61
Bursting Nucleation Mod´ elisation probabiliste en biologie cellulaire et mol´ eculaire Th` ese sous la direction de M. Adimy, M.C. Mackey & L. Pujo-Menjouet Romain Yvinec Institut Camille Jordan - Universit´ e Claude Bernard Lyon 1 Vendredi 05 octobre 2012 0/40

Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

  • Upload
    doandan

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

Bursting Nucleation

Modelisation probabiliste en biologie cellulaire etmoleculaire

These sous la direction de

M. Adimy, M.C. Mackey & L. Pujo-Menjouet

Romain Yvinec

Institut Camille Jordan - Universite Claude Bernard Lyon 1

Vendredi 05 octobre 2012

0/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Experiments Reduction Limiting model

Central Dogma

◮ Expression of a gene through transcription/translationprocesses.

◮ Non-linear Feedback regulation.

1/40

Bursting Nucleation Experiments Reduction Limiting model

◮ Bifurcation analysis in Ordinary Differential Equation.

◮ Application to synthetic biology.

[Goodwin, 1965],[Hasty et al., 2001].

2/40

Bursting Nucleation Experiments Reduction Limiting model

Stochasticity in molecular biology

[Eldar and Elowitz, 2010].

3/40

Bursting Nucleation Experiments Reduction Limiting model

Much more accurate measurements

◮ Bifurcation can be studied on probability distributions.

[Song et al., 2010].

4/40

Bursting Nucleation Experiments Reduction Limiting model

Much more accurate measurements

◮ Trajectories can be analyzed on single cells.

[Yu et al., 2006].

5/40

Bursting Nucleation Experiments Reduction Limiting model

New Central dogma

◮ Take into account gene state switching. Interpretation asstochastic processes.

[Berg, 1978],[Peccoud and Ycart, 1995],[Kepler and Elston, 2001],[Paulsson, 2005],[Lipniacki et al., 2006],[Paszek, 2007],

[Shahrezaei and Swain, 2008].

The bursting phenomena

Question 1) When does the stochastic model predict burstphenomenon ?Question 2) What can we say in such cases ?

6/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Experiments Reduction Limiting model

We consider the following 2d stochastic kinetic chemical reactionmodel (X=’mRNA’, Y=’Protein’)

∅λ1(X ,Y )−−−−−→ X , Production of X at rate λ1(X ,Y )

XNγ1(X ,Y )−−−−−−→ ∅, Destruction of X at rate Nγ1(X ,Y )

∅Nλ2(X ,Y )−−−−−−→ Y , Production of Y at rate Nλ2(X ,Y )

Yγ2(X ,Y )−−−−−→ ∅, Destruction of Y at rate γ2(X ,Y )

with γ1(0,Y ) = γ2(X , 0) = 0 to ensure non-negativity.

BN f (x , y) =λ1(x , y)[

f (x + 1, y)− f (x , y)]

+ Nγ1(x , y)[

f (x − 1, y) − f (x , y)]

+ Nλ2(x , y)[

f (x , y + 1)− f (x , y)]

+ γ2(x , y)[

f (x , y − 1)− f (x , y)]

.

7/40

Bursting Nucleation Experiments Reduction Limiting model

Theorem (R.Y.)If

◮ The degradation function on X satisfies

infx≥1,y≥0

γ1(x , y) = γ > 0.

◮ The production rate of Y satisfies λ2(0, y) = 0, for all y ≥ 0.

◮ λ1 and λ2 are linearly bounded by x + y , and either λ1 or λ2 isbounded.

Then, for all T > 0, (XN(t),Y N(t))t≥0 converges in L1(0,T ) to(0,Y (t)), whose generator is given by

B∞ϕ(y) = λ1(0, y)( ∫ ∞

0

Pt(γ1(1, · )ϕ(· ))(y)dt − ϕ(y))

+ γ2(0, y)[

ϕ(y − 1)− ϕ(y)]

,

Ptg(y) = E[g(Z (t, y)e−

∫t

0γ1(1,Z (s,y))ds

],

Ag(z) = λ2(1, z)(g(z + 1)− g(z)

).

8/40

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

9/40

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

◮ We identify the limiting martingale problem

9/40

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

◮ We identify the limiting martingale problem

λ2(x , y)[

f (x , y+1)−f (x , y)]

+γ1(x , y)[

f (x−1, y)−f (x , y)]

= 0.9/40

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

◮ We identify the limiting martingale problem

Axg(y) = λ2(x , y)[

g(y + 1)− g(y)]

,

for any x ≥ 1. and we introduce the semigroup Pxt

Pxt g(y) = E

[g(Z x ,y

t )e−∫ t0 γ1(x ,Z

x,ys )ds

].

Now for any bounded function g , define f (0, y) = g(y) and

f (x , y) =

∫ ∞

0Pxt (γ1(x , .)f (x − 1, .))(y)dt.

Then

λ2(x , y)[

f (x , y+1)−f (x , y)]

+γ1(x , y)[

f (x−1, y)−f (x , y)]

= 0.9/40

Bursting Nucleation Experiments Reduction Limiting model

◮ A similar proof for a (continuous state) PDMP model, ofgenerator

Bf (x , y) =− Nγ1(x , y)∂f

∂x+ (Nλ2(x , y)− γ2(x , y))

∂f

∂y

+ λ1(x , y)

∫ ∞

0(f (x + z , y)− f (x , y))h(z)dz .

◮ These proofs are based on a simple idea([Debussche et al., 2011],[Kang and Kurtz, 2011]).

◮ Other proof : reduction on the Fokker-Planck equation.

◮ Different scalings lead to different models.

10/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Experiments Reduction Limiting model

We look at the stochastic process

dx = −γ(x)dt + dN(λ(x), h(x , ·)),

whose generator is

Af = −γ(x)f ′(x) + λ(x)( ∫ ∞

0f (x + y)h(x , y)dy − f (x)

)

,

and evolution equation on densities

∂u(t, x)

∂t=

∂γ(x)u(t, x)

∂x−λ(x)u(t, x)+

∫ x

0u(t, y)λ(y)h(y , x−y)dy ,

and with

∫ ∞

0h(x , y)dy = 1, for all x .

11/40

Bursting Nucleation Experiments Reduction Limiting model

Probabilistic techniques

If jumps are independent of positions, i.e. h(x , y) = h(y), we have :

Proposition

Suppose x 7→ λ(x) is continuous on (0,∞), λ(0) > 0, γ(x) = γx,E[h]< ∞, and

limx→∞

λ(x)E[h]

γx< 1,

then there exist β < 1, B < ∞ and π (invariant measure) such that

‖P(t, x , ·) − π‖V ≤ BV (x)βt , x ∈ E , t > 0,

where ‖µ‖f = sup|g |≤f | µ(g) | and V (x) = x + 1.

12/40

Bursting Nucleation Experiments Reduction Limiting model

Probabilistic techniques

If jumps are independent of positions, i.e. h(x , y) = h(y), we have :

Proposition

Suppose x 7→ λ(x) is continuous on (0,∞), λ(0) > 0, γ(x) = γx,E[h]< ∞, and

limx→∞

λ(x)E[h]

γx< 1,

then there exist β < 1, B < ∞ and π (invariant measure) such that

‖P(t, x , ·) − π‖V ≤ BV (x)βt , x ∈ E , t > 0,

where ‖µ‖f = sup|g |≤f | µ(g) | and V (x) = x + 1.

◮ Ax = −γx + λ(x)( ∫∞

0 (x + y)h(y)dy − x)

= −(1−λ(x)E

[h

]

γx)γx

12/40

Bursting Nucleation Experiments Reduction Limiting model

Semigroup techniques

∂u(t, x)

∂t︸ ︷︷ ︸

dudt

=∂γ(x)u(t, x)

∂x− λ(x)u(t, x)

︸ ︷︷ ︸

Au=(A0−λ)u

+

∫ x

0u(t, y)λ(y)h(y , x − y)dy

︸ ︷︷ ︸

Bu=J(λu)

(A,D(A)) ⇒ S(t)u(x) = P0(t)u(x)e−

∫t

0λ(φr x)dr

Let C = A+ B. Denote the resolvent RSs u =

∫∞0 e−stS(t)udt.

13/40

Bursting Nucleation Experiments Reduction Limiting model

Semigroup techniques

∂u(t, x)

∂t︸ ︷︷ ︸

dudt

=∂γ(x)u(t, x)

∂x− λ(x)u(t, x)

︸ ︷︷ ︸

Au=(A0−λ)u

+

∫ x

0u(t, y)λ(y)h(y , x − y)dy

︸ ︷︷ ︸

Bu=J(λu)

(A,D(A)) ⇒ S(t)u(x) = P0(t)u(x)e−

∫t

0λ(φr x)dr

Let C = A+ B. Denote the resolvent RSs u =

∫∞0 e−stS(t)udt.

Theorem ([Tyran-Kaminska, 2009])There is a minimal substochastic semigroup P generated by anextension of (C ,D(A)), and which resolvent is given by

RPs u = lim

n→∞

RSs

n∑

k=0

(J(λRSs ))

ku,

and if K = limσ→0 J(λRSσ ) has a unique invariant density, then so

does for P (and P is stochastic).

13/40

Bursting Nucleation Experiments Reduction Limiting model

◮ Under good conditions, K is the transition operator for thediscrete Markov chain“post-jump”, and has for kernel

k(x , y) =

∫ x

0

1{(0,y)}(z)h(z , y − z)λ(z)

γ(z)eQ(x)−Q(z)dz ,

Q(x) =

∫ x

x

λ(z)

γ(z)dz .

◮ Modulo integrability conditions, invariant density v∗ for K andinvariant density u∗ for P are related through

γ(x)u∗(x) =

∫ x

0

H(z , x − z)λ(z)u∗(z)dz , H(z , x) =

∫ ∞

x

h(z , y)dy ,

v∗(x) =

∫ x

0

h(z , x − z)λ(z)u∗(z)dz ,

u∗(x) =1

γ(x)

∫ ∞

x

eQ(y)−Q(x)v∗(y)dy ,

v∗(x) =

∫ x

0

h(z , x − z)λ(z)

γ(z)e−Q(z)

∫ ∞

z

v∗(y)eQ(y)dydz .

14/40

Bursting Nucleation Experiments Reduction Limiting model

Condition for ergodicity in the exponential case

If jumps are independent of positions, i.e. h(x , y) = h(y) andexponentially distributed, of mean b, i.e. h(y) = 1

be−y/b, then

Theorem (M. Tyran-Kaminska, M. Mackey, R.Y.)

Under technical assumptions (for integrability), and if

limx→∞

λ(x)

γ(x)<

1

b,

Q(0) :=

∫ x

0

λ(z)

γ(z)dz = ∞,

then P is ergodic with unique invariant density

u∗(x) =1

cγ(x)e−x/b−Q(x).

15/40

Bursting Nucleation Experiments Reduction Limiting model

Bifurcation

This analytical approach allows us to deduce that the number ofmodes of the stationary state is linked to the solution of

λ(x) =γ(x)

b+ γ′(x).

16/40

Bursting Nucleation Experiments Reduction Limiting model

Further results (not developed here)

◮ This can be used to find λ(x) and b from observations of(u∗, γ).

◮ The convergence rate can be estimated from couplingtechniques.

17/40

Bursting Nucleation Experiments Reduction Limiting model

Further results (not developed here)

◮ This can be used to find λ(x) and b from observations of(u∗, γ).

◮ The convergence rate can be estimated from couplingtechniques.

Perspectives

◮ Other jump size kernel h.

◮ Waiting time properties.

◮ Switch and bursting model.

◮ Include cell division and study population dynamics.

◮ Characterize oscillations in two-dimensional model.

17/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Prion Model Experiments Nucleation time

Prion Diseases

◮ Creutzfeldt-Jakob : Firsthuman prion diseasedescribed (1929).

◮ Mad cow disease, Scrapie.

◮ Kuru (New Guinea)

18/40

Bursting Nucleation Prion Model Experiments Nucleation time

Prion Diseases

Epidemiology

◮ All prion diseases aretransmissible, i.e. infectious.

◮ Some prion diseases aresporadic, they appearspontaneously, withoutcause.

◮ Some prion diseases aregenetic.

Symptoms

◮ Affect the structure of thebrain ;

◮ Convulsion, Dementia, Lossof balance ;

◮ Always fatal.

19/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Prion Model Experiments Nucleation time

What is prion ?

A protein

◮ A protein called PRION isthe cause of this disease

◮ It is neither a bacteria, noran viroid like agent !

◮ Stanley Prusiner wasawarded Nobel price inPhysiology and Medicine in1997 for his discovery.

Histopathology

◮ Accumulation of a protein inthe amyloid form.

◮ Spongiosis.

20/40

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation-Polymerization

Conformation change

Normal ⇔ Misfolded

Lansbury’s model

[Lansbury and Caughey, 1995].

21/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Prion Model Experiments Nucleation time

◮ In vitro spontaneous polymerization experiments.

◮ Time series of polymer mass.

22/40

Bursting Nucleation Prion Model Experiments Nucleation time

Statistics of nucleation time

◮ Relation between the nucleation time and the initialconcentration in log plots.

◮ Full distribution of the nucleation time.

23/40

Bursting Nucleation Prion Model Experiments Nucleation time

Questions

◮ Can a probabilistic model reproduce the observed variability ?

◮ Can it help to identify parameters ?

◮ Can a model include different strain structures ?

24/40

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Bursting Nucleation Prion Model Experiments Nucleation time

Reversible aggregation model

Ci + C1

p−⇀↽−qCi+1

where

Ci = ♯{molecules of size i}.

The nucleation time is given by a waiting time problem,

Tlag = inf{t ≥ 0 : CN(t) = 1},

with initial condition C1(0) = M, Ci(0) = 0, i ≥ 2.N is the nucleus size.

25/40

Bursting Nucleation Prion Model Experiments Nucleation time

Constant monomer formulation

If we supposeC1(t) ≡ M

We can solve exactly the probability distributions (Poisson) and wededuce

S(t) := P{CN(s) = 0, s ≤ t

}= P

{CN(t) = 0

}= e−cN (t),

where (ci )i=2..N are solution of the linear deterministic system (cnis absorbing) :

c2 = pM(12M − c2)− q(c2 − c3),ci = pM(ci−1 − ci )− q(ci − ci+1), 3 ≤ i ≤ N − 2,cN−1 = pM(cN−2 − cN−1)− qcN−1,

cN = pMcN−1.

26/40

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution (C1(t) ≡ M)

M → ∞ : Weibull MN

2(N−2)!tN−2 exp(− MN

2(N−1)! tN−1)

q → ∞ : exponential MN

2qN−2 exp(−MN

2qN−2 t)

N = 6,M = 1000,

q =

102,

103,

4.103,

104.

27/40

Bursting Nucleation Prion Model Experiments Nucleation time

Mean nucleation time versus initial monomer quantity inlog scale (C1(t) ≡ M)

28/40

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in log scale (C1(t) ≡ M)

M → ∞ : Weibull MN

2(N−2)!tN−2 exp(− MN

2(N−1)! tN−1)

q → ∞ : exponential MN

2qN−2 exp(−MN

2qN−2 t)

N = 6,M = 1000,

q =

102,

103,

4.103,

104.

29/40

Bursting Nucleation Prion Model Experiments Nucleation time

Mass conservative formulation

We now supposeN∑

i=1

iCi(t) ≡ M.

Kolmogorov backward equations ⇒ Linear system on

S(t, {C 0}) = P{CN(t) = 0 | Ci(0) = C 0

i

}

Problem : Dimension of the system

♯{configuration {C 0},N∑

i=1

iC 0i = M,C 0

N = 0} ≈MN

N!

30/40

Bursting Nucleation Prion Model Experiments Nucleation time

In general, we look for approximate solution for extreme parametervalues : q ≫ M and q ≪ M. We use

◮ known deterministic solution ;

◮ time scale separation ;

◮ scaling laws ;

◮ phase space dimension reduction ;

◮ linear model ;

◮ numerical simulation.

31/40

Bursting Nucleation Prion Model Experiments Nucleation time

Trajectories in the unfavorable case q ≫ M

Pre-equilibrium hypothesis (ex : M = 200,N = 8,q = 1000).

32/40

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in the unfavorable caseq ≫ M : exponential law

Tlag ∼ exponential law, of parameter

< C1CN−1 >t→∞ (M) ≈ c1(t → ∞)cN−1(t → ∞) ≈MN

2qN−2

33/40

Bursting Nucleation Prion Model Experiments Nucleation time

Trajectories in the favorable case M >> q and N large

“Metastable“ trajectory (ex :M = 30000,N = 10,q = 1).

34/40

Bursting Nucleation Prion Model Experiments Nucleation time

Trajectories in the favorable case M >> q and N large

“Metastable“ trajectory. Known phenomenon for the deterministicmodel ([Penrose, 1989],[Wattis, 2006])

1. irreversibleaggregation(up to c∗i )

2. slow ”diffusion”with constantmonomerC1(t) ≡ c∗1

3. convergence toequilibrium

35/40

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in the favorable case M >> q

and N large, c∗N < 1 : bimodal distribution

c∗N < 1 : Linear model with C1 ≡ c∗1 , Ci (0) = c∗i (solid line).

36/40

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in the favorable case M >> q

and N small, c∗N > 1 : Weibull law

c∗N > 1 : Linear model with C1 ≡ M, Weibull law (dashed line).

37/40

Bursting Nucleation Prion Model Experiments Nucleation time

Mean nucleation time versus initial monomer quantity inlog scale : 2 or 3 phases according nucleus size N

1. exponential

2. Linearmodel(startingfrom c∗i )

3. Weibull

38/40

Bursting Nucleation Prion Model Experiments Nucleation time

Mean nucleation time versus initial monomer quantity inlog scale : 2 or 3 phases according nucleus size N

39/40

Bursting Nucleation Prion Model Experiments Nucleation time

Conclusion/Perspectives

◮ Different behavior of the nucleation time

◮ Parameter Identifiability depending on parameter region

40/40

Bursting Nucleation Prion Model Experiments Nucleation time

Conclusion/Perspectives

◮ Different behavior of the nucleation time

◮ Parameter Identifiability depending on parameter region

Perspectives

◮ Different nucleation regime ⇒ Different polymerization regime

◮ Possibility to take into account different polymer structures

◮ Study the nucleation time for size-dependent rates

40/40

Bursting Nucleation Prion Model Experiments Nucleation time

Berg, O. G. (1978).A model for the statistical fluctuations of protein numbers in amicrobial population.J. Theor. Biol., 71(4) :587–603.

Debussche, A., Crudu, A., Muller, A., and Radulescu, O.(2011).Convergence of stochastic gene networks to hybrid piecewisedeterministic processes.Ann. Appl. Probab. (to appear).

Eldar, A. and Elowitz, M. B. (2010).Functional roles for noise in genetic circuits.Nature, 467(7312) :167–73.

Goodwin, B. C. (1965).Oscillatory behavior in enzymatic control processes.Adv. Enzyme. Regul., 3 :425–437.

Hasty, J., McMillen, D., Isaacs, F., and Collins, J. J. (2001).

40/40

Bursting Nucleation Prion Model Experiments Nucleation time

Computational studies of gene regulatory networks : in numeromolecular biology.Nat. Rev. Genet., 2(4) :268–279.

Kang, H.-W. and Kurtz, T. G. (2011).Separation of time-scales and model reduction for stochasticreaction networks.Ann. Appl. Probab. (to appear).

Kepler, T. and Elston, T. (2001).Stochasticity in transcriptional regulation : Origins,consequences, and mathematical representations.Biophys. J., 81 :3116–3136.

Lansbury, P. J. and Caughey, B. (1995).The chemistry of scrapie infection : implications of the ’ice 9’metaphor.Chem. Biol., 2(2) :1–5.

40/40

Bursting Nucleation Prion Model Experiments Nucleation time

Lipniacki, T., Paszek, P., Marciniak-Czochra, A., Brasier,A. R., and Kimmel, M. (2006).Transcriptional stochasticity in gene expression.J. Theor. Biol., 238(2) :348–367.

Paszek, P. (2007).Modeling stochasticity in gene regulation : characterization inthe terms of the underlying distribution function.B. Math. Biol., 69(5) :1567–601.

Paulsson, J. (2005).Models of stochastic gene expression.Phys. Life Rev., 2(2) :157–175.

Peccoud, J. and Ycart, B. (1995).Markovian modelling of Gene Product Synthesis.Theor. Popul. Biol., 48(2) :222–234.

Penrose, O. (1989).Metastables states for the becker-doring cluster equations.

40/40

Bursting Nucleation Prion Model Experiments Nucleation time

Commun. Math. Phys., 541 :515–541.

Shahrezaei, V. and Swain, P. (2008).Analytic distributions for stochastic gene expression.Proc. Natl. Acad. Sci., 105 :17256–17261.

Song, C., Phenix, H., Abedi, V., Scott, M., Ingalls, B. P.,Perkins, T. J., and Kaern, M. (2010).Estimating the Stochastic Bifurcation Structure of CellularNetworks.PLoS Comput. Biol., 6 :e1000699/1–11.

Tyran-Kaminska, M. (2009).Substochastic semigroups and densities of piecewisedeterministic markov processes.J. Math. Anal. Appl., 357(2) :385–402.

Wattis, J. A. D. (2006).

40/40

Bursting Nucleation Prion Model Experiments Nucleation time

An introduction to mathematical models ofcoagulation-fragmentation processes : a discrete deterministicmean-field approach.Physica D, 222(1-2) :1–20.

Yu, J., Xiao, J., Ren, X., Lao, K., and Xie, X. (2006).Probing gene expression in live cells, one protein molecule at atime.Science, 311 :1600–1603.

40/40