34
MITLL Low-Power FDSOI CMOS Process Device Models Revision 2006:2 (September 2006)

MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process

Device Models

Revision 2006:2 (September 2006)

Page 2: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

© 2006 by MIT Lincoln Laboratory. All rights reserved.

This work was sponsored by the United States Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Page 3: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsCONTENTS

Rev.: 2006:2 (Sep. 06) 3MITLL FDSOI device models

CONTENTS

SPICE Parameters, BSIMSOI v3.2 ........................................................................................................................ 5Introduction................................................................................................................................................................ 5BSIMSOI v3.x Level Numbers................................................................................................................................... 5Parameter Sets.......................................................................................................................................................... 6

SPICE model parameters. ........................................................................................................................ 6Device availability ................................................................................................................................... 11Process corner modeling ........................................................................................................................ 11

Device Characteristics and Related Discussion .............................................................................................. 13MOS Behavior ......................................................................................................................................................... 13

LVT-FDSOI ............................................................................................................................................. 13MVT-FDSOI ............................................................................................................................................ 21

Active and Polysilicon Parasitic Capacitor Behavior ............................................................................................... 25Intentional Capacitor Behavior ................................................................................................................................ 26

CAPN capacitors. ................................................................................................................................... 26CAPP capacitors. .................................................................................................................................... 28

Contact Information ............................................................................................................................................ 31Revision History .................................................................................................................................................. 33

Page 4: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

This page intentionally left blank

Page 5: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

1. SPICE PARAMETERS, BSIMSOI V3.2

1.1. Introduction

As part of DARPA's NeoCAD program the University of California at Berkeley extended its industry standard SOI SPICE model to include SOI transistors that are fully depleted by the standard definition but are partially depleted under some conditions. The devices fabricated by MITLL fall into this category. The model is in the public domain, available from the Berkeley website, http://www-device.EECS.Berkeley.EDU/~bsimsoi/. It has also been coded by Richard Shi's group at the University of Washington, Michael Steer's group at North Carolina State University, and Alan Mantooth's group at the University of Arkansas as part of their simulator development in NeoCAD ([email protected], [email protected], [email protected]). All the major U.S. CAD vendors have also made it available.

Note that an SOI transistor is a five-terminal device: drain, gate, source, backgate, body. Thus, all schematics and netlists copied from existing bulk designs have to be reconsidered. Most commonly in SOI design the body terminal is floating, and the device is treated as a four-terminal transistor, where the fourth terminal is the handle wafer, the backgate (Berkeley calls it "e"), not the body. If your netlist causes SPICE to think that the fourth terminal is the body instead of the backgate, your results will be incorrect. Note that the terminal order used for SPICE simulation tools may differ from that required for LVS tools.

For questions about the model or the parameter set, please contact Peter Wyatt ([email protected]). For questions about using the model in your simulator, please contact your simulator vendor or the Berkeley website.

1.2. BSIMSOI v3.x Level Numbers

BSIMSOI v3.x level numbers are as follows:

Silvaco SmartSpice 33Mentor Eldo 56Synopsis Hspice 57Cadence Spectre bsimsoi; v3.1 available in IC5.1.41, v3.0 in IC5.0.32;

not available in IC4.4.6Agilent ADS Available through Verilog-A

Refer to your simulator documentation for information on which versions of BSIMSOI are supported.

For all of these, DO NOT use v2.x, which is for partially depleted transistors only. Version 3.0 added equations to fit the DC characteristics; v3.1 added equations from BSIM4 to fit gate resistance at high frequency and gate oxide tunneling; and v3.2 added the noise model from BSIM4. (The noise parameters have not yet been derived to fit the MITLL devices.)

Use soimod=1 to represent the transistors fabricated in the MITLL process. This refers to devices that are fully depleted when turned on at low drain voltage and low backgate voltage and partially depleted under some other conditions.

Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models 5

Page 6: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

Berkeley has released a v4.0 of the BSIMSOI model that adds some features that might lead to a better fit, but our parameter set does not support it.

1.3. Parameter Sets

1.3.1. SPICE model parameters. The specific format for the following parameter sets is for Silvaco SmartSpice; it will need some minor changes for other simulators, most importantly, to the LEVEL number. Keep in mind that most UNIX-native simulators require UNIX text files, so "dos2unix" must be used if the parameter set is obtained from a Microsoft Windows file.

* See models guide for use of VAR parameters

*SPICE Parameters, BSIMSOIv3.2.LIB LowVT

* PARAMETERS FOR PROCESS CORNER MODELING.PARAM VAR_N_VTH0=0.PARAM VAR_P_VTH0=0.PARAM VAR_LINT=0.PARAM VAR_WINT=0

*LowVT parameters to be used for QDS1 and 3DM2_tier3..MODEL nf_soi nmos ( LEVEL = 33 +TNOM = 22 VERSION= 3.2 TOX = 4.2E-9 +TSI = 3.8E-8 TBOX = 4E-7 XJ = 1E-7 +NCH = 5.8E17 NSUB = 2E13 VTH0 = ’0.54+VAR_N_VTH0’ +K1 = 0.53 K2 = 0 K3 = 0 +K3B = 0 K1W1 = 0 K1W2 = 0 +KB1 = 0 W0 = 0 NLX = 0 +DVT0W = 0.5 AGIDL = 3E-5 BGIDL = 4E9 +NGIDL = 0 DVT1W = 1E6 DVT2W = 0 +DVT0 = 0 DVT1 = 0.5 DVT2 = 0 +U0 = 350 UA = 0 UB = 1E-18 +UC = 0 VSAT = 7.5E4 A0 = -0.2 +AGS = 0 B0 = 0 B1 = 0 +FBJTII = 0 ESATII = 1E8 SII0 = 1 +SII1 = 0 SII2 = 0 SIID = 0 +KETA = 0 KETAS = 0 RTH0 = 0.08 +A1 = 0 A2 = 0.99 RDSW = 150 +PRWG = 0 PRWB = 0 WR = 0.76 +WINT = ’0+VAR_WINT’ LINT = ’3E-8+VAR_LINT’DWG = -3E-8 +DWB = 0 VOFF = -0.2 NFACTOR= 1 +CIT = 0 CDSC = 0.01 CDSCD = 0 +CDSCB = 0 BETA0 = 0 BETA1 = 0 +BETA2 = 0.15 ETA0 = 0.2 ETAB = 0 +DSUB = 0.5 PCLM = 2 PDIBLC1= 0.1 +PDIBLC2= 0 PDIBLCB= 0 DROUT = 0.4 +PVAG = 0 DELTA = 0.01 NGATE = 1.5E20 +ALPHA0 = 4E-7 VDSATII0= 0.9 MOBMOD = 1 +TII = -0.2264 PRT = 10 UTE = -1.8 +KT1 = -0.16 KT1L = 0 LII = -7E-8

6 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 7: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

+KT2 = -0.0646 UA1 = 0 UB1 = 0 +UC1 = 0 AT = 3.4E4 TCJSWG = 5E-4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 2 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0 +CJSWG = 8E-10 PBSWG = 0.9 MJSWG = 0.5 +CSDESW = 0 CSDMIN = 1.6E-5 CGDO = 6E-10 +CGSO = 2.5E-10 CGEO = 0 CGSL = 0 +CGDL = 0 CKAPPA = 0.6 CF = 0 +CLC = 5E-8 CLE = 0.6 BINUNIT= 1 +SHMOD = 1 RBODY = 10 RBSH = 100 +CTH0 = 1E-5 NDIODE = 1 NTUN = 10 +VTUN0 = 0 ISBJT = 3E-7 NBJT = 1.5 +LBJT0 = 2E-7 VABJT = 10 AELY = 0 +AHLI = 1E-15 ISDIF = 1.2E-8 ISREC = 1E-3 +ISTUN = 1E-5 XBJT = 1.15 XDIF = 1.11 +XREC = 0.9 XTUN = 0 NTRECF = -0.3 +NTRECR = 10 TT = 3E-10 LN = 2E-6 +NRECF0 = 1.8 NRECR0 = 10 VREC0 = 0.05 +VSDTH = 0.5 VSDFB = -1.5 ASD = 0.5 +DLCB = 0 DLBG = 0 DELVT = 0 +FBODY = 1 ACDE = 0.11 MOIN = 15 +LDIF0 = 1E-3 NDIF = -1 SOIMOD = 1 +VBSA = 0.22 DVBD1 = 0.5 DVBD0 = 0 +NOFFFD = 1 VOFFFD = 0 MOINFD = 1E6 +DK2B = 0.4 K2B = 0.3 WTH0 = 4E-6 +RHALO = 1E15 K1B = 0.85 +RGATEMOD= 1 RSHG = 1.6 XRCRG1 = 12 +XRCRG2 = 1 NGCON = 1 XGW = 0 +XGL = 0 WPCLM = 0.5 LPCLM = 0 ) *.MODEL pf_soi pmos ( LEVEL = 33 +TNOM = 22 VERSION= 3.2 TOX = 4.2E-9 +TSI = 3.8E-8 TBOX = 4E-7 XJ = 1E-7 +NCH = 6E17 NSUB = -5E13 VTH0 = ’-0.66+VAR_P_VTH0’ +K1 = 0.82 K2 = 0 K3 = -5 +K3B = 0 K1W1 = 0 K1W2 = 0 +KB1 = 0 W0 = 0 NLX = 0 +DVT0W = 0 AGIDL = 3E-9 BGIDL = 2E9 +NGIDL = 0.5 DVT1W = 1E6 DVT2W = 0 +DVT0 = 12 DVT1 = 1.5 DVT2 = 0 +U0 = 63 UA = 0 UB = 1E-19 +UC = 0 VSAT = 6E4 A0 = -0.1 +AGS = 0 B0 = 0 B1 = 0 +FBJTII = 0 ESATII = 1E8 SII0 = 1.5 +SII1 = 0 SII2 = 0 SIID = 0 +KETA = 0 KETAS = 0 RTH0 = 0.07 +A1 = 0 A2 = 0.99 RDSW = 500 +PRWG = 0 PRWB = 0 WR = 0.9 +WINT = ’6E-8+VAR_WINT’LINT = ’5E-8+VAR_LINT’DWG = 0 +DWB = 0 VOFF = -0.2 NFACTOR= 1.5 +CIT = 0 CDSC = 0.05 CDSCD = 0.1 +CDSCB = 0 BETA0 = 0 BETA1 = 0

Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models 7

Page 8: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

+BETA2 = 0.25 ETA0 = 0.2 ETAB = 0 +DSUB = 0.6 PCLM = 2 PDIBLC1= 1E-3 +PDIBLC2= 0 PDIBLCB= 0 DROUT = 0.4 +PVAG = 0 DELTA = 0.01 NGATE = 1E20 +ALPHA0 = 4E-7 VDSATII0= 0.9 MOBMOD = 1 +TII = -0.2264 PRT = 10 UTE = -1.6 +KT1 = -0.28 KT1L = 8E-9 LII = 0 +KT2 = -0.0646 UA1 = 3.37E-10 UB1 = -3.12E-18 +UC1 = -6.1E-10 AT = 6.5E4 TCJSWG = 5E-4 +WL = 0 WLN = 1 WW = 0 +WWN = 3 WWL = 0 LL = 0 +LLN = 2 LW = 0 LWN = 3 +LWL = 0 CAPMOD = 2 XPART = 0 +CJSWG = 1E-9 PBSWG = 1 MJSWG = 0.5 +CSDESW = 0 CSDMIN = 1.6E-5 CGDO = 5.5E-10 +CGSO = 1E-10 CGEO = 0 CGSL = 0 +CGDL = 0 CKAPPA = 3 CF = 0 +CLC = 1E-6 CLE = 0.6 BINUNIT= 1 +SHMOD = 1 RBODY = 20 RBSH = 10 +CTH0 = 1E-5 NDIODE = 1.01 NTUN = 10 +VTUN0 = 0 ISBJT = 7E-7 NBJT = 1 +LBJT0 = 1E-7 VABJT = 0 AELY = 0 +AHLI = 0 ISDIF = 1E-7 ISREC = 0.02 +ISTUN = 1E-8 XBJT = 1E-20 XDIF = 1.6 +XREC = 0.8 XTUN = 6 NTRECF = 0.1 +NTRECR = -1 TT = 3E-10 LN = 2E-5 +NRECF0 = 1.8 NRECR0 = 10 VREC0 = 0 +VSDTH = 1.0 VSDFB = -0.5 ASD = 0.8 +DLCB = 0 DLBG = 0 DELVT = 0 +FBODY = 1 ACDE = 0 MOIN = 15 +LDIF0 = 1E-3 NDIF = -1 SOIMOD = 1 +VBSA = 0.05 DVBD1 = 0.4 DVBD0 = 1.4 +NOFFFD = 1 VOFFFD = 0 MOINFD = 1E3 +DK2B = 0.4 K2B = 0.15 WTH0 = 4E-6 +RHALO = 1E20 K1B = 0.7 +RGATEMOD= 1 RSHG = 1.6 XRCRG1 = 12 +XRCRG2 = 1 NGCON = 1 XGW = 0 +XGL = 0 WPCLM = 0.2 LPCLM = -0.07 ) *

.ENDL LowVT

.LIB MidVT

*MidVT parameters to be used for 3DM2_tiers1&2.MODEL nf_soi nmos ( LEVEL = 33 +TNOM = 22 VERSION= 3.2 TOX = 4.2E-9 +TSI = 3.8E-8 TBOX = 4E-7 XJ = 1E-7 +NCH = 5.8E17 NSUB = 2E13 VTH0 = ’0.62+VAR_N_VTH0’ +K1 = 0.53 K2 = 0 K3 = 0 +K3B = 0 K1W1 = 0 K1W2 = 0 +KB1 = 0 W0 = 0 NLX = 0 +DVT0W = 0.5 AGIDL = 3E-5 BGIDL = 4E9 +NGIDL = 0 DVT1W = 1E6 DVT2W = 0

8 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 9: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

+DVT0 = 0 DVT1 = 0.5 DVT2 = 0 +U0 = 350 UA = 0 UB = 1E-18 +UC = 0 VSAT = 7.5E4 A0 = -0.2 +AGS = 0 B0 = 0 B1 = 0 +FBJTII = 0 ESATII = 1E8 SII0 = 1 +SII1 = 0 SII2 = 0 SIID = 0 +KETA = 0 KETAS = 0 RTH0 = 0.08 +A1 = 0 A2 = 0.99 RDSW = 150 +PRWG = 0 PRWB = 0 WR = 0.76 +WINT = ’0+VAR_WINT’ LINT = ’3E-8+VAR_LINT’DWG = -3E-8 +DWB = 0 VOFF = -0.2 NFACTOR= 1 +CIT = 0 CDSC = 0.01 CDSCD = 0 +CDSCB = 0 BETA0 = 0 BETA1 = 0 +BETA2 = 0.15 ETA0 = 0.2 ETAB = 0 +DSUB = 0.5 PCLM = 2 PDIBLC1= 0.1 +PDIBLC2= 0 PDIBLCB= 0 DROUT = 0.4 +PVAG = 0 DELTA = 0.01 NGATE = 1.5E20 +ALPHA0 = 4E-7 VDSATII0= 0.9 MOBMOD = 1 +TII = -0.2264 PRT = 10 UTE = -1.8 +KT1 = -0.16 KT1L = 0 LII = -7E-8 +KT2 = -0.0646 UA1 = 0 UB1 = 0 +UC1 = 0 AT = 3.4E4 TCJSWG = 5E-4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 2 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0 +CJSWG = 8E-10 PBSWG = 0.9 MJSWG = 0.5 +CSDESW = 0 CSDMIN = 1.6E-5 CGDO = 6E-10 +CGSO = 2.5E-10 CGEO = 0 CGSL = 0 +CGDL = 0 CKAPPA = 0.6 CF = 0 +CLC = 5E-8 CLE = 0.6 BINUNIT= 1 +SHMOD = 1 RBODY = 10 RBSH = 100 +CTH0 = 1E-5 NDIODE = 1 NTUN = 10 +VTUN0 = 0 ISBJT = 3E-7 NBJT = 1.5 +LBJT0 = 2E-7 VABJT = 10 AELY = 0 +AHLI = 1E-15 ISDIF = 1.2E-8 ISREC = 1E-3 +ISTUN = 1E-5 XBJT = 1.15 XDIF = 1.11 +XREC = 0.9 XTUN = 0 NTRECF = -0.3 +NTRECR = 10 TT = 3E-10 LN = 2E-6 +NRECF0 = 1.8 NRECR0 = 10 VREC0 = 0.05 +VSDTH = 0.5 VSDFB = -1.5 ASD = 0.5 +DLCB = 0 DLBG = 0 DELVT = 0 +FBODY = 1 ACDE = 0.11 MOIN = 15 +LDIF0 = 1E-3 NDIF = -1 SOIMOD = 1 +VBSA = 0.22 DVBD1 = 0.5 DVBD0 = 0 +NOFFFD = 1 VOFFFD = 0 MOINFD = 1E6 +DK2B = 0.4 K2B = 0.3 WTH0 = 4E-6 +RHALO = 1E15 K1B = 0.85 +RGATEMOD= 1 RSHG = 1.6 XRCRG1 = 12 +XRCRG2 = 1 NGCON = 1 XGW = 0 +XGL = 0 WPCLM = 0.5 LPCLM = 0 ) * .MODEL pf_soi pmos ( LEVEL = 33 +TNOM = 22 VERSION= 3.2 TOX = 4.2E-9

Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models 9

Page 10: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

+TSI = 3.8E-8 TBOX = 4E-7 XJ = 1E-7 +NCH = 6E17 NSUB = -5E13 VTH0 = ’-0.66+VAR_P_VTH0’ +K1 = 0.82 K2 = 0 K3 = -5 +K3B = 0 K1W1 = 0 K1W2 = 0 +KB1 = 0 W0 = 0 NLX = 0 +DVT0W = 0 AGIDL = 3E-9 BGIDL = 2E9 +NGIDL = 0.5 DVT1W = 1E6 DVT2W = 0 +DVT0 = 12 DVT1 = 1.5 DVT2 = 0 +U0 = 63 UA = 0 UB = 1E-19 +UC = 0 VSAT = 6E4 A0 = -0.1 +AGS = 0 B0 = 0 B1 = 0 +FBJTII = 0 ESATII = 1E8 SII0 = 1.5 +SII1 = 0 SII2 = 0 SIID = 0 +KETA = 0 KETAS = 0 RTH0 = 0.07 +A1 = 0 A2 = 0.99 RDSW = 500 +PRWG = 0 PRWB = 0 WR = 0.9 +WINT = ’6E-8+VAR_WINT’LINT = ’5E-8+VAR_LINT’DWG = 0 +DWB = 0 VOFF = -0.2 NFACTOR= 1.5 +CIT = 0 CDSC = 0.05 CDSCD = 0.1 +CDSCB = 0 BETA0 = 0 BETA1 = 0 +BETA2 = 0.25 ETA0 = 0.2 ETAB = 0 +DSUB = 0.6 PCLM = 2 PDIBLC1= 1E-3 +PDIBLC2= 0 PDIBLCB= 0 DROUT = 0.4 +PVAG = 0 DELTA = 0.01 NGATE = 1E20 +ALPHA0 = 4E-7 VDSATII0= 0.9 MOBMOD = 1 +TII = -0.2264 PRT = 10 UTE = -1.6 +KT1 = -0.28 KT1L = 8E-9 LII = 0 +KT2 = -0.0646 UA1 = 3.37E-10 UB1 = -3.12E-18 +UC1 = -6.1E-10 AT = 6.5E4 TCJSWG = 5E-4 +WL = 0 WLN = 1 WW = 0 +WWN = 3 WWL = 0 LL = 0 +LLN = 2 LW = 0 LWN = 3 +LWL = 0 CAPMOD = 2 XPART = 0 +CJSWG = 1E-9 PBSWG = 1 MJSWG = 0.5 +CSDESW = 0 CSDMIN = 1.6E-5 CGDO = 5.5E-10 +CGSO = 1E-10 CGEO = 0 CGSL = 0 +CGDL = 0 CKAPPA = 3 CF = 0 +CLC = 1E-6 CLE = 0.6 BINUNIT= 1 +SHMOD = 1 RBODY = 20 RBSH = 10 +CTH0 = 1E-5 NDIODE = 1.01 NTUN = 10 +VTUN0 = 0 ISBJT = 7E-7 NBJT = 1 +LBJT0 = 1E-7 VABJT = 0 AELY = 0 +AHLI = 0 ISDIF = 1E-7 ISREC = 0.02 +ISTUN = 1E-8 XBJT = 1E-20 XDIF = 1.6 +XREC = 0.8 XTUN = 6 NTRECF = 0.1 +NTRECR = -1 TT = 3E-10 LN = 2E-5 +NRECF0 = 1.8 NRECR0 = 10 VREC0 = 0 +VSDTH = 1.0 VSDFB = -0.5 ASD = 0.8 +DLCB = 0 DLBG = 0 DELVT = 0 +FBODY = 1 ACDE = 0 MOIN = 15 +LDIF0 = 1E-3 NDIF = -1 SOIMOD = 1 +VBSA = 0.05 DVBD1 = 0.4 DVBD0 = 1.4 +NOFFFD = 1 VOFFFD = 0 MOINFD = 1E3 +DK2B = 0.4 K2B = 0.15 WTH0 = 4E-6

10 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 11: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

+RHALO = 1E20 K1B = 0.7 +RGATEMOD= 1 RSHG = 1.6 XRCRG1 = 12 +XRCRG2 = 1 NGCON = 1 XGW = 0 +XGL = 0 WPCLM = 0.2 LPCLM = -0.07 ) .ENDL MidVT

1.3.2. Device availability. SPICE parameter sets that support two variants of the Lincoln Laboratory 180-nm FDSOI process are described. These are the low threshold voltage (LVT) and medium threshold voltage (MVT) processes. Table 1-1 summarizes the 180-nm device availability for recent and upcoming tapeouts.

1.3.3. Process corner modeling. Because the MITLL FDSOI process is experimental in nature, process variations must be considered in a manner that recognizes the challenges of low-volume prototype fabrication. The model parameters provided for the LVT-FDSOI and MVT-FDSOI CMOS devices utilize four variation parameters, which are defined using .PARAM statements. In some circumstances, such as for device mismatch sensitivity studies, a designer might want to modify the parameter deck to allow these parameters to be local to particular instances. Designers should feel free to customize the deck to allow for the necessary simulations and/or tools for a particular project.

Table 1-1: Summary of Device Availability

Run Name Tier LVT MVT

YES2 –

RF07 –

3DL1 1

3DL1 2

3DL1 3

MIM1 –

QDS1 –

3DM2 1

3DM2 2

3DM2 3

Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models 11

Page 12: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsSPICE PARAMETERS, BSIMSOI V3.2

The four global variation parameters have been selected because they introduce shifts in transistor performance that are easy to conceptualize. They do not necessarily capture the entirety of physical effects in the CMOS process, but they do allow for sensitivity analysis based on an approximate understanding of possible variations in fabricated device performance. The parameters VAR_N_VTH0 and VAR_P_VTH0 linearly sum respectively with the default VTH0 parameter in the NMOS and PMOS, thus simulating a linear threshold voltage shift. In practice, this may be induced by a number of physical effects that are not completely modeled by this approximation. VAR_LINT and VAR_WINT linearly sum with the LINT and WINT parameters in both the NMOS and PMOS devices, thus modeling gate length and sidewall implant spacing variations. VAR_LINT and VAR_WINT parameters affect both device current and gate capacitance.

Suggested sweep values for these parameters are listed in Table 1-2. The target range column indicates expected variation of delivered "yielding" die with respect to the target value. These represent the device performance goals for the fabrication run. To allow for useful circuits to be obtained from die that fall outside of this target range, a robustness range is also included. Since the MITLL 3D integration is performed at the wafer level, it is often the case that on a particular die not all tiers will fall within the target range. To maximize the number of testable parts, it is desirable to accommodate the robustness range wherever possible. This is particularly true for portions of the circuit that are not performance critical.

Note that Table 1-2 reflects die-to-die variation, not local device mismatch. Mismatch of devices within a single circuit has been observed to be much less than the values presented in the table. However, insufficient statistical data have been collected to allow for presentation of a local mismatch model at this time.

In practice, it is necessary to implement multiple copies of the .MODEL statements to allow for each tier to use an independent parameter set. In this case, the .PARAM statements must be embedded within the appropriate models. This customization is tool and methodology specific.

Table 1-2: Target and Robustness Values for Global Parameters

ParameterTarget Range Robustness Range

Minimum Maximum Minimum Maximum

VAR_N_VTH0 –75 mV + 75 mV –200 mV +100 mV

VAR_P_VTH –75 mV + 75 mV –100 mV +100 mV

VAR_LINT –20 nm +20 nm –30 nm +30 nm

VAR_WINT –50 nm +50 nm – –

12 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 13: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

2. DEVICE CHARACTERISTICS AND RELATED DISCUSSION

2.1. MOS Behavior

Typical NMOS and PMOS I-V curves for the MITLL 0.18-µ m low-power FDSOI process are shown in Figures 2-1 through 2-16. Legends on the graphs provide the gate (G) or drain (D) voltage of each curve. Device sizes are given in the captions. (A drawn 0.2-µ m-long device will be fabricated with a 0.18-µ m poly gate.) All devices have 8-µ m width.

The kink effect appears strongly on the 8-µ m-wide by 0.5-µ m-long NMOS device as an abrupt change in slope in the drain characteristic and an anomalously steep subthreshold slope in the gate characteristic. It is much less apparent in the 0.2-µ m-long NMOS transistor characteristics. The kink is absent or much smaller in PMOS devices at room temperature and above.

2.1.1. LVT-FDSOI.

Figure 2-1: I-V curve for device 8 µ m wide by 0.2 µ m long (neo1 w4 r2c4, D 0, VBG = 0 V).

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

G 0.0

G 0.3

G 0.6

G 0.9

G 1.2

G 1.5

Dra

in C

urr

en

t (A

)

Drain Voltage (V)

Rev.: 2006:2 (Sep. 06) 13MITLL FDSOI device models

Page 14: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-2: I-V curve for device 8 µ m wide by 0.2 µ m long (neo1 w4 r2c4, G 0, VBG = 0 V).

-1 -0.5 0 0.5 1 1.5

D 0.9

D 1.2

D 1.5

Dra

in C

urr

en

t (A

)

Gate Voltage (V)

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

14 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 15: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-3: I-V curve for device 8 µ m wide by 0.5 µ m long (neo1 w4 r2c4, D 0, VBG = 0 V).

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

G 0.0

G 0.3

G 0.6

G 0.9

G 1.2

G 1.5

Dra

in C

urr

en

t (A

)

Drain Voltage (V)

Rev.: 2006:2 (Sep. 06) 15MITLL FDSOI device models

Page 16: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-4: I-V curve for device 8 µ m wide by 0.5 µ m long (neo1 w4 r2c4, G 0, VBG = 0 V).

-1 -0.5 0 0.5 1 1.5

D 0.9

D 1.2

D 1.5

Dra

in C

urr

en

t (A

)

Gate Voltage (V)

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

16 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 17: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-5: I-V curve for device 8 µ m wide by 0.2 µ m long (neo1 w10 r3c2, D 0, VBG = 0 V).

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

G 0.0

G -0.3

G -0.6

G -0.9

G -1.2

G -1.5

Dra

in C

urr

en

t (A

)

Drain Voltage (V)

Rev.: 2006:2 (Sep. 06) 17MITLL FDSOI device models

Page 18: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-6: I-V curve for device 8 µ m wide by 0.2 µ m long (neo1 w10 r3c2, G 0, VBG = 0 V).

-1.5 -1 -0.5 0 0.5 1

D 0.9

D 1.2

D 1.5

Dra

in C

urr

en

t (A

)

Gate Voltage (V)

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

18 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 19: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-7: I-V curve for device 8 µ m wide by 0.5 µ m long (neo1 w10 r3c2, D 0, VBG = 0 V).

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

G 0.0

G -0.3

G -0.6

G -0.9

G -1.2

G -1.5

Dra

in C

urr

en

t (A

)

Drain Voltage (V)

Rev.: 2006:2 (Sep. 06) 19MITLL FDSOI device models

Page 20: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-8: I-V curve for device 8 µ m wide by 0.5 µ m long (neo1 w10 r3c2, G 0, VBG = 0 V).

-1.5 -1 -0.5 0 0.5 1

D 0.9

D 1.2

D 1.5

Dra

in C

urr

en

t (A

)

Gate Voltage (V)

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

20 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 21: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

2.1.2. MVT-FDSOI. For the MVT-FDSOI version of the Lincoln Laboratory fully depleted SOI CMOS process, the threshold voltage of the NMOS devices is increased slightly to reduce leakage. The PMOS design for the MVT-FDSOI process is identical to that for the LVT-FDSOI process. Figures 2-9 through 2-12 show a comparison of the MVT-FDSOI and LVT-FDSOI NMOS, as simulated using the SPICE models provided in Section 1.3.

Figure 2-9: Simulated Id-Vd curves for LVT and MVT NMOS devices with 8-µ m width and 0.2-µ m drawn length, using nominal parameters. The gate voltage has been swept from 0 V to 1.5 V in 0.3-V increments.

Dra

in C

urr

en

t (A

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Drain Voltage (V)

MVT-FDSOI

LVT-FDSOI

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

Rev.: 2006:2 (Sep. 06) 21MITLL FDSOI device models

Page 22: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-10: Simulated Id-Vd curves for LVT and MVT NMOS devices with 8-µ m width and 0.5-µ m drawn length, using nominal parameters. The gate voltage has been swept from 0 V to 1.5 V in 0.3-V increments.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Dra

in C

urr

en

t (A

)

Drain Voltage (V)

MVT-FDSOI

LVT-FDSOI

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0016

0.002

0.0014

0.0018

22 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 23: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-11: Simulated Id-Vg curves for LVT and MVT NMOS devices with 8-µ m width and 0.2-µ m drawn length, using nominal parameters. The gate voltage has been swept from 0.9 V to 1.5 V in 0.3-V increments.

–1 –0.4–0.6 0 0.4 0.8 1 1.2 1.40.2 0.6–0.8 –0.2

Dra

in C

urr

en

t (A

)

Gate Voltage (V)

MVT-FDSOI

LVT-FDSOI

10-5

10-6

10-7

10-4

10-3

10-8

10-9

10-10

10-11

10-12

10-14

10-15

10-13

Rev.: 2006:2 (Sep. 06) 23MITLL FDSOI device models

Page 24: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-12: Simulated Id-Vg curves for LVT and MVT NMOS devices with 8-µ m width and 0.5-µ m drawn length, using nominal parameters. The gate voltage has been swept from 0.9 V to 1.5 V in 0.3-V increments.

–1 –0.4–0.6 0 0.4 0.8 1 1.2 1.40.2 0.6–0.8 –0.2

10-5

10-6

10-7

10-4

10-3

10-8

10-9

10-10

10-11

10-12

10-14

10-15

10-13

Dra

in C

urr

en

t (A

)

Gate Voltage (V)

MVT-FDSOI

LVT-FDSOI

24 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 25: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

2.2. Active and Polysilicon Parasitic Capacitor Behavior

The curve in Figure 2-17 for a 100 × 100-µ m2 n-active capacitor illustrates the buried oxide capacitance, around 90 aF/µ m2 in accumulation and less than 20 aF/µ m2 in inversion. Since CMOS circuits traditionally operate at positive voltage, the inversion condition is typical. For a PSD-doped active, this whole curve shifts to more positive voltage by about 1 V.

BSIMSOIv3.x model includes an approximation of this capacitance if the designer provides instance parameters for the area of the source and drain. The area of body contacts can also be included. The model includes peripheral capacitance as well, but the needed parameter has been set to zero.

Figure 2-13: C-V curve for n-active to handle wafer (neo1 w10 r3c2 cap2).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1

Active-Wafer Voltage (V)

Ca

pa

cit

an

ce

(p

F)

0 1 2 3

Rev.: 2006:2 (Sep. 06) 25MITLL FDSOI device models

Page 26: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

2.3. Intentional Capacitor Behavior

2.3.1. CAPN capacitors. The C-V curves in Figures 2-18 and 2-19 represent poly to CAPN-implanted active with the gate oxide as dielectric. Before gate oxidation, the silicon received the same implant as the edges of the PMOS transistors. Each capacitor is 100 x 100 µ m2, so the capacitance is around 6.5 fF/µ m2.

Figure 2-14: C-V curve for CAPN: NSD-implanted poly with CAPN- and CBP-implanted active (neo1 w4 r2c4 cap13 nmos).

0

10

20

30

40

50

60

70

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Gate-Source Voltage (V)

Ca

pa

cit

an

ce

(p

F)

26 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 27: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-15: C-V curve for CAPN over recommended voltage range (neo1 w4 r2c4 cap13 nmos).

62

63

64

65

66

67

68

0 0.3 0.6 0.9 1.2 1.5

Gate-Source Voltage (V)

Ca

pa

cit

an

ce

(p

F)

Rev.: 2006:2 (Sep. 06) 27MITLL FDSOI device models

Page 28: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

2.3.2. CAPP capacitors. The C-V curves in Figures 2-20 and 2-21 represent poly to CAPP-implanted active with the gate oxide as dielectric. Before gate oxidation, the silicon received the same implant as the edges of the NMOS transistors. Each capacitor is 100 x 100 µ m2, so the capacitance is around 6.5 fF/µ m2.

Figure 2-16: C-V curve for CAPP: PSD-implanted poly with CAPP- and CBN-implanted active (neo1 w4 r2c4 cap12 pmos)

0

10

20

30

40

50

60

70

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Gate-Source Voltage (V)

Ca

pa

cit

an

ce

(p

F)

28 Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models

Page 29: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsDEVICE CHARACTERISTICS AND RELATED DISCUSSION

Figure 2-17: C-V curve for CAPP over recommended voltage range (neo1 w4 r2c4 cap12 pmos).

62

63

64

65

66

67

68

-1.5 -1.2 -0.9 -0.6 -0.3 0

Gate-Source Voltage (V)

Ca

pa

cit

an

ce

(p

F)

Rev.: 2006:2 (Sep. 06) 29MITLL FDSOI device models

Page 30: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

This page intentionally left blank

Page 31: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsCONTACT INFORMATION

Rev.: 2006:2 (Sep. 06) 31MITLL FDSOI device models

CONTACT INFORMATION

For specific inquiries:

Technical: Layout submission:

Brian Tyrrell Bruce Wheeler(781) 981-5496 (781) [email protected] [email protected]

Device modeling: Editorial:

Peter Wyatt Karen Challberg(781) 981-7882 (781) [email protected] [email protected]

For any other questions, comments, or suggestions:

MIT Lincoln Laboratory Advanced Silicon Technology Group 244 Wood Street Lexington, MA 02421 Phone: (781) 981-7880 Fax: (781) 981-7889 http://www.ll.mit.edu/AST

Page 32: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

This page intentionally left blank

Page 33: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

MITLL Low-Power FDSOI CMOS Process: Device ModelsREVISION HISTORY

Rev.: 2006:2 (Sep. 06)MITLL FDSOI device models 33

REVISION HISTORY

Rev. 2006:2 (Sep. 06)

All new subsection 2.1.2 with new Figures 2-9 through 2-12 Renumbering of Figures 2-17 through 2-21 as Figures 2-13 through 2-17

Rev. 2006:1 (Aug. 06)

In Section 1.1, revision of para. 1 and para. 2 In Section 1.2, revision of para. 1 and new para. 4Revision of Section 1.3 with new subsections 1.3.1–1.3.3Revision of Section 2-1 into subsections 2.1.1 and 2.1.2All new subsection 2.1.2 with new Figures 2-9 through 2-16 Addition of new Section 2.2 incorporating previous Figure 2-13 and textRenumbering of previous Section 2.2 as Section 2-3Revision of Section 2-3 with new subsections 2.3.1 and 2.3.2

Page 34: MITLL Low-Power FDSOI CMOS Processdilli/research/layout/... · MITLL Low-Power FDSOI CMOS Process: Device Models SPICE PARAMETERS, BSIMSOI V3.2 6 Rev.: 2006:2 (Sep. 06) MITLL FDSOI

This page intentionally left blank