    0 100 200 300 400 500 600 700 800 900 1000

    0

    0.2

    0.4

    0.6

    0.8

    1

    Error Locations

    0 100 200 300 400 500 600 700 800 900 1000-30

    -20

    -10

    0

    10

    20

    30

    Phase Error for det(n) = tanh[snr*I(n)]*Q(n)

    (de

    g)

  • BPSK Large SNR Approximation to ML

    0 100 200 300 400 500 600 700 800 900 1000-2

    -1

    0

    1

    2Input and Output Phase Slopes, and Detected Phase Error

    det(n) = sign(I(n))*Q(n): Large SNR Approximation to ML Carrier Recoverysnr = 3.42dB

    -2 0 2-2

    -1

    0

    1

    2

    Constellation Diagram

    0 500 10000

    0.5

    1

    1.5

    2

    2.5

    Variance Estimate

    -1 -0.5 0 0.5 1-4

    -2

    0

    2

    4

    Eye Diagram

    0 20 40 60 80 100 120-2

    -1

    0

    1

    2

    De-Spun Matched Filter Outputerror rate = 48.53 %

    MF Resp.

    Det. Data

    Input Data

  • BPSK Large SNR Approximation to ML

    0 100 200 300 400 500 600 700 800 900 1000

    0

    0.2

    0.4

    0.6

    0.8

    1

    Error Locations

    0 100 200 300 400 500 600 700 800 900 1000-300

    -200

    -100

    0

    100

    200

    300

    Phase Error for det(n) = sign(I(n))*Q(n)

    (de

    g)

  • BPSK ML Carrier Recovery Loop

    0 100 200 300 400 500 600 700 800 900 1000-2

    -1

    0

    1

    2

    Input and Output Phase Slopes, and Detected Phase Errordet(n) = tanh[snr*sign(I(n)]*Q(n): ML Carrier Recovery

    snr = 3.46dB

    -2 0 2-2

    -1

    0

    1

    2

    Constellation Diagram

    0 500 10000

    0.5

    1

    1.5

    2

    2.5

    Variance Estimate

    -1 -0.5 0 0.5 1-4

    -2

    0

    2

    4

    6

    Eye Diagram

    0 20 40 60 80 100 120-2

    -1

    0

    1

    2

    De-Spun Matched Filter Outputerror rate = 12.44 %

    MF Resp.

    Det. Data

    Input Data

  • BPSK ML Carrier Recovery Loop

    0 100 200 300 400 500 600 700 800 900 1000

    0

    0.2

    0.4

    0.6

    0.8

    1

    Error Locations

    0 100 200 300 400 500 600 700 800 900 1000-40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    Phase Error for det(n) = tanh[snr*I(n)]*Q(n)

    (de

    g)

  • Automatic Gain Control (1)

    z-1

    x(n)

    A(n)

    y(n)=A(n)x(n))

    R

    -

    2.0.cthatnote

    ]1[)()1(

    then

    constantcu(n),cx(n)Suppose

    )](1[)()1(

    )]()([)()1(

    )]([)()1(

    )()()(

    RcnAnA

    RnxnAnA

    nxnARnAnA

    nyRnAnA

    nxnAny

    sientshort tran,largeiscIf.transientlongsmall,iscIf

    samples.c1/isconstanttimeThe

    R.levelreferencedesiredtheequalsleveloutput

    statesteadyTheR.orR/ccis)y(outputstate

    steadytheandR/cis)A(gainstatesteady

    that theso1/cissystemthisofstateSteady

  • Automatic Gain Control (2)

    z-1

    x(n)

    Log[A(n)]

    y(n)=A(n)x(n))

    Log[R]

    -

    EXP Log[Mag]

    2.0.thatnote

    ]/[]1[)]([)]1([

    then

    constantcu(n),cx(n)Suppose

    ]/)([]1[)]([)]1([

    )]}()([][{

    )]([)]1([

    )]}([][{[

    )]([)]1([

    )()()(

    RcLognALognALog

    RnxLognALognALog

    nxnALogRLog

    nALognALog

    nyLogRLog

    nALognALog

    nxnAny

    amplitude.inputoftindependenisand

    samples,1/isconstanttimeTheR.levelreference

    desiredtheequalsleveloutputstatesteadyThe

    R.orR/ccis)y(outputstate

    steadytheandR/cis)A(gainstatesteady

    that theso1/cissystemthisofstateSteady

  • Linear Loop AGC Responses

  • Linear Loop AGC Responses: with Filter Delays

  • Log Loop AGC Responses

  • Log Loop AGC Responses: with Filter Delays

  • Linear Loop AGC Output and Control Levels

  • Log Loop AGC Output and Control Levels

  • DC Canceller,

    DC Notch Filter

    z-1-

    x(z)

    f(z)

    y(z)

    )1(

    1)(

    Z

    ZZH

    +

    1-

  • Spectral Response

  • DC Canceller with Embedded

    Sigma-Delta Converter

    Z

    Z

    -1

    -1

    -

    -

    R1

    R2

    x(n)y (n)2

    Qq_loop

    q_out

    Suppress Bit Growth with

    Sigma-Delta Converter in

    Feedback Path

  • DC Canceller Time Series

  • Spectra

    Input and Output of Canceller

  • Tunable Notch,

    Spin the Delay Line

    z-1-

    x(z)

    f(z)

    y(z)

    je

    j

    j

    eZ

    eZZH

    )1()(

    +1-

  • Spectral Response

  • Tuning With LP-to-BP

    Transformation

    z-1-

    x(z)

    f(z)

    y(z)

    c

    cZ

    cZ1

    )cos(:)21()1(2

    12)(

    2

    2

    cZcZ

    cZZZH

    ++

    1-

    1-

  • Implementing LP-to-BP

    Transformation

    -

    -z z

    -1 -1

    c=cos( ) mu

    x y

    b1 b1

    Z Z

    Z ZZ

    -1 -1

    -1

    -1

    -1 -1-1

    - -

    x(z) x(z)

    y(z) y(z)Y(z) z

    Y(z) z

    1-cZ

    Z-c

  • Spectral Response

  • Self Tuning:

    Reference Cancelingy(n)x(n)

    r(n)

    Z-1

    w(n) w(n+1)**

    y(n)x(n)

    ej n

    ej n

    Z-1

    w(n) w(n+1)**

  • Filters have Same Transfer Function

    y(n)x(n)

    ej n

    ej n

    Z-1

    w(n) w(n+1)**

    z-1-

    x(z)

    f(z)

    y(z)

    je

  • Block Diagram of Receiver with

    Ideal Signal Processing Blocks

    Analog I/QDown Convert

    Digital I/QDown Convert

    AnalogLow Pass

    Filters

    AnalogBand Pass

    Filter

    A-to-DConverters

    Rest ofReceiver

    ChannelEqualize

    Synthesizer DDSClock

  • Block Diagram of Receiver with Non-

    Ideal Signal Processing Blocks and

    Associated Compensating Blocks

    Analog I/QDown Convert

    Digital I/QDown Convert

    AnalogLow Pass Filters

    AnalogBand Pass Filter

    A-to-DConverters

    DCCancel

    PhaseBalance

    GainBalance

    Rest ofReceiver

    FilterCompensate

    ChannelEqualize

    Synthesizer Clock DDSAnalog Signals Digital Signals

  • Gain and Phase Imbalance in Analog

    I-Q Mixers Used for Up or Down Conversion

  • Complex Baseband & Real Band-Centered

  • Complex Down Conversion

  • I-Q Gain and Phase Imbalance

    MatchMatch

    MatchMatch

    cos( t)cos( t)

    sin( t+ )sin( t) ( )

    I(t)I(t)

    Q(t)Q(t)

    ^

    ^

    ^

    ^

    ^^

    Balanced Imbalanced

  • I-Q Imbalance: Image Spectral Terms

    f f

    f f

    f f

    RealReal

    RealReal

    RealReal

    ImagImag

    ImagImag

    ImagImag

    A

    AA

    A

    A

    A

    A

    A

    A

    A

    A

    A

    A

    A

    A

    2

    22

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    _

    __

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    (1+ )

    (1+ )

    -

    f0

    f0

    f0

    f0

    f0

    -f0

    -f0

    -f0 -f0

    -f0

    -f0

    f0

    A cos(2 f t)0

    A cos(2 f t)0

    (1+ ) A sin(2 f t+0

    A sin(2 f t)0

    A exp(j 2 f t)0

    X={ }

    X=F{ }

    i Y={ i }

    i Y=F{i }

    X+i Y={ }

    X+i Y=F{sum}

  • Effect of I-Q Imbalance

  • Balanced Mixers

  • Gain Imbalance

  • Phase Imbalance

  • Gain and Phase Imbalance

  • Filter Imbalance

  • IFSTAGE

    ADC

    ADC ANALOGLOW-PASS

    ANALOGLOW-PASS

    DIGITALLOW-PASS

    DIGITALLOW-PASS

    AGC DC CANCEL

    I-Q MIXER GAIN & PHASE BALANCE ANALOG FILTER GAIN & PHASE BALANCECARRIER & TIMINGCHANNEL & FILTER EQUALIZER

    PWRDVDR

    cos( t)

    -sin( t)fs

    fs

    4:1

    4:1

    Gain and Phase Of Mismatched

    Analog Low-Pass Filter

  • Gain and Phase Contributions of I-Q

    Matched Low Pass Filters

  • Gain and Phase Contributions of I-Q

    Mismatched Low Pass Filters

  • I-Q Imbalance and Self Mixing

    LNA

    FrequencySynthesizer

    Low Pass Filter

    Low Pass Filter

    ParasiticCoupling

    f f f

    DC Offset: Self MixingDesired Component: MixingSpectral Image: I-Q Imbalance

  • Truncating Quantizers: DC Bias

    X X

    -X -X

    X X

    X(n) X(n)

    Xq Xq

    Xq Xq

    X (n)q X (n)qADC ADC

    Rounding Quantizer Truncating Quantizer

    CLK CLK

    Round Floor

  • 2’s Complement Arithmetic; DC Bias

    0 +Nmax-Nmin

    b-bitsb-bits

    (b-2)-bits(b-2)-bits ErrorError

    Positive numbers:Measure displacement from reference. Reference = 0

    Negative numbers:Measure displacement from reference. Reference = -Nmin

    QuantizedNumber Line

  • Errors Due to finite Arithmetic

    x1 x

    x2 hQ

    hQh

    qA qMqC

    s = x + x +q1 2 A p = x h +qQ M.

    Quantize Addition Quantize Coefficient Quantize Multiplication

  • Finite Arithmetic in Radix-2 FFT Algorithm

    +

    +

    +

    -

    SCL

    (2 , 20 -1)

    e-j

    N k

    N

    N N

    N

    N

    N

    NN N

    2 22

    2

    22 2

    -Pnt

    -Pnt

    DFT

    DFT

    k1

    n1

    n2

    k

    k+k2

    Time Time Freq Freq

    n

  • Radix-2 FFT Signal Flow Diagram

    000

    011

    110

    001

    100

    111

    010

    101

    -

    -

    - -

    -

    - -

    -

    - - -

    -

    w0

    w0

    w0

    w2

    w2

    w2

    w3

    w1

  • Algorithm Noise Due to

    Finite Arithmetic and Coefficient Noise

  • Algorithm Noise due to

    Finite Arithmetic Scaling Noise

  • Signal Through Filter

    with Gain Distortion

    x(t) y(t)h(t)

    H( )=1+ cos( )p

    p

    X( )

    H( )

  • Model of Gain Distortion

    H( )=1+ cos( )p

    Y( )=X( ) H( )=X( )[1+ cos( )]

    =X( )+p

    p

    p p

    p p

    X cos( )

    =X( )+0.5 X exp(j )+0.5 X exp(-j )

    y(t)=x(t)+0.5 x(t+T )+0.5 x(t-T )

    Paired Echos

  • Pre-and-Post Echoes

    x(t) y(t)

    x(t-T )D

    0.5 x(t-T -T )D p0.5 x(t-T +TD p)

    Paired Echos: The Effect of Passband Ripple

    TD TD P+TTD P-Tt t

  • Nyquist Pulse Time and Frequency

  • Pulse: Time and Frequency

  • Pulse Response and ISI Component

  • Recursive Filter Time & Frequency

  • Pulse Response and ISI Component

  • Pulse Response and ISI Component

  • QPSK Modulator Eye-Diagram,

    Constellation, and Spectrum

  • QPSK Demodulator, Eye-Diagram

    Constellation, and Spectrum

  • QPSK Demodulator with RCVR Filter

  • 16-QAM Modulator Eye-Diagram,

    Constellation, and Spectrum

  • 16-QAM Demodulator with RCVR Filter

  • Signal Flow Path in XMTR & RCVR

    Shaping Filter

    XMTR & RCVR Filters

    Matched Filter

    Equalizer

    AdaptiveAlgorithm

    Detector

    d(n) r(n)

    e(n)

    d(n)x(n) y(n) ^

    -

  • Decision Directed, Gradient Descent (LMS)

    Tapped Delay Line Equalizer

    ............

    ......

    x(n)

    y(n)

    c (n)-k c (n)-k+1 c (n)-k+2 c (n)-k+3 c (n)k-1 c (n)k

    x(n-1) x(n-2) x(n-3) x(n-N+2) x(n-N+1)

    * ** *

    *

    **

    z -1z -1z -1

    z -1 z -1z -1

    z -1

    z -1 z -1 z -1

    Ik

    Ik

    ^

    ~

    Detectore(n)+

    -

    Input

    Output

  • Received Signal and SpectrumNo Channel Distortion

  • Constellation:

    Equalizer Input and Output

  • Received Signal and SpectrumWith Channel Distortion

  • Constellation:

    Equalizer Input and Output

  • I-Q Imbalance Requires DC Cancellers

    I II ’

    Q QQ’

    (1+

    I-Q Imbalance

    DCCancel

    PhaseBalance

    GainBalance

    DCCancel

    g^ ^

    ~

    ~

  • Sequence of 16-Phase Constellations

    During Phase Balancing

  • Sequence of 16-Phase Constellations

    During Gain and Phase Balancing

  • Sequence of 16-QAM Constellations

    During Phase Balancing

  • Sequence of 16-QAM Constellations

    During Phase and Gain Balancing

  • Spectral Images

    Due to I-Q Mismatch

  • Constellations of

    Channel +k and -k

  • Crosstalk Between Channels k and –k

    Due to gain and Phase Imbalance

  • Constellation after Gradient Descent

    Correction of Gain and Phase Imbalance

  • Crosstalk Between Channel k and Empty Channel –k

  • Constellation after Gradient Descent Correction of

    Gain and Phase Imbalance

  • DAC Sin(x)/(x) Baseband Distortion

    0

    0

    0

    fs 2fs

    fs fs

    fs

    -fs-2fs

    -fs-2fs

    -fs

    f

    f

    f

    sin(x) sin(x)

    sin(x)

    (x) (x)

    (x)

    Spectral Response of DAC

    Spectrum of Sampled Data Shaping Filter

    Spectrum of Analog Output from DAC

    Distortion Correction

    Analog Fi lter

    Analog Fi lter

    sin(x)

    sin(x)

    (x)

    (x)

    -1

    -1

    DAC

    DAC

    Modem

    I(n)

    Q(n)

    cos( t)c

    sin( t)c

    -Analog IF

  • Baseband Filter DAC Predistortion

  • CIC [Sin(x)/(x)] P Compensator

  • DAC Sin(x)/(x) Digital IF Distortion

    0

    0

    0

    fs 2fs

    fs fs

    fs

    -fs-2fs

    -fs-2fs

    -fs

    f

    f

    f

    sin(x) sin(x)

    sin(x)

    (x) (x)

    (x)

    Spectral Response of DAC

    Spectrum of Sampled Data Shaping Filter

    Spectrum of Analog Output from DAC

    Distortion Correction

    Analog Fi lter

    sin(x)(x)

    -1DACModem

    Analog IFDigital IF

  • Sin(x)/(x) Predistortion

    ....

    ....

    ..

    ....

    ....

    ..

    ....

    ....

    ....

    ....

    ..

    ..

    ....

    ....

    ....

    ....

    ....

    ......

    ......

    ......

    ......

    ..

    ..

    ..

    32PntIFFT

    32Pnt

    IFFT

    32PntIFFT

    32PntIFFT

    16PntIFFT

    32Path

    Filter

    32PathFilter

    32Path

    Filter

    32Path

    Filter

    16PathFilter

    Shape &InterpFilters

    Shape &

    InterpFilters

    Shape &InterpFilters

    Shape &

    InterpFilters

    Interp Filter

    DDS

    sin(x)

    Circ

    ula

    r Bu

    ffer

    Circ

    ula

    r Bu

    ffer

    Circ

    ula

    r Bu

    ffer

    Circ

    ula

    r Bu

    ffer

    Circ

    ula

    r Bu

    ffer

    16Ports

    10Ports

    16Ports

    16Ports

    16Ports

    (x)

    -1DAC

    1-to-8 Up-Samplerin 16-Path Channelizer

    1-to-16 Up-Samplersin 32-Path Channelizers

    1-to-2192 MHz

    1.536 MHz

    3.072 MHz

    192 MHz

    192 MHz

    192 MHz

    12 MHz

    12 MHz

    12 MHz

    12 MHz

    5.36.. MHz

    5.36.. MHz

    5.36.. MHz

    5.36.. MHz 1

    2

    3

    10

  • DAC SIN(X)/X CORRECTION

  • DAC Sin(x)/(x) IF Predistortion

  • Power Amplifier Linearization

    AnalogSynthesizer

    DDS

    2

    2

    DAC

    ADC

    1-to-8 Filter

    LPFilter

    IFFilter

    IFFilter

    Pre-Distort

    NLModel

    GainCorrect Table

    sin(x)

    (x)

    PA

    Comp

    PA Linearization

    Peak-to-Average Ratio Control

  • Non Linear Amplifier and Pre-Compensating Gain

  • Transition Diagram Input and Output of Amplifier

    and Input and Output of Precompensator

  • 16-QAM Input and Output Envelopes. Saturation and 1-

    dB Compression Circles

    -2 -1 0 1 2

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    Envelope at Output of Amplifier

    -2 -1 0 1 2

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    Envelope at Input to Amplifier

    Saturation at 2-Times RMS Signal Level

    Saturation Saturation

    1-dB

    Compression

    1-dB

    Compression

  • Limiting Amplifier Effect on Received QAM Constellation

    -1 -0.5 0 0.5 1

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Matched Filter Applied to Input of Amplifier

    -1 -0.5 0 0.5 1

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Matched Filter Applied to Output of Amplifier

  • 16-QAM ( =0.2) Envelope Statistics

    0 0.5 1 1.5 2 2.50

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    16-QAM Histogram at Amplifier Input

    Normalized Amplitude (x/x)

    0 0.5 1 1.5 2 2.50

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016 std dev =1.03 clip level

    16-QAM Histogram at Amplifier Output

    Normalized Amplitude (x/x)

    0 0.5 1 1.5 2 2.5 310

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Probabilty of Level Crossing

    Normalized Amplitude (x/x)

  • Limiting Amplifier Effect on Signal Spectra

    -4 -3 -2 -1 0 1 2 3 4

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10Spectrum at Input to Amplifier

    Normalized Frequency (f/fsym

    )

    Log M

    agnitude (

    dB

    )

    -4 -3 -2 -1 0 1 2 3 4

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10Spectrum at Output of Amplifier

    Normalized Frequency (f/fsym

    )

    Log M

    agnitude (

    dB

    )

    SPECTRAL REGROWTH

  • Spectra: Input and Output of Amplifier and Output

    of Pre-Compensator and Pre-Compensated Amplifier

  • OFDM Input and Output Envelopes:

    Saturation and 1-dB Compression Circles

    -3 -2 -1 0 1 2 3

    -3

    -2

    -1

    0

    1

    2

    3

    Envelope at Input to Amplifier

    -3 -2 -1 0 1 2 3

    -3

    -2

    -1

    0

    1

    2

    3

    Envelope at Output of Amplifier

    Saturation at 2-Times RMS Signal Level

    Saturation Saturation

    1-dB

    Compression

    1-dB

    Compression

  • Limiting Amplifier Effect on OFDM Constellation

    -1 -0.5 0 0.5 1

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    OFDM Constellation at Input to Amplifier

    -1 -0.5 0 0.5 1

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    OFDM Constellation at Output of Amplifier

  • OFDM Envelope Statistics

    0 1 2 3 40

    0.005

    0.01

    0.015OFDM Histogram at Amplifier Input

    Normalized Amplitude (x/x)

    0 1 2 3 40

    0.005

    0.01

    0.015

    std dev =1.06 clip level

    OFDM Histogram at Amplifier Output

    Normalized Amplitude (x/x)

    0 1 2 3 410

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Probabilty of Level Crossing

    Normalized Amplitude (x/x)

  • To Clip or Not to Clip:

    That is the Question!

    s (t)1

    s (t)=3 s (t)-s (t)2 1

    +LCLIP

    -LCLIP

    s (t)2

    -LCLIP

    -LCLIP -LCLIP

    LCLIPLCLIP

    LCLIP

    s2 s3

    s1 s1

  • Band Limited

    Subtractive Clipping

    L L

    -L -L

    S (n)1

    S (n)3

    a1

    a1

    a2

    a2

    C(k )1

    k1 k1

    k1

    k2

    k2 k2

    C(k )2

    -

  • Band-Limited Clipping

    LCLIP

    s (t)2

    s (t)3

    s (t)1CLIP-1

    -

    LCLIP

    s (t)2

    s (t)3

    s (t)1

    CLIP-2

    LCLIP

    s (t)2

    s (t)3s (t)4

    s (t)1

    CLIP-2 Filter

    Delay

  • Input Signal, Clipping Component and

    Clipped Signal

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    0.5

    1

    1.5

    2

    2.5Magnitude of Input Signal

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    0.1

    0.2

    0.3

    0.4Magnitude of Input Signal Exceeding Top

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    0.5

    1

    1.5

    2

    2.5Magnitude of Input Signal - Level Exceeding Top

  • Spectra: Input Signal, Band Limited Clipping

    Component and Clipped Signal

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    0.5

    1

    1.5

    2

    2.5Magnitude of Input Signal

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    0.1

    0.2

    0.3

    0.4Magnitude of Input Signal - Level Exceeding Top and Filtered Version

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    0.5

    1

    1.5

    2

    2.5Magnitude of Input Signal - Filtered Level Exceeding Top

  • Spectra: Input, Clip Component, Band Limited Clip,

    and Band Limited Clip

  • Spectra: Input and Output of Amplifier and Output of PAPR Controlled and

    Pre-Compensator and Pre-Compensated Amplifier

  • DSP Radio (DSP Everywhere!)

    Polyphase Matched Filter 32-to-1

    Polyphase Derivative Matched Filter

    PolyphaseBand-Edge Filter

    Timing Loop

    Equalizer 2-to-1 Downsample

    LMSAlgorithm

    CarrierLoop Filter & DDS

    CarrierLoop Filter & DDS

    Detector

    20 Msmpl/S

    10 Msmpl/S

    20 Msmpl/S

    -

    *

    Channel Filtering, Channel Estimate, Equalization,

    AGC, DC-Cancelling, I-Q Balance, Line Canceller,

    Interference Canceller, Matched Filter, SNR

    Estimate, Band Edge Filter, Frequency Lock Loop,

    Carrier Lock Loop, Interpolator, Timing Lock Loop

    Actually, A design Project

    For my Modem Design Class

  • Professor harris, may I be excused?

    My brain is full.

  • Yes: That is True!

  • SOFTWAREDEFINEDRADIOMAN

    Is Open For Questions