22
Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 1/22 GSM Geschichtliches 1915 Drahtlose Sprachübertragung New York - San Francisco 1926 Zugtelefon Hamburg Berlin 1958 A-Netz in Deutschland 1972 B-Netz in Deutschland 1979 erste IR Produkte 1982 Start GSM Spezifikation 1986 C-Netz in Deutschland 1991 DECT Standard für Schnurlostelefone 1992 Einsatz GSM, D-Netz in Deutschland 1994 E-Netz in Deutschland IrDA Standard 1996/199 7 Lokale Funknetze (HIPERLAN 23 Mbits/s) Spezifikation Wireless ATM 1998 Spezifikation UMTS drahtlose LAN nach HomeRF 1999 WLAN nach IEEE802.11a Start WAP 2000 Versteigerung UMTS Lizensen GSM mit höheren Übertragungsraten (HSCSD, GPRS) 2001 GPRS in ganz Deutschland

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

  • Upload
    dutch

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22. GSM Geschichtliches. Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg2/22. Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg3/22. - PowerPoint PPT Presentation

Citation preview

Page 1: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 1/22

GSM

Geschichtliches

1915 Drahtlose Sprachübertragung New York - San Francisco

1926 Zugtelefon Hamburg Berlin

1958 A-Netz in Deutschland

1972 B-Netz in Deutschland

1979 erste IR Produkte

1982 Start GSM Spezifikation

1986 C-Netz in Deutschland

1991 DECT Standard für Schnurlostelefone

1992 Einsatz GSM, D-Netz in Deutschland

1994 E-Netz in Deutschland IrDA Standard

1996/1997 Lokale Funknetze (HIPERLAN 23 Mbits/s) Spezifikation Wireless ATM

1998 Spezifikation UMTS drahtlose LAN nach HomeRF

1999 WLAN nach IEEE802.11a Start WAP

2000 Versteigerung UMTS Lizensen GSM mit höheren Übertragungsraten (HSCSD, GPRS)

2001 GPRS in ganz Deutschland

2002 Start i-Mode in Deutschland

Page 2: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 2/22

Frequenzband System Rubrik

890-915 MHz GSM (GSM 900)Mobilfunk

935-960 MHz GSM (GSM 900)

1227,6 MHz GPSPositionsbestimmung

1575,42 MHz GPS

1710-1785 MHz GSM (DCS 1800)Mobilfunk

1805-1880 MHz GSM (DCS 1800)

1880-1900 MHz DECT Schnurlos-Telefone

1900-1920 MHz UMTS (UTRA-TDD)

Mobilfunk1920-1980 MHz UMTS (UTRA-FDD)

2010-2025 MHz UMTS (UTRA-TDD)

2110-2170 MHz UMTS (UTRA-FDD)

2400-2483,5 MHz WLAN 802.11b.HomeRF.Bluetooth

drahtlose lokale Netze

5120-5300 MHz HIPERLAN/1

5150-5250 MHz WLAN 802.11a

5150-5350 MHz HIPERLAN/2

5470-5725 MHz HIPERLAN/2

5725-5825 MHz WLAN 802.11a

Page 3: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 3/22

Netz Betreiber Zeitraum EigenschaftenFrequenz-

bereichNutzer (Jahr)

A

Bundespost

1958-1977 analog, handvermittelt 150 MHz 10 000 (1970)

B 1972-1994 analog, Selbstwahl 150 MHz 27 000 (1986)

C 1986- ca. 2008 analog, zellular 450 MHz 800 000 (1992)

D1 Telekom ab 1992digital, GSM 900 900 MHz

13 Mio. (2000)

D2 Vodafone ab 1992 19 Mio. (2000)

E1 E-Plus ab 1994digital, DCS 1800 1800 MHz

5,8 Mio. (2000)

E2 Viag Interkom ab 1998 3,2 Mio. (2000)

Page 4: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 4/22

Besonderheiten der Funkkommunikation

Die meisten Unterschiede zwischen der drahtlosen und der drahtgebundenen

Kommunikation liegen in der Schicht 1 und 2 im OSI Referenzmodell.

• Funkkommunikation ist störanfälliger als die drahtgebundene Kommunikation.

• Problem der Mehrwegausbreitung (erzeugt durch Reflexionen, Streuung und

Beugung)

• Funkkommunikation lässt wesentlich niedrigere Datenraten zu (eingesetzte

Frequenzbänder haben geringe Bandbreiten. Werden die Frequenzen erhöht,

erhöht sich auch die Datenrate. Das wiederum ist kostenintensiv,

energieaufwendiger und störanfälliger.)

• Daten können mitgehört werden, aber nicht ausgewertet werden. Hier setzen

Sicherheitsmechanismen ein.

• Die Verwendung von Funk unterliegt hoheitlicher Restriktion. Für den Betrieb

müssen Genehmigungen eingeholt werden.

Page 5: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 5/22

Internationale Mobilfunknetze

• NMT 450 (Nordic Mobile Telephone)

• Arbeiten mit einer Frequenz von 450 MHz

• Einsatz in: Belgien, Dänemark, Finnland, Island, Luxemburg, Niederlande,

Österreich, Schweden und Spanien

• Weiterentwicklung NMT 900 mit 900 MHz

• AMPS (Advanced Mobile Phone System sowie AMPS-D)

• Einsatz in: Australien, Kanada, Neuseeland und USA

• mit 800 MHz betrieben

• TACS und J-TACS ([Japan]-Total Access Communication System)

• Einsatz in: Bahrain, China, Großbritannien, Indien, Irland, Kuwait und Japan

• auf Basis 900 MHz

Page 6: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 6/22

• Radiocomm 2000

• Einsatz nur in Frankreich

• 200 und 400 MHz Basis

• PDC (Personal Digital Cellular) Varianten PDC 800 und PDC 1500

• Einsatz in Japan

• Basis 800-900 MHz oder 1500 MHz je nach Variante

Page 7: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 7/22

Memorandum of Understanding

1987 unterzeichneten 13 Teilnehmer aus 12 Staaten das Memorandum of

Understanding (MoU). Sie verpflichteten sich, innerhalb eines Zeitrahmens ein

digitales Mobilfunksystem auf der Basis GSM aufzubauen.

1997 gab es 200 GSM-Netze in 109 Staaten mit folgenden Standards: GSM 900

und DCS 1800. Handys, die mit beiden Systemen arbeiten können, sind

Dualbandhandys. Ausnahmen USA und Japan.

In der USA gibt es neben dem analogen AMPS-System noch eine inkompatible

Variante von GSM: GSM 1900. Telefone, die alle Bandbreiten abdecken, sind so

genannte Tribandhandys.

Page 8: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 8/22

Page 9: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 9/22

Umgebung Karlsruhe

Page 10: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 10/22

Vorteile zellularer Mobilfunknetze

DCS (Digital Cellular System)

Vorteile

1. Die Distanz, die ein mobiler Teilnehmer überbrücken muss, ist gering. In D-

Netzen beträgt der maximale Abstand 35 km, im E-Netz nur 8.

2. Die zur Verfügung stehenden Ressourcen, also Frequenzen und Zeitschlitze,

werden ökonomisch genutzt.

So können verschiedene Zellen dieselben Frequenzen benutzen, ohne sich

gegenseitig zu stören. Voraussetzung ist ein gewisser Abstand voneinander.

Page 11: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 11/22

Betrachtung der Nachteile

Theoretisch physikalisch reduziert sich die Wirkung elektromagnetischer Wellen

im Quadrat zum Abstand der Sendestation. In der Realität nimmt die Wirkung

sogar mit der Potenz vier ab. Um gleiche Wirkung zu haben, muss beim

doppelten Abstand zwischen Sende- und Empfangsstation, die 16-fache

Sendeleistung aufgebracht werden (ist also etwas für starke Akkus).

Geringe Abstände der Basisstationen verringern den Leistungsaufwand, erhöhen

jedoch Kosten zum flächendeckenden Zugriff.

Für die Infrastruktur mussten für die D-Netze 4,5 Mrd. DM aufgebraucht werden.

Für die E-Netze 7,5 Mrd. DM. Das D1-Netz verfügte im Jahr 2000 über 39000

Basisstationen.

Page 12: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 12/22

a) k=3 b) k=4 c) k=7

Page 13: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 13/22

Abstand der Basisstationen

Der Abstand muss hinreichend groß sein, damit Störungen minimiert werden.

Sind Zellradius R und Cluster-Größe bekannt, kann der Mindestabstand kann der

Abstand nach

D=R*√3k

errechnet werden.

In GSM-Netzen wird k=7 verwendet.

Page 14: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 14/22

Mobilfunknetze

• Mobilfunksysteme der ersten Generation: analoge Netze (A, B, C Netze).

• Mobilfunk der zweiten Generation: digitale GSM-Netze (D- und E-Netze).

• Mobilfunk der dritten Generation UMTS-Netze.

Page 15: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 15/22

Standard GSM

Die Group Special Mobile war eine Organisation, die damit beauftragt wurde,

einen europäischen digitalen Mobilfunkstandard zu entwickeln. Der Name GSM

stand lange Zeit für diese Organisation, später wurde daraus Global System for

Mobile Communication.

1989 wurde die Gruppe durch das Europäische Telekommunikation Standard

Institut (ETSI) als Technical Committee (TC) aufgenommen.

Ziel ist eine vollständige Flächendeckung. Bewegt sich ein Mobilfunkteilnehmer

aus dem Bereich seiner Basisstation, wird durch das so genannte Handover

sichergestellt, dass der Datenaustausch nicht abbricht.

Durch das Roaming-Abkommen zwischen den Netzbetreibern wird gewährleistet,

dass der Teilnehmer im anderen Netz unter dieser Nummer erreichbar ist.

Page 16: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 16/22

GSM-Netze bieten (im wesentlichen)

• Sprachübertragung

• SMS (Short Message Service)

• WAP (Wireless Application Protokoll)

Page 17: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 17/22

GSM- Netzwerke bestehen aus drei Subsystemen

Betriebssubsystem (Operation and Maintenance Subsystem, OMSS):

Dient der Administration und Kontrolle des Netzwerkes.

Vermittlungssubsystem (Mobile Switching and Management Subsystem, SMSS):

Vermittelt Nutzdaten innerhalb des Netzes und stellt eine Anbindung an andere

Netze zur Verfügung.

Funksubsystem (Basis Station Subsystem, BSS):

Bindet die Mobilfunkteilnehmer an das Netz an.

Mehrere Datenbanken speichern relevante Informationen zur Verwaltung der

Teilnehmer und zur Kontrolle der Datenflüsse.

Page 18: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 18/22

Endgeräte in der GSM-Terminologie

Unterscheidung nach Sendeleistung

• Autotelefone 20 W

• tragbare Geräte mit 8 W

• Handgeräte mit 5 W

• Handgeräte mit 2 W

Page 19: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 19/22

Weiterentwicklung von GSM

Eine Datenrate von 9600 Bits/s, die GSM zur Verfügung stellt, ist bei weitem nicht

mehr zeitgemäß. Deshalb wurden weitere Standards entwickelt. Da diese

zwischen der 2. und der 3. Generation liegen, werden diese auch als Phase 2+

bezeichnet.

HSCSD (High Speed Circuit Switched Devices)

• Dieses Verfahren erfordert kaum Veränderung an die Infrastruktur.

• Steigerung der Datenrate durch:

• Bessere Kodierungsverfahren (von 9600 Bits/s auf 14400 Bits/s)

• Durch Bündelung mehrerer Kanäle kann Datenrate vervielfacht werden

(theoretisch auf 115,2 KBits/s).

• HSCSD erfordert Veränderung an Endgeräten

• HSCSD ist ein leitungsvermitteltes Verfahren, d.h. Nutzer muss auch Kosten

tragen, wenn keine Daten ausgetauscht werden.

Page 20: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 20/22

GPRS (General Packet Radio Service)

• Alternative zu HSCSD

• Bessere Ausnutzung der Übertragungskapazitäten

• Dient als Zugang in verschiedene Netze, z.B. Netze, die auf IP oder X.25

basieren.

• Theoretische Datenrate von 171,2 KBits/s

• Geräte, die einmal eingebucht sind, sind quasi ständig am Netz und benötigen

die Infrastruktur nur beim Datenaustausch (allways online).

• Änderung am Netz und an den Endgeräten sind nötig.

Page 21: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 21/22

GPRS Klassen

• Multislotklassen geben an, wie viele Funkkanäle gleichzeitig genutzt werden

können.

• Endgeräteklassen:

• Klasse A:

unterstützt Sprache und Daten gleichzeitig (Leitungsvermittlung [GSM] und

Paketvermittlung [GPRS] gleichzeitig).

• Klasse B:

Während Datenverbindung (GPRS) können Anrufe (GMS) nur gemeldet

werden.

• Klasse C:

manuelle Umschaltung von Sprache auf Daten und umgekehrt.

Page 22: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 22/22

EDGE (Enhanced Data Rates for GSM Evolution)

• Steigerung durch neues Modulationsverfahren

• Datenrate pro Kanal 59,2 KBits/s bei 8 Kanälen 473,6 KBits/s

• In der Praxis 170 KBits/s hohe Fehleranfälligkeit

• „sanfter“ Übergang zu UMTS