Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

Embed Size (px)

Citation preview

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    1/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    8

    Molekularni mehanizmi inzulinske rezistencije, pretilosti i metabolikog sindroma

    Molecular Mechanisms o Insulin Resistance, Obesity and Metabolic Syndrome

    Barbara Mlinar1, Janja Marc1, Marija Peier2

    1 Zavod za kliniku biokemiju, Farmaceutski akultet, Sveuilite u Ljubljani, Ljubljana, Slovenija1 Department o Clinical Biochemistry, Faculty o Pharmacy, University o Ljubljana, Slovenia;2 Zavod za endokrinologiju i metabolike bolesti, Kliniki bolniki centar Ljubljana, Ljubljana, Slovenija2 Department o Endocrinology and Metabolic Diseases, University Medical Center, Ljubljana, Slovenia

    Saetak

    Inzulinska rezistencija je stanje poremeene sposobnosti odgovora na djelo-

    vanje inzulina. Najei osnovni uzrok je sredinja pretilost, iako je primarnainzulinska rezistencija mogua i u osoba s normalnom teinom. Suvino abdo-

    minalno masno tkivo otputa poveane koliine aktora tumorske nekroze i

    slobodnih masnih kiselina, to izravno utjee na inzulinsko signaliziranje, sma-

    njuje preuzimanje glukoze u miiima, dovodi do pretjerane sinteze trigliceri-

    da i izaziva glukoneogenezu u jetri. Ostali imbenici za koje se pretpostavlja

    da igraju ulogu u inzulinskoj rezistenciji su adiponektin (snienje), leptin, IL-6

    i neki drugi adipokini. Smatra se da je obina pretilost poligenog podrijetla

    uz utjecaj "pretilogene" okoline povean unos hrane i nedostatak tjelesne

    aktivnosti. Dananja visoka uestalost pretilosti mogla bi se objasniti evolucij-

    skim pritiskom za odabir gena koji promiu pohranu masti za preivljenje u

    vrijeme gladovanja. Inzulinska rezistencija je prisutna zajedno sa sredinjom

    pretilosti, hipertenzijom i dislipidemijom, koje se skupno oznaavaju kao me-taboliki sindrom. Ove pojavnosti predstavljaju snane imbenike rizika za e-

    ernu bolest tipa 2 i kardiovaskularnu bolest.

    Kljune rijei: inzulinska rezistencija, pretilost, metaboliki sindrom, adipo-

    kini

    Abstract

    Insulin resistance is a state o impaired responsiveness to insulin action. The

    most common underlying cause is central obesity although primary insulinresistance in normal-weight individuals is also possible. Excess abdominal

    adipose tissue has been shown to release increased amounts o tumor necro-

    sis actor and ree att y acids, which directly afect insulin signaling, dimi-

    nish glucose uptake in the muscle, drive exaggerated triglyceride synthesis

    and induce gluconeogenesis in the liver. Other actors presumed to play a role

    in insulin resistance are adiponectin (a decrease), leptin, IL-6 and some other

    adipokines. Common obesity is thought to be o polygenic origin with inu-

    ence o "obesogenic" environment, i.e. increased ood intake and the lack o

    physical activity. Today's high prevalence o obesity could be explained by

    evolutionary pressure or selection o genes promoting at storage to survi-

    ve in starvation. Insulin resistance requently coexists with central obesity,

    hypertension and dyslipidemia, which have collectively been denoted as me-tabolic syndrome. These maniestations represent strong risk actors or dia-

    betes mellitus type 2 and cardiovascular disease.

    Key words: insulin resistance, obesity, metabolic syndrome, adipokines

    Pregledni lanak Rewiev

    Pristiglo: 2. sijenja 2006. Received: January 2, 2006

    Prihvaeno: 16. oujka 2006. Accepted: March, 16, 2006

    UvodInzulinska rezistencija (IR) defnira se kao odgovor na inzu-

    lin manji od normalnog, to dovodi do hiperinzulinemije

    kako bi se odrali euglikemijski uvjeti (1). Stoga kompen-

    zacijska hiperinzulinemija zbog pojaanog luenja -sta-

    nica obvezatno popratno obiljeje uz IR. Glavne znaajke

    IR su loe inhibirana glukoneogeneza, poremeeno preu-

    zimanje glukoze u miiima i loe inhibirana lipoliza u

    masnom tkivu. Kliniki biljezi IR su visceralna pretilost, crn-

    kasta akantoza (2), akne, prekomjerna dlakavost (3), jetre-

    na steatoza (1).

    Zlatni standard za procjenu IR je hiperinzulinemijska eug-

    likemijska spona (engl. clamp): inzulin se daje po ustalje-

    IntroductionInsulin resistance (IR) is defned as less than normal re-

    sponse to insulin, which leads to hyperinsulinemia or

    euglycemic conditions to be maintained (1). Compensa-

    tory hyperinsulinemia due to enhanced -cell secretion

    is thereore an obligate accompanying eature in IR. The

    main characteristics o IR are disinhibited gluconeogen-

    esis, impaired uptake o glucose by muscle and disinhib-

    ited lipolysis in adipose tissue.

    Clinical markers o IR are visceral obesity, acanthosis nigri-

    cans (2), acne, hirsutism (3) and hepatic steatosis (1).

    The golden standard or evaluation o IR is hyperinsu-

    linemic euglycemic clamp: insulin is inused at a con-

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    2/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    9

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    noj stopi inuzijom, a glukoza se odrava na bazalnim

    razinama inuzijom glukoze. Stopa inuzije glukoze daje

    mjeru preuzimanja glukoze u svim tkivima (4). Alternativ-

    ne mjere za IR su koncentracije inzulina u plazmi natate

    (2) i procjena modela homeostaze (engl. homeostasis mo-del assessment, HOMA) izvedena iz koncentracija inzulina

    i glukoze u plazmi natate (5).

    Etiologija IR ukljuuje genetske imbenike koji rezultira-

    ju sindromnim oblicima IR, te imbenike okoline: unos

    hrane, nedostatna tjelesna aktivnost, starenje, puenje ili

    uzimanje lijekova tiazidnih diuretika, beta adrenerginih

    antagonista, glukokortokoida, koji mogu uzrokovati IR ili

    doprinijeti njegovu nastanku (2). Najvaniji imbenik je pre-

    tilost koja je obino sloenog poligenetskog i okolinskog

    podrijetla (2, 6). Abdominalno masno tkivo je izvor slobod-

    nih masnih kiselina (engl. free fat ty acids, FFA) i razliitih

    hormona (adipokina) koji su upleteni u razvoj IR. Nasuprot

    tome, ogranien unos kalorija, smanjenje teine i tjelesna

    aktivnost poboljavaju inzulinsku osjetljivost (2, 3, 7).

    U radu se objanjavaju mehanizmi IR koji ukljuuju: pore-

    meeno luenje adipokina i povean dotok FFA iz sredi-

    njeg masnog tkiva, te druge poremeaje inzulinskih pred-

    receptora, receptora i postreceptora.

    Mehanizmi inzulinske rezistencije

    Faktor tumorske nekroze i slobodne masne kiseline

    Udruenost IR s povienim aktorom tumorske nekroze

    (engl. tumor necrosis factor, TNF-), interleukinom

    6 (IL-6), makroazima i monocitnim kemoatraktantnimproteinom-1 (engl. monocyte chemoattractant protein-

    1, MCP-1), inhibitorom-1 aktivatora plazminogena (engl.

    plasminogen activator inhibitor-1, PAI-1), adipsinom te sni-

    enim adiponektinom utvrena je u mnogim studijama

    (8). IR je popratno obiljeje u mnogih pretilih bolesnika.

    Masno tkivo otputa velike koliine TNF-, koji je barem

    djelomice odgovoran za razvoj IR kod pretilosti (9). S dru-

    ge strane, poznato je da se s gubitkom na teini poveava

    inzulinska osjetljivost; smatra se kako tome dijelom pos-

    reduje smanjeno luenje adipoznog TNF- (10). TNF- je

    glavni autokrini/parakrini imbenik koji pokree luenje

    slobodnih masnih kiselina (FFA) iz masnog tkiva u krvotok(9). Meutim, ostaje nejasno koji imbenici doista pokre-

    u otputanje adipokina iz masnog tkiva.

    TNF- posreduje potiskivanje mnogih gena odgovornih

    za preuzimanje i pohranu glukoze i FFA. Za adipocite

    3T3-L1 je pokazano kako se regulacija navie i nanie ge-

    na ovisnih o TNF- odvija obveznim aktiviranjem aktora

    nuklearne transkripcije B (11). Djelovanjem TNF- dolazi

    do pojaane lipolize uz otputanje FFA i citokina.

    TNF- i FFA remete inzulinsko signaliziranje u tkivima

    koja odgovaraju na inzulin, poglavito u miiima. Prema

    hipotezi o opskrbi lipidima (Randleova hipoteza), otpu-

    tene FFA djeluju kao prevladavajui supstrat u intermedi-

    stant rate and glucose is held at basal levels by glucose

    inusion. The rate o the latter is a measure o all tissues

    glucose uptake (4). Alternative measures o IR are asting

    plasma insulin concentrations (2) and homeostasis model

    assessment (HOMA) derived rom asting plasma insulinand glucose concentrations (5).

    The etiology o IR includes genetic actors resulting in

    syndromic orms o IR, and environmental actors: ood

    intake, poor physical activity, aging, smoking or admin-

    istration o drugs thiazide diuretics, beta adrenergic

    antagonists and glucocorticoids, which can cause or

    contribute to IR (2). The most important actor is obesity,

    which is usually o combined polygenetic and environ-

    mental origin (2, 6). Abdominal adipose tissue is a source

    o ree atty acids (FFA) and various hormones (adipo-

    kines) implicated in the development o IR. Conversely,

    restricted calorie intake, weight reduction and physical

    activity improve insulin sensitivity (2, 3, 7).

    The present paper explains the mechanisms o IR which

    include disregulated secretion o adipokines and in-

    creased e ux o FFA rom central adipose tissue, and

    other insulin prereceptor, receptor and postreceptor im-

    pairments.

    The Mechanisms o Insulin Resistance

    Tumor necrosis actor and ree atty acids

    Numerous studies have ound associations between

    increased tumor necrosis actor (TNF-), interleukin 6

    (IL-6), macrophages and monocyte chemoattractant pro-tein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1),

    adipsin, and decreased adiponectin with IR (8).

    In the majority o obese patients IR is an accompanying

    eature. Adipose tissue releases great amounts o TNF-,

    which is at least partly responsible or the development

    o IR in obesity (9). On the other hand, weight loss is well

    known to increase insulin sensitivity, which is thought to be

    mediated in part by decreased adipose TNF- release (10).

    TNF- is the main autocrine/paracrine actor triggering the

    secretion o FFA rom adipose tissue into the circulation (9).

    However, it remains unclear which actors actually trigger

    the release o adipokines rom adipose tissue.TNF- mediates repression o many genes responsible

    or glucose and FFA uptake and storage. For 3T3-L1 adi-

    pocytes it has been shown that TNF- dependent gene

    up- and down-regulation occurs by obligatory activation

    o nuclear transcription actor B (11). Upon TNF- action,

    enhanced lipolysis occurs with the release o FFA and cy-

    tokines.

    TNF- and FFA impair insulin signaling in insulin respon-

    sive tissues, especially muscle. The released FFA, accord-

    ing to the lipid supply hypothesis (Randle hypothesis), act

    as a predominant substrate in intermediary metabolism.

    Increased NADH/NAD+ and acetyl-CoA/CoA ratios could

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    3/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    10

    jarnom metabolizmu. Povieni omjeri NADH/NAD+ i ace-

    til-CoA/CoA mogli bi biti razlogom smanjenog preuzima-

    nja glukoze, to znai poremeene inzulinske osjetljivosti

    (12, 13). Visceralno masno tkivo lui FFA izravno u portalni

    krvotok, ime snano utjee na jetru, a ne na potkonomasno tkivo otputajui svoje proizvode u periernu cirku-

    laciju (1).

    U jetri velike koliine FFA osiguravaju obilan supstrat za

    sintezu triglicerida i VLDL, te za glukoneogenezu. TNF-

    potiskuje gene za preuzimanje glukoze i beta oksidaciju

    (14). Dolazi do de novo sinteze kolesterola, potom do regu-

    lacije navie odgovarajuih gena pomou TNF- (8).

    FFA takoer pokreu sintezu fbrinogena i PAI-1 u jetri

    (15). FFA koje iz visceralnog masnog tkiva otjeu u portal-

    nu cirkulaciju i u jetru smanjuju jetreni klirens inzulina, i-

    me doprinose hiperinzulinemiji (13). Suviak triglicerida

    se nakuplja u jetri (1). U miiima pak visoke koncentracije

    FFA pogoduju beta oksidaciji, ime se smanjuje preuzima-

    nje i oksidacija glukoze (16). No, beta oksidacija je nedos-

    tatna za djelotvorno uklanjanje FFA iz krvotoka, osobito

    ako nema tjelesne aktivnosti (17). Sinteza glikogena u mi-

    iima je suspregnuta. Mii ima glavnu ulogu u uklanja-

    nju glukoze (8090%), pa njezino smanjeno preuzimanje

    u velikoj mjeri doprinosi hiperglikemiji (9, 18). Suvine FFA

    pohranjuju se kao kapljice triglicerida u miiima (1, 7, 17).

    U masnom tkivu FFA suzbijaju aktivnost lipoprotein lipa-

    ze, koju inae potie inzulin, te tako onemoguavaju klire-

    ns FFA iz krvotoka (19). Sve u svemu, lipidi otputeni iz adi-

    pocita kao FFA prenose se kao trigliceridi pomou VLDL i

    premjetaju u nemasna tkiva (20).

    Pokazano je kako TNF- nanie regulira gene za adipo-

    nektin, transporter glukoze 4 (engl. glucose transporter

    4, GLUT4), supstrat-1 inzulinskog receptora (engl. insulin

    receptor substrate-1, IRS-1), CCAAT/pojaajni vezni protein (engl. CCAAT/enhancer binding protein , C/EBP-), pe-

    roksizomni prolierator-aktivirani receptor (engl. peroxi-

    some prolierator-activated receptor, PPAR-) i perilipin u

    adipocitima (11, 14). TNF- navie regulira mnoge gene iz-

    raene u masnom tkivu, koji su odgovorni za upalu, imuni

    odgovor i energetsku ravnoteu (vaskularna stanina pria-

    njajua molekula-1 (VCAM-1), PAI-1, IL-6, IL-1, angiotenzi-

    nogen, rezistin, leptin) (14).

    Leptin

    Leptin je hormon to ga u najveoj mjeri lui masno tkivo,

    a oznaava dostatnu koliinu energije. Leptin smanjuje

    unos hrane i poveava potronju energije (21). Ovi uinci

    nastupaju djelovanjem leptina na hipotalamus i izravno

    na ciljna tkiva (mii, gonade, -stanice, jetru) (22).

    U normalnim uvjetima odravanja teine koncentracije

    leptina pozitivno koreliraju s ukupnom tjelesnom mas-

    nom masom. Kod kratkotrajnog uskraivanja hrane se-

    rumske razine leptina se sniavaju, dok se obrnuto doga-

    a kod kratkotrajnog prekomjernog hranjenja (23).

    be the reason or the decreased glucose uptake, which

    means impaired insulin sensitivity (12, 13). Visceral adi-

    pose tissue secretes FFA directly to the portal blood ow

    thereby exerting potent eects on the liver rather than

    subcutaneous adipose tissue releasing its products toperipheral circulation (1).

    In the liver, high amounts o FFA provide an abundant

    substrate or triglyceride and VLDL-synthesis, and gluco-

    neogenesis. TNF- represses genes or glucose uptake

    and beta oxidation (14). De novo cholesterol synthesis oc-

    curs ollowed by TNF- up-regulation o the correspond-

    ing genes (8).

    FFA also trigger fbrinogen and PAI-1 synthesis in the liver

    (15). FFA draining rom visceral adipose tissue to portal

    circulation and to the liver decrease hepatic insulin clear-

    ance, thereby contributing to hyperinsulinemia (13). Ex-

    cess triglycerides are accumulating in the liver (1).

    In the muscle, high FFA concentrations avor beta oxida-

    tion, which diminishes glucose uptake and oxydation

    (16). However, beta oxidation is inadequate to clear FFA

    e ciently rom the circulation, even more in the lack o

    physical activity (17). Glycogen synthesis in the muscle is

    inhibited. Muscle is in orce as the main glucose disposer

    (80%90%) and diminished uptake contributes largely to

    hyperglycemia (9, 18). Excess FFA are stored as triglycer-

    ide droplets in the muscle (1, 7, 17).

    In adipose tissue, FFA inhibit lipoprotein lipase activ-

    ity which is otherwise stimulated by insulin, and thereby

    render clearance o FFA rom circulation impossible (19).

    Overall, lipids released rom adipocytes as FFA are trans-

    ported as triglycerides by VLDL and shited to non-adi-

    pose tissues (20).

    TNF- has been shown to down-regulate the genes or

    adiponectin, glucose transporter 4 (GLUT4), insulin recep-

    tor substrate-1 (IRS-1), CCAAT/enhancer binding protein (C/EBP-), peroxisome prolierator-activated receptor (PPAR-) and perilipin in adipocytes (11, 14). TNF- up-

    regulates many genes expressed in adipose tissue, which

    are responsible or inammation, immune response

    and energy balance (vascular cell adhesion molecule-1

    (VCAM-1), plasminogen activator inhibitor-1 (PAI-1), IL-6,

    IL-1, angiotensinogen, resistin, leptin) (14).

    Leptin

    Leptin is a hormone secreted predominantly by adipose

    tissue and is a signal o energy su ciency. It decreases

    ood intake and increases energy expenditure (21).

    These eects are mediated by leptin action on the hypo-

    thalamus and directly on target tissues (muscle, gonads,-cells, liver) (22). In normal conditions o weight main-

    tenance leptin concentrations positively correlate with

    total body at mass. In short term ood deprivation serum

    leptin levels decrease and the opposite is true or short

    term overeeding (23).

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    4/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    11

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Leptin predstavlja bitan imbenik ertiliteta, jer se je poka-

    zalo kako su sniene koncentracije leptina nakon uskrai-

    vanja hrane odgovorne za suzbijanje hipotalamo-hipofz-

    no-gonadne osi (24).

    Klinika stanja sa smanjenom masnom masom (lipodis-trofje) obiljeena su snienim koncentracijama leptina u

    plazmi i IR. Davanjem leptina znaajno se poboljava in-

    zulinska osjetljivost u ovim stanjima (25), to pokazuje da

    je normalna koliina masnog tkiva presudna za normalnu

    inzulinsku osjetljivost, a to se barem djelomice ispunjava

    kroz luenje leptina i njegovim uincima.

    Vaan uinak leptina je simpatika stimulacija putem neu-

    rona koji odgovaraju na leptin u hipotalamusu (8). To bi

    moglo djelomice objasniti razvoj hipertenzije kod visce-

    ralne pretilosti te u nepretilim stanjima. U skladu s tim, mi-

    ina simpatika aktivnost kod nepretilih normotenzivnih

    mukaraca dobro korelira s koncentracijama leptina veza-

    nog za bjelanevine (26).

    Adiponektin

    Adiponektin pokazuje snanu obrnutu korelaciju s IR

    u lipodistrofji i pretilosti, te s upalnim stanjima (27, 28).

    Adiponektin lue iskljuivo adipociti (27). Adiponektin po-

    boljava inzulinsku osjetljivost kroz razliite mehanizme.

    U jetri izaziva oksidaciju masnih kiselina, smanjuje sinte-

    zu lipida, smanjuje preuzimanje FFA i suzbija glukoneoge-

    nezu regulirajui enzime nanie (8, 23, 29). U miiu adi-

    ponektin pogoduje oksidaciji glukoze i FFA. Ove uinke

    dijelom omoguuje aktiviranje AMP-kinaze (28). Tako adi-

    ponektin sniava razine FFA i glukoze u plazmi (8, 23). Ka-

    tabolizam FFA se potie izravno ili kroz poticanje nuklear-

    nih receptora PPAR- (30).

    Adiponektin smanjuje izraenost prianjajuih molekula

    na stijenci krvnih ila, suzbija kemotaksu makroaga i nji-

    hovu pretvorbu u pjenaste stanice, prolieraciju glatko-

    miinih stanica i upalne dogaaje u aterogenezi to ih

    promiu IL-6, PAI-1 itd. (8). Adiponektin takoer suzbija lu-

    enje TNF- (31).

    Razine adiponektina poveavaju se s gubitkom teine (32)

    i lijeenjem tiazolidinedionima (engl. thiazolidinediones,

    TZD) (33), koji su agonisti PPAR-. Sinteza adiponektina je

    poremeena u stanjima suvika kalorija, to bi moglo bitipovezano s rezistencijom ili nedostatkom leptina (23). In-

    zulin i inzulinu slian aktor rasta (engl. insulin-like growth

    actor-1, IGF-1) potiu sintezu adiponektina (23).

    Slino tome, IL-10 isto tako ima antidijabetogeni uinak:

    kod pretilosti bez metabolikog sindroma razine IL-10 u

    plazmi su poviene, ali je IL-10 snien u metabolikom sin-

    dromu (34).

    Rezistin

    Visceralno masno tkivo lui rezistin u daleko veoj mjeri

    nego potkono masno tkivo (8). Kod pretilosti u glodava-

    ca su serumske razine rezistina poviene, a neki su pokusi

    Leptin represents an essential ertility actor as decreased

    leptin concentrations ollowing ood deprivation have

    been shown to be responsible or the suppression o the

    hypothalamic-pituitary-gonadal axis (24).

    Clinical states with diminished adipose mass (lipodys-trophies) are characterized by reduced plasma leptin

    concentrations and IR. Leptin administration signifcantly

    improves insulin sensitivity in these conditions (25), indi-

    cating that normal amount o adipose tissue is critical or

    normal insulin sensitivity, and this is at least partly ulflled

    via leptin secretion and its eects.

    An important leptin eect is sympathetic stimulation

    achieved by eliciting leptin-responsive neurons in the

    hypothalamus (8). This could in part explain the develop-

    ment o hypertension in visceral obesity and non-obese

    states. In accordance with this, muscle sympathetic activ-

    ity in non-obese normotensive men correlates well with

    protein-bound leptin concentrations (26).

    Adiponectin

    Adiponectin shows strong inverse correlation to IR in

    lipodystrophy and obesity, and to inammatory states

    (27, 28). It is secreted exclusively by adipocytes (27). Adi-

    ponectin improves insulin sensitivity by various mecha-

    nisms: in the liver, it induces atty acid oxidation, decreas-

    es lipid synthesis, decreases uptake o FFA and represses

    gluconeogenesis by enzyme down-regulation (8, 23, 29).

    In muscle, adiponectin avors glucose and FFA oxidation.

    These eects are partly due to the activation o AMP-

    kinase (27). Thereby, adiponectin decreases plasma FFA

    and glucose levels (8, 23). FFA catabolism is stimulated

    either directly or through stimulation o PPAR- nuclear

    receptors (30).

    Adiponectin decreases the expression o adhesion mol-

    ecules on blood vessel wall, inhibits chemotaxis o mac-

    rophages and their conversion to oam cells, proliera-

    tion o smooth muscle cells and inammatory events in

    atherogenesis, which are promoted by IL-6, PAI-1 etc. (8).

    Adiponectin also suppresses secretion o TNF- (31).

    Adiponectin levels increase with weight loss (32) and

    treatment with thiazolidinediones (TZD) (33), which are

    PPAR- agonists. The synthesis o adiponectin is impairedin the states o calorie excess, which might be associ-

    ated with leptin resistance or defciency (23). Insulin and

    insulin-like growth actor (IGF-1) stimulate adiponectin

    synthesis (23).

    Similarly, IL-10 also exerts an antidiabetogenic eect: in

    obesity without the metabolic syndrome IL-10 plasma

    levels are increased, but in the metabolic syndrome IL-10

    is decreased (34).

    Resistin

    Resistin is secreted to a much greater extent by visceral

    than by subcutaneous adipose tissue (8). In rodent obe-

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    5/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    12

    potvrdili da rezistin uzrokuje IR (35). Meutim, druga pak

    ispitivanja nisu potvrdila takve rezultate (8, 36).

    Ljudski rezistin pokazuje tek 64%-tnu homolognost s re-

    zistinom glodavaca (37) i izraenost rezistina u ljudskim

    adipocitima nije jednako udruena s IR ili pretilou (23).S druge strane, tiazolidinedioni (TZD) moda svoje uinke

    djelomice ostvaruju kroza smanjeno djelovanje rezistina,

    jer se njegovo luenje smanjuje tijekom lijeenja TZDima

    (23). Sve u svemu, ulogu rezistina u ljudi tek treba podrob-

    nije razjasniti.

    Ostali adipokini

    Makroazi i monocitni kemoatraktantni protein-1 (MCP-1)

    su izravno uzrono povezani s IR: MCP-1 remeti ulazak glu-

    koze i inzulinske signale u stanicama (38). Adipociti lue

    MCP-1; on privlai makroage u masno tkivo i promie nji-

    hovo otputanje IL-1 i TNF- (8). On isto tako suzbija rast

    i dierencijaciju adipocita. MCP-1 promie aterosklerozu

    privlaei makroage i pogodujui njihovom nakupljanju

    u staninim stijenkama (39).

    PAI-1 je vie izraen u visceralnom u usporedbi s potko-

    nim masnim tkivom (40). On je snano udruen s visceral-

    nom pretilou, IR i metabolikim sindromom. Pretpostav-

    lja se da PAI-1 doprinosi pretilosti i IR, te da ima uzronu

    ulogu u daljnjem razvoju kardiovaskularne bolesti zbog

    svog protrombotskog djelovanja (8). Razine PAI-1 u plaz-

    mi sniavaju se s gubitkom teine (8) i lijeenjem tvarima

    za inzulinsku senzibilizaciju (41).

    Studije s IL-6 ukazuju na njegovu uzronu ulogu u IR, jer

    plazmatske koncentracije i izraenost u masnom tkivu te

    polimorfzam IL-6 dobro koreliraju s pretilou i IR. Poka-

    zano je kako IL-6 remeti inzulinsko signaliziranje (42), suz-

    bija adipogenezu i luenje adiponektina (8). Isto tako, IL-6

    izaziva IR u jetri i adipocitima (43).

    U sredinjem ivanom sustavu IL-6 ima suprotne uinke

    to ukazuje na to da on pogoduje potronji energije. Da-

    vanje IL-6 transgeninim glodavcima kojima je uklonjen

    gen za IL-6 ponitio je razvoj pretilosti (44).

    Glukokortikoidi

    Glukokortikoidi su dobro poznati antagonisti inzulina. Oni

    se suprotstavljaju uincima inzulina i time mogu izazvatiIR. Oni djeluju na objema razinama IR: pojaavaju jetrenu

    glukoneogenezu i otputanje glukoze iz jetre, te remete

    preuzimanje glukoze u periernim tkivima. Prethodno

    spomenute visoke razine FFA predstavljaju mehanizam

    za ovaj potonji uinak, a najmanje su tri mogua puta koji-

    ma moe nastupiti lipoliza:

    1. glukokortikoidi poveavaju pretvorbu noradrenalina

    u adrenalin (enil-etanolamin N-metiltranseraza u ske-

    letnim miiima), koji djeluje na hormonski osjetljivu

    lipazu u masnom tkivu i provodi lipolizu (45);

    2. oni posreduju lipolizu kroz reguliranje navie PPAR-

    (46);

    sity, serum resistin levels are increased and some experi-

    ments have confrmed resistin as causing IR (35). However,

    some other studies ailed to confrm these results (8, 36).

    Human resistin shows only 64% homology with rodent re-

    sistin (37) and expression o resistin in human adipocytesis not uniormly associated with IR or obesity (23). On the

    other hand, TZD may exert their eects partly through a

    diminished action o resistin as its secretion is decreased

    during TZD therapy (23). Taken together, the role o resis-

    tin in humans remains to be urther elucidated.

    Other adipokines

    Macrophages and monocyte chemoattractant protein-1

    (MCP-1) are directly causally associated with IR: MCP-1 im-

    pairs glucose entrance and insulin signaling in cells (38).

    MCP-1 is secreted by adipocytes; it attracts macrophages

    to adipose tissue and promotes their IL-1 and TNF-

    release (8). It also inhibits adipocyte growth and dier-

    entiation. MCP-1 promotes atherosclerosis by attracting

    macrophages and avoring their accumulation in vessel

    walls (39).

    PAI-1 has higher expression in visceral compared to sub-

    cutaneous adipose tissue (40). It is strongly associated

    with visceral obesity, IR and metabolic syndrome. PAI-1 is

    hypothesized to contribute to obesity and IR, and has a

    causal role in urther development o cardiovascular dis-

    ease or its prothrombotic activity (8). PAI-1 plasma levels

    decrease ater weight loss (8) and therapy with insulin

    sensitizing substances (41).

    Studies with IL-6 have suggested its causal role in IR, as

    plasma concentrations and adipose tissue expression, and

    polymorphisms o IL-6 correlate well with obesity and IR.

    IL-6 was shown to interere with insulin signaling (42), and

    to inhibit adipogenesis and secretion o adiponectin (8).

    IL-6 also induces IR in the liver and adipocytes (43).

    In the central nervous system IL-6 has opposite eects

    suggesting that it avors energy expenditure. Admin-

    istration o IL-6 to IL-6 gene knockout rodents reversed

    obesity (44).

    Glucocorticoids

    Glucocorticoids are well known insulin antagonists. Theyoppose the eects o insulin and thereby could induce

    IR. They act on both levels o IR: they enhance liver glu-

    coneogenesis and glucose release, and impair glucose

    uptake by peripheral tissues. The mechanism or the lat-

    ter are previously mentioned high levels o FFA, and there

    are at least three possible ways how lipolysis can occur:

    1. glucocorticoids increase norepinephrine conversion

    to epinephrine (phenyl-ethanolamine N-methyltrans-

    erase in skeletal muscle), which acts on hormone sen-

    sitive lipase in adipose tissue and perorms lipolysis

    (45);

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    6/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    13

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    3. oni suzbijaju lipoprotein lipazu i time onemoguavaju

    preuzimanje FFA u masnom tkivu (47).

    U skeletnim miiima je pokazana poremeena transloka-

    cija GLUT4 kao posljedica djelovanja glukokortikoida (48).

    Pokazano je kako glukokortikoidi suzbijaju vazodilataciju(izazvanu inzulinom putem duinom oksida), pa su tada

    ciljna tkiva dobivala manje glukoze (49). Ove uinke gluko-

    kortikoida jo pojaavaju FFA poveanim vezanjem gluko-

    kortikoida za njihove receptore (50).

    Molekularni mehanizmi poremeenog inzu-

    linskog signaliziranja

    Normalno inzulinsko signaliziranje

    Inzulinski receptor je heterotetramerni receptor koji je

    izraen na jetrenim, adipoznim i skeletno miinim stani-

    cama. Vezanje inzulina pokree oligomerizaciju i autoos-orilaciju receptora na tirozinskim ostacima, te tirozinsku

    osorilaciju IRS-1, -2, -3, -4, IRS5/DOK4, IRS6/DOK5. Ova

    osorilacija ini osnovu za daljnje udruivanje s nizvod-

    nim signalnim bjelanevinama koje se razilaze u tri razlii-

    te putanje: putanju osoinozitid-3-kinazu (engl.phosphoi-

    nositide-3-kinase, PI3K), putanju CAP/Cbl/TC10 i putanju

    ovisnu o mitogenom aktiviranoj protein kinazi (engl. mito-

    gen-activated protein kinase, MAP-kinase) (Slika 1.) (51, 52).

    PI3K uzajamno djeluje s osoriliranim Tyr na molekule IRS

    te se nakon stvaranja osatidilinozitol-3,4,5-triosata (en-

    gl. phosphatidylinositol-3,4,5-triphosphat, PIP3) aktiviraju

    razliite protein kinaze (53). Posljedino tome dolazi dodeaktiviranja glikogen sintaze kinaze 3 (engl. glycogen

    synthase kinase 3, GSK-3), to na koncu rezultira sintezom

    glikogena; gen sintaze masnih kiselina reguliran je navie,

    dok je gen osoenolpiruvat karboksikinaze (engl. phos-

    phoenolpyruvate carboxykinase, PEPCK) reguliran nanie.

    Bitan uinak puta PI3K je translociranje glavnog prijenos-

    nika glukoze GLUT4 u plazmatsku membranu (51, 52). Sin-

    teza bjelanevina nastupa aktiviranjem ciljnog enzima za

    rapamicin koji je svojstven sisavcima (engl. mammalian

    target o rapamycin, mTOR) (54).

    Kako bi se preuzimanje glukoze odvijalo u potpunosti, pri-

    lagodbena bjelanevina CAP upoljava proto-onkogenCbl u osorilirani inzulinski receptor, to u konanici dovo-

    di do pojaane translokacije GLUT4 (51).

    Trei put dovodi do aktiviranja MAP-kinaze te stanine

    prolieracije i dierencijacije putem regulacije genske tran-

    skripcije (52, 55).

    Nedostatci u inzulinskom signaliziranju

    Manji broj sluajeva inzulinske rezistencije obiljeen je

    po jednom genetskom ili steenom znaajkom. Protuin-

    zulinska autoantitijela naena su kod eerne bolesti tipa

    1. (56). S druge strane, u genu inzulinskih receptora utvr-

    eno je vie od 60 mutacija. Meu njima je IR tip A udru-

    en sa stanjem heterozigotne mutacije, koje ini osnovu

    2. they mediate lipolysis via up-regulation o PPAR-

    (46); and

    3. they inhibit lipoprotein lipase and thus disable the

    uptake o FFA by adipose tissue (47).

    In skeletal muscle impaired translocation o GLUT4 wasshown as a consequence o glucocorticoid action (48).

    Glucocorticoids were shown to inhibit vasodilatation

    (induced by insulin via nitrogen oxide) and less glucose

    was then delivered to target tissues (49). These eects o

    glucocorticoids are even potentiated by FFA increasing

    glucocorticoids binding to their receptors (50).

    Molecular Mechanisms o Impaired Insulin

    Signaling

    Normal insulin signaling

    Insulin receptor is a heterotetramer receptor, which isexpressed on the liver, adipose and skeletal muscle cells.

    Binding o insulin triggers oligomerization and receptor

    autophosphorylation on tyrosine residues and tyrosine

    phosphorylation o IRS-1, -2, -3, -4, IRS5/DOK4, IRS6/DOK5.

    This phosphorylation provides the base or ollowing as-

    sociation with downstream signal proteins which diverge

    into three dierent pathways: phosphoinositide-3-kinase

    (PI3K) pathway, CAP/Cbl/TC10 pathway and mitogen-ac-

    tivated protein kinase (MAP-kinase) dependent pathway

    (Fig. 1) (51, 52). PI3K interacts with phosphorylated Tyr on

    IRS molecules and upon ormation o phosphatidylino-

    sitol-3,4,5-triphosphate (PIP3) various protein kinasesare activated (53). As a consequence, glycogen synthase

    kinase 3 (GSK-3) is inactivated, which at the fnal stage re-

    sults in glycogen synthesis; the atty acid synthase gene

    is up-regulated and phosphoenolpyruvate carboxykinase

    (PEPCK) gene is down-regulated. An essential eect o

    PI3K pathway is translocation o the main glucose trans-

    porter GLUT4 to the plasma membrane (51, 52). Protein

    synthesis is activated via enzyme mammalian target o

    rapamycin (mTOR) activation (54). For glucose uptake to

    maniest ully, the adapter protein CAP recruits proto-on-

    cogene Cbl to the phosphorylated insulin receptor, which

    fnally results in reinorced GLUT4 translocation (51). Thethird pathway leads to MAP-kinase activation and cellular

    prolieration and dierentiation via gene transcription

    regulation (52, 55).

    Deects in insulin signaling

    A minority o insulin resistant cases are characterized by a

    single genetic or acquired trait. Anti-insulin autoantibod-

    ies have been ound in diabetes mellitus DM type 1 (DM1)

    (56). On the other hand, more than 60 mutations have

    been identifed in the insulin receptor gene. Among them

    type A IR is associated with heterozygous mutation state

    which underlies decreased Tyr phosphorylation o the -

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    7/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    14

    za smanjenu osorilaciju Tyr u -podjedinici nakon veza-

    nja inzulina (57). Pretpostavlja se da mutacije gena inzu-

    linskih receptora kod Rabson-Mendenhallova sindroma

    i Donohueva sindroma remete vezanje inzulina za recep-

    tor (57). IR moda nastaje zbog nenormalne proizvodnje

    protutijela za protuinzulinske receptore (IR tip B) (58). Za

    mutacije PPAR- koje nisu udruene s lipodistrofjom tako-

    er se izvjetava da uzrokuju IR (59).

    Neki autori izvjetavaju o poveanoj razgradnji inzulin-

    skih receptora (60). Uz to, pretpostavlja se kako bi oso-

    rilacija serina/treonina raznim protein kinazama C (engl.

    protein kinase C, PKC) mogla biti dodatnim imbenikom

    FIGURE 1. Insulin signal transduction (51-55). Ater insulin receptor

    Tyr autophosphorylation, insulin receptor substrates 1 to 4 (IRS-1 to4) Tyr phorphorylation takes place and subsequently three dierent

    pathways transduce the signal: PI3K-dependent pathway mediating

    metabolic responses including glucose/lipid/protein metabolism and

    insulin-stimulated glucose uptake; CAP/Cbl pathway which is additio-

    nally required or glucose transporter-4 (GLUT4) translocation; and

    mitogen-activated protein kinase (MAPK) pathway resulting in cell

    prolieration and dierentiation. Solid line: stimulation; dashed line:

    inhibition. IRS, insulin receptor substrate; PI3K, phosphoinositide-3-ki-

    nase; PDK-1, phosphoinositide-dependent kinase 1; PKB, protein kina-

    se B; aPKC, atypical proteinkinases C; mTOR, mammalian target o rapa-

    mycin; p70S6K, p70 ribosomal S6 kinase; PEPCK, phosphoenolpyruvate

    carboxykinase; GSK3, glycogen synthase kinase 3.

    subunit ater insulin binding (57). In Rabson-Mendenhall

    syndrome and leprechaunism (Donohue syndrome) insu-

    lin receptor gene mutations are presumed to impair insu-

    lin binding to the receptor (57). IR may be due to abnor-

    mal production o anti-insulin-receptor antibodies (type

    B IR) (58). PPAR- mutations which are not associated with

    lipodystrophy are also reported to cause IR (59).

    Some studies report an increased degradation o insulin

    receptor (60). Besides, it is hypothesized that serine/threo-

    nine phosphorylation by various protein kinases C (PKCs)

    could be an additional actor to regulate insulin receptor

    activity (61). Decreased Tyr phosphorylation state o IRS-1

    SLIKA 1. Pretvorba inzulinskih signala (51-55). Nakon Tyr autoosori-

    lacije inzulinskih receptora dolazi do Tyr osorilacije supstrata za inzu-linke receptore 1 to 4 (IRS-1 do -4), a potom se signal pretvara trima

    razliitim putovima: putom ovisnim o PI3K koji posreduje metabolike

    odgovore ukljuujui metabolizam glukoze/lipida/bjelanevi na inzuli-

    nom poticano preuzimanje glukoze, putom CAP/Cbl koje je dodatno

    potreban za translokaciju prijenosnika glukoze 4 (GLUT4) i putom mi-

    togenom aktivirane protein kinaze (MAPK) koji rezultira staninom

    prolieracijom i dierencijacijom. Puna crta: poticanje; isprekidana cr-

    ta: suzbijanje. IRS, supstrat za inzulinske receptore; PI3K, osoinozitid-

    3-kinaza; PDK-1, kinaza 1 ovisna o osoinozitidu; PKB, protein kinaze

    B; aPKC, atipine protein kinaze C; mTOR, cilj za rapamicin u sisavaca;

    p70S6K, p70 ribosomna S6 kinaza; PEPCK, osoenolpiruvat karboksiki-

    naza; GSK3, glikogen sintaza kinaza 3.

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    8/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    15

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    regulacije aktivnosti inzulinskih receptora (61). Stanje sma-

    njene Tyr osorilacije IRS-1, koje je zapaeno kod hiperin-

    zulineminih ob/ob mieva, moglo bi biti posljedica sma-

    njenje aktivnosti inzulinskih receptora (62).

    Novija ispitivanja su uglavnom usredotoena na povea-nu Ser/Thr osorilaciju IRS-1, koja bi mogla biti posljedi-

    ca povienih koncentracija TNF- i dalje se pogorava hi-

    perinzulinemijom koju uzrokuje IR. Smatra se da su PKC,

    PI3K-daljnje kinaze i MAP-kinaze odgovorne za Ser/Thr

    osorilaciju, nakon ega slijedi pojaana proteazomna raz-

    gradnja IRS-1. Naime, smanjen sadraj IRS-1 bjelanevine

    opisan je u ljudi, ivotinja i uzgojenim stanicama s IR (51).

    Valja naglasiti kako je stanovito bazalno stanje Ser/Thr os-

    orilacije IRS-1 neophodno za uspjenu Tyr osorilaciju i

    inzulinsko signaliziranje. Zato preostaje rasvijetliti koji je

    stupanj osorilacije IRS-1 i na kojim Ser/Thr mjestima pot-

    reban da bi pokazao svoje raznovrsne uinke.

    Uz to to posreduje razgradnju IRS-1, hiperinzulinemija

    moe utjecati na koncentraciju bjelanevina u IRS-2 i izaz-

    vati neke promjene nie na putu inzulinske signalizacije (51).

    TNF-, IL-6 i inzulin induciraju drugu vanu skupinu im-

    benika IR supresore citokinskog signaliziranja (engl. sup-

    pressors o cytokine signalling-1-3, SOCS-1-3), koji imaju naj-

    manje tri razliita mehanizma djelovanja: oni se natjeu s

    IRS-1 za udruivanje s inzulinskom receptorom, suzbijaju

    Janus kinazu upletenu u inzulinsko signaliziranje i povea-

    vaju proteazomnu razgradnju IRS-1 (63). Za hiperglikemi-

    ju je pokazano kako teko smanjuje aktivnost protein ki-

    naze B (engl.protein kinase B, PKB), iako su bile aktivirane

    neke druge proksimalne sastavnice inzulinske signalizaci-

    je (inzulinski receptor, IRS-1, IRS-2, PI3K).

    Pokazano je kako slobodne masne kiseline u visokim plaz-

    matskim koncentracijama kroz pretvorbu u diacilglicerol

    i acil-CoA smanjuju aktivnosti IRS-1, -2, te aktivnosti PI3K

    i razliitih izoorma PKB i PKC u miiu takora (51). Kod

    transgeninih mieva FFA su poveale aktivnost bjelane-

    vine Munc18c, negativnog regulatora translokacije GLUT4

    u plazmatsku membranu (64). Ipak, nezasiene FFA su ko-

    risne utoliko to omoguavaju normalnu inzulinsku osjet-

    ljivost u nekim ciljnim tkivima (51).

    Pokazano je kako glicirane bjelanevine, koje nastaju kao

    posljedica hiperglikemije, unutar stanice smanjuju aktiv-

    nost PI3K, PKB i GSK-3, te tako moda doprinose IR. Slino

    tome, glukozamin (UDP-N-acetil glukozamin), koji nastaje

    iz glukoze i predstdavlja glavni supstrat za staninu gliko-

    zilaciju, pojaava glikozilaciju IRS-1 smanjujui tako njego-

    vu aktivnost, te glikozilaciju glikogen sintaze, smanjujui

    tako njezinu sposobnost odgovora na inzulin (51).

    Pretilost

    Stanje uhranjenosti se najbolje opisuje pomou indeksa

    tjelesne mase (engl. body mass index, BMI). BMI se izrau-

    nava tako da se teina osobe u kilogramima podijeli kvad-

    ratom visine u metrima. Uz neke iznimke BMI dobro kore-

    that was ound in hyperinsulinemic ob/ob mice could be

    a consequence o decreased insulin receptor activity (62).

    Recent studies ocus mainly on increased Ser/Thr phos-

    phorylation o IRS-1, which could be a consequence o

    increased TNF- concentrations and urther exacerbatedby hyperinsulinemia which is secondary to IR. PKCs,

    PI3K-downstream kinases and MAP-kinases are thought

    to be responsible or Ser/Thr phosphorylation, which is

    ollowed by enhanced proteasomal degradation o IRS-1.

    Namely, decreased IRS-1 protein content has been re-

    ported in humans, animals and cultured cells with IR (51).

    It is to emphasize that certain basal Ser/Thr phosphory-

    lation state o IRS-1 is necessary or successul Tyr phos-

    phorylation and insulin signaling. Thereore, it remains

    to be elucidated to which degree and on which Ser/Thr

    sites IRS-1 must be phosphorylated to display its diverse

    eects.

    Besides mediating IRS-1 degradation, hyperinsulinemia

    might aect protein concentration o IRS-2 and provoke

    some downstream changes in insulin signaling (51).

    TNF-, IL-6 and insulin induce another important group

    o IR actors suppressors o cytokine signaling (SOCS-1

    and -3), which have at least three dierent mechanisms o

    action: they compete with IRS-1 or association with insu-

    lin receptor, they inhibit Janus kinase, involved in insulin

    signaling, and they augment proteasomal IRS-1 degrada-

    tion (63).

    Hyperglycemia was shown to severely decrease protein

    kinase B (PKB) activity, although some other proximal

    components o insulin signaling (insulin receptor, IRS-1,

    IRS-2, PI3K) were activated.

    FFA in high plasma concentrations were shown, by trans-

    ormation to diacylglycerol and acyl-CoA, to diminish the

    activities o IRS-1, -2 and activities o PI3K and various iso-

    orms o PKB and PKC in rat muscle (51). In transgenic mice,

    FFA increased the activity o Munc18c protein, a negative

    regulator o GLUT-4 translocation to plasma membrane

    (64). Nevertheless, unsaturated FFA have beneft to allow

    normal insulin sensitivity in some target tissues (51).

    Glycated proteins, emerging as a consequence o hyper-

    glycemia were shown intracellularly to diminish the PI3K,

    PKB, and GSK-3 activity, thus possibly contributing to IR.

    Similarly, glucosamine (UDP-N-acetyl glucosamine), pro-

    duced rom glucose and being the main substrate or cel-

    lular glycosylation, enhances IRS-1 glycosylation thereby

    decreasing its activity, and glycogen-synthase glycosyl-

    ation, which reduces its insulin responsiveness (51).

    Obesity

    The state o nutrition is best described by body mass in-

    dex (BMI). BMI is calculated by dividing a person's weight

    in kilograms by the square o his height in meters. BMI

    is, with some exceptions, in good correlation with the

    amount o total body at. According to BMI, the ollowing

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    9/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    16

    lira s koliinom ukupne tjelesne masti. Prema BMI utvre-

    ne su slijedee kategorije prekomjerne tjelesne mase ili

    uhranjenosti (65):

    BMI 25-30 kg/m2 prekomjerna teina

    BMI 30-40 kg/m

    2

    pretilostBMI 40-50 kg/m2 bolesna pretilost

    BMI >50 kg/m2 krajnja pretilost

    Inzulinska i leptinska rezistencija kod pretilosti

    Visceralna pretilost predisponira razvoj hipertenzije, e-

    erne bolesti tipa 2, kardiovaskularne bolesti i odreenih

    vrsta raka (66). Povean rizik za zdravlje postoji ve i u sku-

    pini prekomjerne teine. Uz ukupnu tjelesnu masu masti,

    za mogue metabolike komplikacije bitna je i raspodjela

    masti. Visceralno i potkono masno tkivo razlikuju se pre-

    ma njihovim endokrinim aktivnostima. Specifni recep-

    tori kao to su receptori tipa 1 angiotenzina II. (AT1), 1

    -,

    2- i

    3-adrenergini receptori, receptori glukokortikoida

    i androgena zastupljeni su u veoj mjeri u visceralnom

    masnom tkivu, gdje promiu lipolizu (8, 67, 68). S druge

    strane, antilipolitini inzulinski receptori,-2A adrenergi-

    ni receptori i estrogenski receptori prevladavaju u potko-

    nom masnom tkivu (67, 68). Uz to, visceralno masno tkivo

    lui svoje proizvode u portalnu cirkulaciju i tako dovodi

    osloboene FFA izravno u jetru gdje one onda pogoduju

    glukoneogenezi, sintezi VLDL, smanjuju preuzimanje glu-

    koze i uzrokuju sveopu IR.

    Visceralno masno tkivo je obiljeeno relativno visokim lu-

    enjem IL-1 i PAI-1, dok je luenje leptina i adiponektina

    vee u potkonom masnom tkivu (8). To je odgovorno za

    odnos izmeu visceralne pretilosti i upalnih/trombotskih

    dogaaja, te objanjava uinkovitost TZD u poboljanju

    inzulinske osjetljivosti kroz preraspodjelu lipida u potko-

    no masno tkivo (69).

    Kod pretilih osoba su koncentracije leptina u plazmi povi-

    ene pa egzogeno davanje leptina nema uinka na tjeles-

    nu teinu (8). Ova se pojava objanjava leptinskom rezis-

    tencijom ili desenzibilizacijom (23). Uz to, kod pretilosti su

    koncentracije topljivog leptinskog receptora niske, a time

    i koncentracije rakcije vezanog leptina. Ovo obiljeje je

    neovisno udrueno s abdominalnom pretilou i IR. Smat-

    ra se kako topljivi leptinski receptori imaju vanu uloguu prijenosu u i kroz krvno-modanu barijeru, pa bi zasie-

    nost ovoga prijenosa ili poremeaj u pretvaranju signala

    leptinskog receptora mogli biti uzrokom leptinske rezis-

    tencije. Koncentracije leptina u cerebrospinalnoj tekuini

    pretilih bolesnika tek su blago poviene (23).

    Patofziologija pretilosti

    Svaka osoba ima genetski odreenu teinsku strukturu

    kojom se tjelesna teina strogo regulira energetskim ho-

    meostatskim mehanizmom (Slika 2.) (6, 66, 71). Adipociti

    lue leptin, a -stanice lue inzulin, oboje razmjerno sad-

    raju tjelesne masti. Ova dva hormona ulaze u mozak; ve-

    categories o excessive body mass or nutrition are postu-

    lated (65):

    BMI 25-30 kg/m2 overweight

    BMI 30-40 kg/m2 obesity

    BMI 40-50 kg/m

    2

    morbid obesityBMI >50 kg/m2 extreme obesity

    Insulin and leptin resistance in obesity

    Visceral obesity predisposes to the development o hy-

    pertension, diabetes mellitus type 2 (DM2), cardiovascu-

    lar disease, and certain types o cancer (66). An increased

    risk or health exists already in the overweight group. Be-

    sides total body at mass, distribution o at is essential or

    eventual metabolic complications. Visceral and subcuta-

    neous adipose tissues dier in their endocrine activities.

    Specifc receptors such as angiotensin II receptors type-1

    (AT1), 1

    -, 2

    -, 3

    -adrenergic receptors, glucocorticoid and

    androgen receptors are represented to a larger degree

    in visceral adipose tissue where they promote lipolysis

    (8, 67, 68). On the other hand, antilipolytic insulin recep-

    tors, -2A adrenergic receptors, and estrogen receptors

    are predominantly expressed in subcutaneous adipose

    tissue (67, 68). Additionally, visceral adipose secretes its

    products to the portal circulation, which brings the re-

    leased FFA directly to the liver where they promote glu-

    coneogenesis, VLDL synthesis, decrease glucose uptake

    and cause overall IR.

    Visceral adipose tissue is characterized by a relatively

    higher secretion o IL-1 and PAI-1, whereas leptin and

    adiponectin secretion is greater in subcutaneous adipose

    tissue (8). This accounts or the relationship between vis-

    ceral obesity and inammatory/thrombotic events, and

    explains the eectivity o TZD to improve insulin sensitiv-

    ity by redistribution o lipids to subcutaneous adipose

    tissue (69).

    In obese individuals there are increased plasma leptin

    concentrations and exogenous administration o leptin

    has no eect on body weight (8). The phenomenon has

    been explained as leptin resistance or desensitization

    (23). Besides, soluble leptin receptor concentrations are

    low in obesity and hence the raction o bound leptin

    concentrations. This eature is independently associatedwith abdominal obesity and IR. Soluble leptin receptors

    are thought to be important or transport to or over the

    blood brain barrier and it is the saturation o this trans-

    port or impairment o leptin receptor signal transduction

    that may be the cause o leptin resistance. Leptin concen-

    trations in the cerebrospinal uid o obese patients are

    only modestly increased (23).

    The pathophysiology o obesity

    Each individual has a genetically determined weight set-

    point and hence body weight is tightly regulated by an

    energy homeostatic mechanism (Figure 2) (6, 66, 71). Adi-

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    10/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    u se na svoje sredinje receptore na neuronima hipotala-

    musa i djeluju tako da smanjuju tjelesnu teinu. Neuroni

    hipotalamusa izraavaju peptide i njihove receptore, koji

    se mogu svrstati kao oreksigeni: neuropeptid Y, agouti-

    povezan protein (engl. agouti-related protein, AgRP), hor-mon za koncentriranje melanina (engl. melanin-concentra-

    ting hormone, MCH), oreksini A i B; ili anoreksigeni: mela-

    nokortini (tj. hormon koji potie melanocite; engl. melano-

    cyte-stimulating hormone,-MSH) i transkript povezan s

    kokainom i ametaminom (engl. cocaine and amphetami-

    ne related transcript, CART). U stanju preobilja leptina ili

    inzulina prevladavaju anoreksigeni putovi: porast potro-

    nje energije, porast termogeneze, smanjen unos hrane.

    Smanjene serumske koncentracije leptina i inzulina dovo-

    pocytes secrete leptin and -cells secrete insulin, both in

    proportion to the body-at content. The two hormones

    enter the brain. They bind to their central receptors on

    the hypothalamic neurons exerting eects to reduce

    body weight. Hypothalamic neurons express peptidesand their receptors that could be categorized as orexi-

    genic: neuropeptide Y, agouti-related protein (AgRP),

    melanin-concentrating hormone (MCH), orexins A and B;

    or anorexigenic: melanocortins (i.e. melanocyte-stimu-

    lating hormone, -MSH) and cocaine and amphetamine

    related transcript (CART). In leptin or insulin abundance

    the anorexigenic pathways prevail: increase o energy

    expenditure, increase o thermogenesis, diminished ood

    intake. Decreased leptin and insulin serum concentrations

    FIGURE 2. Energy homeostasis. NeuropeptideY (NPY)/agouti relatedprotein (AgRP) neurons and proopiomelanocortin (POMC)/cocaine

    and amphetamine related transcript (CART) neurons in the arcuate

    nucleus in the hypothalamus receive signals rom the periphery. They

    relay orexigenic and anorexigenic signals to the downstream neurons,

    which provide balance between the ood intake and energy expendi-

    ture (6,66,71).

    Solid line: stimulation; dashed line: inhibition. PYY, peptide YY3-36; Y1R

    and Y2R, subtypes o neuropeptide Y receptor; a-MSH, a-melanocyte

    stimulating hormone derived by cleavage o POMC; Mc4R, melanocor-

    tin 4 receptor; GHSR, growth hormone secretagogue receptor (recep-

    tor or ghrelin); InsR, insulin receptor; MCH, melanin concentrating hor-

    mone; TRH, thyrotropin-releasing hormone; CRH, corticotropin-releas-ing hormone.

    SLIKA 2. Energetska homeostaza. Neuroni neuropeptida Y (NPY)/pro-teina povezanog s agouti (AgRP) te neuroni proopiomelanokortina

    (POMC)/transkripta povezanog s kokainom i ametaminom (CART) u

    lunoj jezgri hipotalamusa primaju signale iz perierije. Oni prenose

    oreksigene i anoreksigene signale do nizvodnih neurona koji osigu-

    ravaju ravnoteu izmeu unosa i potronje energije (6, 66, 71).

    Puna crta: poticanje; isprekidana crta: suzbijanje. PYY, peptid YY3-36;

    Y1R i Y2R, podtipovi receptora neuropeptida Y; a-MSH, hormon za

    poticanje a-melanocita, izveden cijepanjem POMC; Mc4R, receptor

    melanokortina 4; GHSR, sekretagogni receptor hormona rasta (recep-

    tor za grelin); InsR, inzulinski receptor; MCH, hormon za koncentriran-

    je melanina; TRH, hormon za otputanje tirotropina; CRH, hormon za

    otputanje kortikotropina.

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    11/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    18

    de do aktiviranja oreksigenih putova, to dovodi do niske

    stope metabolizma i pojaanog apetita (6).

    Leptin i inzulin posreduju dugoronu regulaciju tjelesne

    mase. Oni su isto tako djelatni u kratkoronim signalima

    kojima se pojedini obrok zapoinje ili zavrava. Uz to,unos hrane praen je nekim drugim kratkodjelujuim hor-

    monima/imbenicima: grelin, motilin, neuromedin U, neu-

    rotenzin (70), kolecistokinin, peptid YY3-36

    (engl. peptide

    YY3-36

    , PYY) (71) i glukagonu slian peptid-1 (72), od kojih

    se svi lue u probavnom sustavu, te vagalnim aerentnim

    signaliziranjem (72). Grelin se lui u bazi eluca i pojaa-

    va osjeaj gladi te potie pranjenje eluca (70), dok PYY

    signalizira sitost i suzbija crijevnu pokretljivost (71). Grelin

    potie neuropeptid Y i ArRP neurone, dok PYY suzbija te

    iste neurone kod ivotinja (71). Nedavno je otkriven pep-

    tid izveden iz istoga prohormona kao grelin. Nazvali su

    ga obestatin, a on se suprotstavlja uincima grelina (73).

    Izgleda kako je leptinsko-melanokortinski put anoreksi-

    genog signaliziranja osobito ouvan meu vrstama i mu-

    tacije gena koji kodiraju sastavnice ovoga puta, odnosno

    leptin, leptinski receptor, pro-opiomelanokortin (engl.

    pro-opiomelanocortin, POMC), prohormon-konvertazu 1

    (engl. prohormone-convertase 1, PC1) i receptor melano-

    kortina 4 (engl. melanocortin 4 receptor, Mc4R), uzrokuju

    rijetke oblike bolesne monogene pretilosti te dovode do

    nekih prirodno nastalih modela pretilosti kod mieva i ta-

    kora (ob, db, Ay i mg) (6). Suprotno tome, uklanjanje gena

    (knockout) za oreksigene putove kod mieva ne dovodi

    do stvaranja krtih enotipova, ukazujui na iznimno sna-

    ne uzajamne uinke sastavnica u sustavu anabolizma i po-

    rasta teine (71).

    Dananja visoka incidencija pretilosti mogla bi se objasni-

    ti hipotezom o tedljivom genotipu: kroz dua vremen-

    ska razdoblja birali su se aleli koji pogoduju porastu tei-

    ne i pohrani masti kako bi se osigurali dostatni nutrijenti

    za vrijeme nedostatka hrane. U dananje vrijeme dostup-

    nosti hrane i smanjenje tjelesne aktivnosti takvi genotipo-

    vi uzrokuju pretilost (74).

    Sposobnost tijela da precizno odrava tjelesnu teinu od-

    raava se u neuspjehu intervencija kojima je cilj smanje-

    nje tjelesne teine. Dijete ogranienih kalorija dovode do

    kompenzacijskog porasta razina grelina, ime se potie

    uzimanje hrane (71). Smanjenje tjelesne teine rezultira

    padom razina leptina, to opet potie porast teine (71).

    Kirurko uklanjanje masnog tkiva dovodi do obnavljanja

    masti na novim lokacijama, dok poticanje termogeneze

    adrenerginim 3-agonistima izaziva kompenzacijski od-

    govor sredinjega ivanog sustava (6). Tek se je krajnjom

    intervencijom u mieva s opsenom prekomjernom ek-

    spresijom nevezujueg proteina-3 (UCP-3), koji je signal-

    na bjelanevina u termogenezi, uspjelo prevladati sredi-

    nje prilagodbene mehanizme i mievi su ostali mravi

    (75). Kod ljudi je uspjean operacijski zahvat eluanog

    premotenja, koji dovodi do snienja plazmatske koncen-

    lead to the activation o orexigenic pathways resulting in

    low metabolic rate and enhanced appetite (6).

    Leptin and insulin mediate long-term body mass regula-

    tion. They are also active in short-term signals that eect

    single meal to be initiated and terminated. In addition,there are some other short-acting hormones/actors

    which accompany ood intake: ghrelin, motilin, neuro-

    medin U, neurotensin (70), cholecystokinin, peptide YY3-36

    (PYY) (72) and glucagon-like peptide-1 (72), all secreted

    by the gastrointestinal tract, and vagal aerent signaling

    (71). Ghrelin is secreted by the stomach undus and in-

    creases the sense o hunger and stimulates gastric emp-

    tying (70), whereas PYY signals satiety and inhibits gut

    motility (71). Ghrelin stimulates neuropeptide Y and AgRP

    neurons, while PYY exerts inhibition o the same neurons

    in animals (71). Recently, a peptide derived rom the same

    prohormone as ghrelin, was discovered. It has been named

    obestatin and it opposes the eects o ghrelin (73).

    Particularly the leptin-melanocortin anorexigenic signal-

    ing pathway appears to be very conserved among spe-

    cies, and mutations in genes encoding or components o

    this pathway: leptin, leptin receptor, pro-opiomelanocor-

    tin (POMC), prohormone-convertase 1 (PC1), and mela-

    nocortin 4 receptor (Mc4R), cause rare orms o morbid

    monogenic obesity and lead to some naturally occurring

    murine models o obesity (ob, db, Ay and mg) (6). On the

    contrary, knockouts in genes or orexigenic pathways in

    mice ail to produce lean phenotypes, demonstrating

    the extremely powerul mutual eects o anabolism and

    weight gain system components (71).

    Todays high incidence o obesity could be explained by

    the thrity genotype hypothesis: over periods o time

    the alleles were selected which avored weight gain and

    at storage in order to provide enough nutrients or times

    o ood deprivation. In todays times o ood availability

    and decreased physical activity such genotypes cause

    obesity (74).

    The potential o the body to precisely maintain body

    weight is reected in the ailure o interventions aimed at

    body weight reduction. Calorie-restricted diet results in

    compensatory increase in ghrelin levels thereby stimulat-

    ing eating (71). Reduction o body weight results in the all

    o leptin levels, which again stimulates weight gain (71).

    Surgical removal o adipose tissue results in restoration

    o at at new locations, and stimulation o thermogenesis

    by adrenergic 3-agonists elicits a compensatory central

    nerve system response (6). Only extreme intervention in

    mice with gross overexpression o uncoupling protein-3

    (UCP-3), which is a signal protein in thermogenesis, was

    successul to override central adaptive mechanisms,

    and mice remained lean (75). In humans, gastric bypass

    surgery is successul as it results in ghrelin plasma con-

    centration decrease and PYY increase, which suppresses

    hunger and maintains reduced body weight (71).

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    12/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    19

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    tracije grelina i porasta PYY koji zatomljuje glad i odrava

    smanjenu tjelesnu teinu (71).

    Razvoj mravog ivotinjskog modela suzbijanjem razvoja

    masnog tkiva rezultirao je hiperaginim mievima s te-

    kim dijabetesom otpornim na inzulin (76). Pretpostavljenimehanizam koji je uzrokovao IR bio je nedostatak leptina

    i adiponektina zbog odsutnosti masnog tkiva. Naime, da-

    vanje ovih hormona zajedno preokrenulo je stanje IR (77).

    Tako se ini da su ova dva hormona potrebna za normal-

    nu inzulinsku osjetljivost.

    Uz monogene oblike pretilosti postoji barem 20 rijetkih

    sindroma s oitom genetskom osnovom koji izgledaju slo-

    enijima, jer se povezuju s veim brojem disunkcija (men-

    talna retardacija, viestruki znaci poremeaja hipotalamu-

    sa) (66).

    Obina pretilost u ljudi smatra se oligogenim stanjem i

    njezinu izraenost mijenjaju mnogobrojni modifcirajui

    geni i imbenici okoline: unos hrane, tjelesna aktivnost i

    puenje (6). Procjenjuje se kako genetska osnova sudjelu-

    je s 4080% u patofziologiji pretilosti (66). Identifcirana

    su najmanje 204 navodna genska lokusa udruena s preti-

    lou, a oni koji su potvreni u vie studija prikazani su u

    tablici 1. (78).

    Metaboliki sindrom

    Grupiranje hipertenzije, hiperglikemije i gihta prvobitno

    je prepoznato jo dvadesetih godina 20. stoljea (1). Rea-

    ven je 1988. godine identifcirao sindrom X koji potjee iz

    IR. Godine 2004. je III. panel o lijeenju odraslih Nacional-nog obrazovnog programa o kolesterolu (engl. National

    Cholesterol Education Programs Adult Treatment Panel III,

    ATPIII) defnirao metaboliki sindrom pod alternativnim

    Development o lean animal model by suppression o ad-

    ipose tissue development resulted in hyperphagic mice

    with severe insulin resistant diabetes (76). The hypoth-

    esized mechanism causing IR was leptin and adiponectin

    defciency due to the absence o adipose tissue. Namely,the administration o these hormones together reversed

    IR (77). Thus, these two hormones appear to be required

    or normal insulin sensitivity.

    Besides monogenic orms o obesity there are at least

    20 rare syndromes with obvious genetic basis, which

    appears to be more complex as it predisposes more dys-

    unctions (mental retardation, multiple signs o hypotha-

    lamic disorder) (66).

    The common human obesity is thought to be an oligo-

    genic state and its expression is modulated by multiple

    modifer genes and by environmental actors: ood intake,

    physical activity, and smoking (6). The genetic basis in the

    pathophysiology o obesity is estimated to be 40%-80%

    (66). At least 204 putative gene loci associated with obesity

    have been identifed, and those which have been con-

    frmed by multiple studies are presented in Table 1 (78).

    Metabolic Syndrome

    The frst recognition o clustering o hypertension, hyper-

    glycemia and gout came already in the twenties o 20 th

    century (1). In 1988, Reaven identifed syndrome X origi-

    nating rom IR. In 2004, the National Cholesterol Educa-

    tion Programs Adult Treatment Panel III (ATPIII) defnedthe metabolic syndrome with alternative names: IR syn-

    drome, Reaven syndrome, characterized by the ollowing

    components (G52):

    Gene name* Protein name Gene name* Protein name

    ADIPOQ Adiponectin LEPR Leptin receptor

    ADRA2A Adrenergic receptor -2A NR3C1 Nuclear receptor subamily 3, group C

    ADRA2B Adrenergic receptor -2B PPARG PPAR-

    ADRB1 Adrenergic receptor -1 UCP1 Uncoupling protein 1

    ADRB2 Adrenergic receptor -2 UCP2 Uncoupling protein 2

    ADRB3 Adrenergic receptor -3 UCP3 Uncoupling protein 3

    DRD2 Dopamine receptor D2 TNF TNF-

    LEP Leptin LIPE Hormone sensitive lipase

    * according to HUGO Nomenclature Committee

    TABLE 1.The list o genes associated with obesity confrmed by5 or more studies

    TABLICA 1. Popis gena udruenih s pretilou potvrenih u 5 ilivie studija

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    13/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    20

    imenima: sindrom IR i Reavenov sindrom, obiljeen slije-

    deim sastavnicama (G52):

    abdominalna pretilost

    aterogena dislipidemija

    hipertenzijaIR

    proupalno stanje

    protrombotsko stanje

    Ova klinika obiljeja su snani imbenici rizika za eer-

    nu bolest tipa 2 i kardiovaskularnu bolest s moguim do-

    datnim komplikacijama ukljuujui kolesterolne une

    kamence, apneju u snu, sindrom policistinog jajnika kod

    ena, masnu jetru i neke vrste raka (7).

    Pretpostavljene su tri mogue etiologije za metaboliki

    sindrom: utvreno je kako je pretilost odgovorna za pre-

    komjerno otputanje slobodnih masnih kiselina, citokina

    i drugih proupalnih proizvoda koji su upleteni u razvoj

    IR, hipertenzije i dislipidemije. IR kao drugi mogui uzrok

    metabolikog sindroma postavlja pitanje je li mogue raz-

    dvojiti pretilost i IR. Zapravo, IR u razliitim stupnjevima

    postoji u svim kategorijama indeksa tjelesne mase, ukazu-

    jui na njen neovisan nasljedni doprinos, barem do neke

    mjere. Neke populacije (iz june Azije) s blago prekomjer-

    nom tjelesnom teinom pokazuju IR i to se smatra primar-

    nom IR. S tog stajalita se IR moe svrstati kao zaseban

    etioloki imbenik za metaboliki sindrom. Hiperinzuline-

    mija kao posljedica IR moe poveati luenje VLDL iz jetre

    i uzrokovati hipertenziju. Miina IR moe uzrokovati hi-

    perglikemiju koja se pojaava glukoneogenezom kod jet-

    re rezistentne na inzulin (7). Smatra se da trea etiologija

    ukljuuje neovisne imbenike: imune, vaskularne, jetrene

    itd., na koje utjee specifna genetska osnova pojedine

    osobe, kao i imbenici okoline (7).

    Klinike pojavnosti i kriteriji za dijagnosticiranje me-

    tabolikog sindroma

    Razine glukoze i FFA u plazmi

    Hiperinzulinemija se razvija kao posljedica IR. U ovom sta-

    nju su koncentracije FFA u plazmi tek umjereno poviene,

    dok koncentracija glukoze moe biti normalna ili povie-

    na. Ova potonja ukazuje na poremeenu toleranciju glu-koze, koja se dokazuje vrijednostima oralnoga testa tole-

    rancije glukoze (OGTT) viim od normalnih, ali jo uvijek

    ne toliko povienim da bi oznaavale eernu bolest (79).

    Drugo mogue obiljeje metabolikog sindroma je pore-

    meena glukoza natate (7). Kad se koncentracije inzulin u

    plazmi snize kao rezultat razgradnje -stanica, razine FFA

    se znatno povisuju uz popratnu hiperglikemiju i stanje me-

    tabolikog sindroma prerasta u eernu bolest (79).

    Aterogena dislipidemija

    Hipertrigliceridemija nastaje kao posljedica poveane sin-

    teze VLDL u jetri. HDL u plazmi je snien, uz veu zastup-

    abdominal obesity

    atherogenic dyslipidemia

    hypertension

    IR

    proinammatory stateprothrombotic state

    These clinical eatures are strong risk actors or DM2 and

    cardiovascular disease with additional possible complica-

    tions including cholesterol gallstones, sleep apnea, poly-

    cystic ovary syndrome in women, atty liver and some

    types o cancer (7).

    Three possible etiologies or the metabolic syndrome

    have been postulated: obesity was ound to be respon-

    sible or excess release o FFA, cytokines and other proin-

    ammatory products which are implicated in the devel-

    opment o IR, hypertension and dyslipidemia.

    IR as the second possible cause o metabolic syndrome

    rises a question o whether it is possible to dissociate be-

    tween obesity and IR. Indeed, IR exists to various degrees

    in all particular classes o body mass index, suggesting

    an independent inheritable contribution o it to at least

    some extent. Some populations (South Asians) with mild

    overweight display IR and this is said to be primary IR.

    From this point o view IR can be classifed as a separate

    etiological actor or metabolic syndrome. Hyperinsu-

    linemia as a consequence o IR is capable to increase

    VLDL secretion rom the liver and to cause hypertension.

    IR o muscle can cause hyperglycemia, exaggerated by

    gluconeogenesis in insulin-resistant liver (7).

    The third etiology is thought to include independent ac-

    tors: immune, vascular, hepatic, etc., which are inuenced

    by specifc genetic background o an individual, and by

    environmental actors (7).

    Clinical maniestations and criteria or the diagnosis

    o metabolic syndrome

    Glucose and FFA plasma level

    As a consequence o IR, hyperinsulinemia develops. In

    this condition plasma FFA concentrations are only mod-

    erately elevated, but glucose concentration can be nor-

    mal or increased, the latter denoting impaired glucosetolerance which is demonstrated by oral glucose toler-

    ance test (OGTT) values above normal, yet not elevated

    enough to defne DM (79). Another possible eature in

    the metabolic syndrome is impaired asting glucose (7).

    When plasma insulin concentrations decline, as a result

    o -cell degeneration, FFA levels increase considerably

    with accompanying hyperglycemia and the condition o

    metabolic syndrome grows to DM2 (79).

    Atherogenic dyslipidemia

    As a consequence o increased liver VLDL synthesis hy-

    pertriglyceridemia occurs. Plasma HDL is decreased with

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    14/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    21

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    ljenost malog gustog HDL. Slino tome, sastav LDL se po-

    mie prema prevlasti malog gustog LDL. Ovaj potonji se

    smatra aterogenijim od obinog LDL. Isto tako dolazi do

    promjena u apolipoproteinima (1).

    HipertenzijaKod zdravih osoba inzulin potie simpatiki ivani sustav

    i djeluje na krvne ile uzrokujui vazodilataciju. Inzulin is-

    to tako potie ponovnu apsorpciju natrija u bubregu. U

    stanju inzulinske rezistencije vazodilatacija se moe izgu-

    biti, ali se uinak na bubrege i simpatika stimulacija od-

    ravaju i ak poveavaju. To oboje doprinosi hipertenziji,

    koji dodatno pogoravaju FFA koje pogoduju vazokon-

    strikciji. Pa ipak, ini se kako dogaaji povezani izravno

    s IR imaju tek umjerenu ulogu u razvoju hipertenzije (1).

    Uz to, leptin bi mogao u stanovitoj mjeri doprinositi hiper-

    tenziji, jer plazmatske koncentracije leptina vezanog uz

    bjelanevine kod normotenzivnih mukaraca korelirajusa simpatikom ivanom aktivnou (26).

    Ostala klinika obiljeja

    Proupalno stanje je obiljeeno porastom C-reaktivnog

    proteina u plazmi, a protrombotsko stanje povienjem

    PAI-1 i fbrinogena (7).

    Dodatne pojavnosti metabolikog sindroma su: masna

    jetra i steatohepatitis zbog poveane jetrene proizvodnje

    VLDL u stanju IR, hiperuricemija, povieni homocistein i

    vaskularne nenormalnosti s mikroalbuminurijom (1). Oso-

    bito je zanimljiva hiperuricemija, koja je najvjerojatnije

    posljedica hiperinzulinemije: bubreg koji odrava normal-

    nu osjetljivost za inzulin prilagoava se na visoke koncen-tracije inzulina smanjenim luenjem mokrane kiseline,

    ime se poveava njegova razina u plazmi (79).

    Drugi vaan kliniki biljeg IR je crnkasta akantoza (2) ko-

    ja se oituje kao hiperpigmentirane kone promjene zas-

    novane na epidermnoj hiperplaziji. Smatra se kako je ovo

    obiljeje povezano s hiperinzulineminim stanjem, jer se

    je pokazalo da inzulin ubrzava rast epidermnih stanica u

    kulturi (80).

    Dijagnostiki kriteriji to su ih prihvatili ATPIII i Internatio-

    nal Diabetes Federation (engl. International Diabetes Fede-

    ration, IDF) prikazani su u tablici 2. Prema dogovoru pri

    ATPIII, dijagnoza metabolikog sindroma moe se posta-viti u bolesnika koji imaju najmanje 3 od 5 slijedeih obi-

    ljeja: abdominalnu pretilost, poviene trigliceride, snien

    HDL-kolesterol, povien krvni tlak ili povienu glukozu u

    plazmi natate (7). Kriteriji koje je postavio IDF uglavnom

    su sukladni onima iz ATPIII (81). Manje razlike odnose se

    na sredinju pretilost kao glavno obiljeje i ispunjavanje

    dviju od etiri druga pojavnosti. Granina koncentracija

    glukoze nia je u kriterijima IDF, priem se preporua nap-

    raviti OGTT kad je vrijednost via.

    a greater proportion o small dense HDL. Similarly, the

    composition o LDL is shited towards predominance o

    small dense LDL. The latter is thought to be more athero-

    genic than ordinary LDL. Changes o apolipoproteins also

    occur (1).

    Hypertension

    In healthy subjects insulin stimulates sympathetic ner-

    vous system and acts on blood vessels causing vasodila-

    tation. Insulin also stimulates sodium reabsorption in the

    kidney. In insulin resistant state the vasodilatation can be

    lost but the renal eect and sympathetic stimulation are

    maintained and even increased. Both contribute to hy-

    pertension, which is urther exacerbated by FFA avoring

    vasoconstriction. Nevertheless, it appears that the events

    linked directly to IR play only a moderate role in the de-

    velopment o hypertension (1). Additionally, leptin might

    have some contribution to hypertension as protein-bound leptin plasma concentrations in normotensive

    men correlate with sympathetic nerve activity (26).

    Other clinical eatures

    Proinammatory state is characterized by a rise in plasma

    C-reactive protein, and prothrombotic state by elevation

    o PAI-1 and fbrinogen (7). Additional maniestations o

    the metabolic syndrome are atty liver and steatohepa-

    titis because o increased liver VLDL production in the

    state o IR, hyperuricemia, increased homocystein, and

    vascular abnormalities with microalbuminuria (1). Par-

    ticularly interesting is hyperuricemia which is most likelya consequence o hyperinsulinemia: the kidney which

    maintains normal sensitivity to insulin, adapts to high

    insulin concentrations by decreased uric acid secretion,

    thereby elevating its plasma level (79).

    Another important clinical marker o IR is acanthosis

    nigricans (2), which maniests as hyperpigmented skin

    changes based on epidermal hyperplasia. The eature is

    thought to be related to the hyperinsulinemic state, as

    insulin was shown to accelerate epidermal cell growth in

    culture (80).

    Diagnostic criteria accepted by ATPIII and International

    Diabetes Federation (IDF) are presented in Table 2. Ac-

    cording to ATPIII agreement, patients having at least 3 o

    5 characteristics can be diagnosed as having the meta-

    bolic syndrome: abdominal obesity, elevated triglycer-

    ides, decreased HDL-cholesterol, increased blood pres-

    sure or increased asting plasma glucose (7). IDF declares

    criteria airly consistent with ATPIII (82). Slight dierences

    include central obesity as the major eature and ulflled

    two o our other maniestations. The borderline glucose

    concentration is lower in IDP criteria, with a strong rec-

    ommendation or OGTT when exceeded.

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    15/17

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    22

    ZakljuakGlavni osnovni uzrok IR je visceralna pretilost, jer je visce-

    ralno masno tkivo sklonije lipolizi od potkonog masnog

    tkiva. Smatra se kako su najvaniji mehanizmi za razvoj IR

    poveano luenje FFA, sniene koncentracije adiponekti-

    na, leptina, IL-6 i drugih adipokina. Uz to to je IR prisut-

    na zajedno s pretilou i drugim obiljejima poznatim kao

    metaboliki sindrom, smatra se da ima vanu ulogu i u

    razvoju sindroma policistinih jajnika kod ena (82) te daje glavno obiljeje kod lipodistrofja (83). Ove potonje su

    obiljeene selektivnim gubitkom masnog tkiva, to ukazu-

    je na to da je odreena koliina masnog tkiva neophodna

    za normalnu inzulinsku osjetljivost, vjerojatno tako to osi-

    gurava mjesto za pohranu triglicerida, te to lui dovoljno

    adiponektina i leptina (77).

    Meutim, tek valja u potpunosti razjasniti etiologiju boles-

    ti udruenih s IR. Postoje prigovori defniranju pretilosti

    i s njom povezanih kardiovaskularnih rizinih imbenika

    kao metaboliki sindrom zbog nesigurnosti njihova za-

    jednikog podrijetla (84). S druge pak strane, pojavljuju

    se nova vana saznanja o novootkrivenom inzulin-mime-

    tinom adipokinu podrijetlom iz masnog tkiva. Nazvan je

    visatin, jer je u znatno veim koncentracijama otkriven u

    visceralnom nego u potkonom masnom tkivu. Za visa-

    tin je pokazano kako sniava koncentraciju glukoze u plaz-

    mi i djeluje neovisno od inzulina, vjerojatno veui se za

    razliita vezna mjesta istoga receptora (85).

    Bolje razumijevanje mehanizama koji dovode do IR i ud-

    ruenih bolesti te otkrivanje dodatnih terapijskih ciljeva

    kao to je visatin biti e korisno u lijeenju najozbiljnijih

    komplikacija IR eerne bolesti tipa 2 i kardiovaskularne

    bolesti.

    ConclusionThe main underlying cause o IR is visceral obesity, as vis-

    ceral adipose tissue is more prone to lipolysis than subcu-

    taneous adipose tissue. The most important mechanisms

    or the development o IR are thought to be increased se-

    cretion o FFA, and decreased adiponectin, leptin, IL-6 and

    other adipokine concentrations. Besides the coexistence

    o IR with obesity and other eatures known as metabolic

    syndrome, IR is thought to play an important role in thedevelopment o polycystic ovary syndrome in women

    (82) and is the main eature o lipodystrophies (83). The

    latter are characterized by selective loss o adipose tissue,

    which indicates that a certain amount o adipose tissue

    is necessary or normal insulin sensitivity, presumably by

    providing the place or triglyceride storage and by secret-

    ing su cient adiponectin and leptin (77).

    However, the etiology o IR-associated disorders remains

    to be ully elucidated. There are some objections to de-

    fning obesity and related cardiovascular risk actors as

    the metabolic syndrome or the uncertainty about their

    common origin (84). On the other hand, some important

    knowledge is arising such as about a newly discovered

    insulin-mimetic adipokine derived rom adipose tissue.

    It has been named visatin or being detected in a much

    higher concentration in visceral than in subcutaneous

    adipose tissue. It has been shown to lower plasma glu-

    cose concentration and to act independently o insulin,

    presumably by binding to a dierent binding site o the

    same receptor (85).

    Better understanding o the mechanisms leading to IR

    and associated diseases, and discovery o additional

    therapy targets such as visatin would prove benefcial in

    the management o the most serious complications o IR,

    DM2 and cardiovascular disease.

    ATPIII IDF

    Clinical eature Defning level Defning level

    Central obesity

    waist circumerence

    men >102 cm men (European)94 cm (or specifc values or other

    ethnic groups)

    women >88 cm women (European) 80 cm

    Plus any 2 o the ollowing:

    Triglycerides 1.7 mmol/L 1.7 mmol/L or specifc treatment

    HDL-cholesterolmen 1.03 mmol/L men 1.03 mmol/L or specifc treatment

    women 1.29 mmol/L women 1.29 mmol/L

    Blood pressure130/85

    mm Hg

    130/85 mm Hg or treatment o pre-

    viously diagnosed hypertension

    Fasting plasma glucose 6.1 mmol/L 5.6 mmol/L or previously diagno-sed DM2

    TABLE 2. Diagnostic criteria or metabolic syndrome accordingto ATPIII (7) and IDF (81)

    TABLICA 2. Dijagnostiki kriteriji za metaboliki sindrom premaATPIII (7) i IDF (81)

  • 7/29/2019 Mlinar B. Et Al.- Insulin Resistance Obesity and Metabolic Syndrome

    16/17

    Biochemia Medica god. 16, br. 1, 2006. Biochemia Medica Vol. 16, No. 1, 2006

    23

    Mlinar B. i sur. Inzulinska rezistencija, pretilost i metaboliki sindrom

    Mlinar B. et al. Insulin Resistance, Obesity and Metabolic Syndrome

    Adresa za dopisivanje:

    Pro. dr. Janja Marc

    Katedra za klinino biokemijo

    Fakulteta za armacijo

    Univerza v Ljubljani

    Akereva 71000 Ljubljana

    Slovenija

    e-pota:[email protected]

    tel: +386-1-4769-500

    aks: +386-1-4258-031

    Corresponding author:

    Pro. Janja Marc, PhD

    Department o Clinical Biochemistry

    Faculty o Pharmacy

    University o Ljubljana

    Akereva 71000 Ljubljana

    Slovenia

    e-mail: [email protected] -lj.si

    phone: +386-1-4769-500

    ax: +386-1-4258-031

    Literatura / Reerences

    1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet2005;365:1415-28.

    2. Granberry MC, Fonseca VA. Insulin resistance syndrome: options or tre-atment. South Med J 1999;92:2-15.

    3. Greenfeld JR, Campbell LV. Insulin resistance and obesity. Clin Derma-

    tol 2004;22:289-95.4. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method

    or quantiying insulin secretion and resistance. A m J Physiol 1979;237:E214-32.

    5. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, TurnerRC. Homeostasis model assessment: insulin resistance and beta-cellunction rom asting plasma glucose and insulin concentrations inman. Diabetologia 1985;28:412-9.

    6. Cummings DE, Schwartz MW. Genetics and pathophysiology o humanobesity. Annu Rev Med 2003;54:453-71.

    7. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenant C; AmericanHeart Association; National Heart, Lung, and Blood Institute. Defnitiono metabolic syndrome: Report o the National Heart, Lung, and Blo-od Institute/American Heart Association Conerence on Scientifc Issu-es Related to Defnition. Circulation 2004;109:433-8.

    8. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endo-crinol Metab 2004;89:2548-56.

    9. Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indi-rect eects o tumor necrosis actor-alpha. Cytokine Growth Factor Rev200;14:447-55.

    10. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. Theexpression o tumor necrosis actor in human adipose tissue. Regulati-on by obesity, weight loss, and relationship to lipoprotein lipase. J ClinInvest 1995;95:2111-9.

    11. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosisactor-alpha suppresses adipocyte-specifc genes and activates expre-ssion o preadipocyte genes in 3T3-L1 adipocytes: nuclear actor-kap-paB activation by TNF-alpha is obligatory. Diabetes 2002;51:1319-36.

    12. Randle PJ, Garland PB, Newsholme EA, Hales CN. The glucose atty acidcycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci

    1965;131:324-33.13. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered at storage and

    mobilization in the pathogenesis o insulin resistance and type 2 diabe-tes. Endocr Rev 2002;23:201-29.

    14. Ruan H, Miles PD, Ladd CM, Ross K, Golub TR, Olesky JM et al. Proflinggene transcription in vivo reveals adipose tissue as an immediate tar-get o tumor necrosis actor-alpha: implications or insulin resistance.Diabetes 2002;51:3176-88.

    15. Aubert H, Frere C, Aillaud MF, Morange PE, Juhan-Vague I, Alessi MC.Weak and non-independent association between plasma TAFI anti-gen levels and the insulin resistance syndrome. J Thromb Haemost2003;1:791-7.

    16. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms o atty acid-induced inhibition o glucose uptake. J Clin Invest. 1994;93:2438-46.

    17. Jenkins AB, Campbell LV. The genetics and pathophysiology o diabetes

    mellitus. J Inherit Metab Dis 2004;27:331-47.

    18. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Eectso insulin on peripheral and splanchnic glucose metabolism in nonin-sulin-dependent (type II) diabetes mellitus. J Clin Invest 1985;76:149-55.

    19. Saxena U, Witte LD, Goldberg IJ. Release o endothelial cell lipopro-tein lipase by plasma lipoproteins and ree atty acids. J