30
MIT International Center for Air Transportation MIT ICAT Analytical Approach for Quantifying Noise from Advanced Operational Procedures Jacqueline Thomas [email protected] Professor John Hansman [email protected] FAA Joint University Program—Quarterly Meeting November 5 th 2015

MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

Embed Size (px)

Citation preview

Page 1: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

MIT International Center for Air Transportation

MIT ICAT

Analytical Approach for Quantifying Noise from Advanced Operational Procedures

Jacqueline Thomas [email protected]

Professor John Hansman

[email protected]

FAA Joint University Program—Quarterly Meeting November 5th 2015

Page 2: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

2

MIT ICAT MIT ICAT

Motivation

1990

2000

2012

Note: 65db DNL is FAA’s designation of significant noise exposure.

05,000

10,00015,00020,00025,00030,00035,00040,00045,00050,000

1990 2000 2012

Pop

ulat

ion

Total Population W/n 65 dB DNL- Boston Logan

Source: Massport

•  Significant reductions in population exposure to airport noise have been made over the past 25 years −  Reduced engine noise −  Noise abatement procedures

•  Further noise footprint reduction may be possible through operational adjustments

Page 3: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

3

MIT ICAT MIT ICAT

Potential for Continued Noise Improvements

•  Advanced operational departure procedures −  Flight path adjustments −  Derated takeoff thrust −  Thrust cutback scheduling

Figure: The Orange County Register

•  Advanced operational approach procedures −  Continuous descent/steep approaches −  Delayed deceleration approaches −  RNAV/RNP approach trajectories

Figure: D8 Aircraft Concept, from NASA.gov

•  New Aircraft Configurations −  Cleaner Airframes −  Engine Noise Shielding Effects

Figure: FAA.gov

Page 4: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

4

MIT ICAT MIT ICAT

Project Goal

•  Current industry standard noise analysis methods do not fully capture noise impacts from aircraft configuration or other operational techniques

•  Traditional aircraft noise analysis assumes that engine noise dominates aerodynamic noise −  Assumption may have been valid for earlier generation jet engines

Project Goal: to expand analysis capabilities to enable the modeling the noise impacts of advanced operational procedures and aircraft configuration

Page 5: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

5

MIT ICAT MIT ICAT

Current Analysis Methods: Aircraft Environmental Design Tool (AEDT)

•  Industry standard model that evaluates aircraft noise impacts in the vicinity of airports −  Normally used for DNL analysis

•  Simple physics model −  Low resolution

§  Not intended for high-fidelity single event modeling

−  Considers “Average Annual Day” −  Assumes consistent sound energy

dissipation with distance −  Only considers atmospheric noise

propagation −  Does not capture shielding effects

well

•  Noise-Power-Distance (NPD) based

Figure: INM Technical Manual

Page 6: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

6

MIT ICAT MIT ICAT

Noise-Power-Distance Approach

•  Single-event noise exposure calculated for each arrival/departure segment

•  Requires thrust and distance interpolation from limited flight test data

•  Crude accounting for different flap, landing gear settings –  High-power approach curves

assume dirty landing configuration

–  Ignores velocity effects on aerodynamic noise

40 50 60 70 80 90

100 110 120

200 2000 20000

Soun

d Ex

posu

re L

evel

(dB

A)

Distance from Source (feet)

Noise Power Distance (NPD) Curves GE CF6-50 (Airbus A300)

40,000lb Departure

25,000lb Departure

10,000lb Arrival

25,000lb Arrival

Page 7: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

7

MIT ICAT

TASOPT and ANOPP Noise Modeling Approach

Transport Aircraft System OPTimization (TASOPT)

Aircraft NOise Prediction Program (ANOPP)

•  NASA-developed program •  Computes far-field engine and airframe

noise at an observer grid given various flight profile and configuration metrics

•  Semi-empirical calculations require detailed engine/aircraft performance inputs –  e.g., Engine mass flow, areas, and

temperatures, airframe geometry, etc.

•  Models shielding, propagation effects

•  Written by Prof. Mark Drela (MIT) •  Physics-based optimization program •  Based on mission requirements,

generates an optimal transport aircraft design, including:

•  Engine performance and geometry •  Aircraft performance and geometry

Page 8: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

8

MIT ICAT

TASOPT - ANOPP Noise Analysis Framework

ANOPP Control Inputs:

TASOPT

ANOPP

TASOPT Inputs: Operating/mission parameters

Aircraft sizing/performance parameters Engine sizing/performance parameters

Noise contours for each observer location

Aircraft/engine performance & geometry

Propagation settings Observer locations

Flight Procedure Generator* TASOPT Outputs:

Thrust, velocity, position, gear/flap settings per time

*Flight Procedure Generator a force-balance model to determine required thrust levels given: •  User flight profile requirements •  TASOPT aircraft performance

characteristics

Flight Procedure:

Flight Procedure Type: Flight Path Angles

Velocity Configuration

Page 9: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

9

MIT ICAT MIT ICAT

Noise Certification Data Comparison Overview

•  Effective Perceived Noise Level (EPNL) of known aircraft computed in ANOPP −  Results compared to FAA certification noise data (reported in 14 CFR Part 36) for

those aircraft for validation

Flyover

Approach

Sideline

•  EPNL reported at 3 observer locations: Flyover, Approach and Sideline •  Fight profile requirements:

•  Flyover: •  Thrust: Max TO to altitude 300m, then reduced to maintain 4% climb grad •  Velocity: V2+10kt to V2+20kt

•  Approach: •  Thrust: required to maintain 3° glide slope •  Velocity: Vref+10kt

•  Sideline: •  Thrust: Max TO •  Velocity: V2+10kt to V2+20kt

Page 10: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

10

MIT ICAT MIT ICAT

Current Validation Results

•  *Sideline noise error likely due to jet exhaust temperature over-prediction in TASOPT (required input for the ANOPP jet noise calculation) for max thrust conditions

•  Calculated sideline noise error is reduced to within +/- 1 dB EPNL for each aircraft with an 8% reduction in TASOPT outputted jet exhaust temperatures

ANOPP Calculated Effective

Perceived Noise Levels

(dB)

FAA Certification Noise Data

(dB)

Error (dB)

Boeing 737-800 Flyover 87 86.7 +0.3 TO/AP Wt: 172300/146300 lbs Approach 96.11 96.8 -0.69

Engine: CFM56-7B26 Sideline* 97.61 93.1 +4.51

Boeing 777-300 Flyover 94.87 94.2 +0.61 TO/AP Wt: 636100/524000 lbs Approach 101.3 100.4 +0.9

Engine: RR Trent 892 Sideline* 99.88 96.9 +2.98

Embraer 195 Flyover 87.46 86.5 +0.96 TO/AP Wt: 111970/99200 lbs Approach 92.55 92.8 -0.25

Engine: CF34-10E5 Sideline* 98.72 91.8 +6.92

Flyover

Approach

Sideline

Page 11: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

11

MIT ICAT MIT ICAT

•  Typical takeoff procedure uses constant takeoff thrust throughout initial climb segment −  Safety & efficiency benefits

•  Thrust cutback after takeoff during initial climb can be used to reduce noise for nearby communities −  Specific location of cutback

determines overall noise impact of procedure

Alt

itud

e

Distance from Start of Takeoff

Variation of Departure Flight Profile with Thrust Cutback Location

Procedure with Cutback

No Cutback Takeoff Procedure

Example Application: Thrust Cutback Location on Departure

Page 12: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

12

MIT ICAT MIT ICAT

Impact of Thrust Cutback Location on Single-Observer Departure Noise

85

86

87

88

89

90

91

92

0 5000 10000 15000 20000 25000 30000

EPN

L at

Obs

erve

r (d

B)

Cutback Distance from Start of Takeoff (ft)

No Cutback

Cutback Location for Minimum Noise

Boeing 737-800 Departures with Varying Thrust Cutback Location Measurement Location: Extended Runway Centerline, 6.5km from Start of Takeoff Roll

Takeoff Weight: 172,300 lbs Engine: CFM56-7B26

Observer Location

Preliminary

Page 13: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

13

MIT ICAT MIT ICAT

Impact of Thrust Cutback Location on Departure Noise Contour Geometry

Boeing 737-800 Departure Profiles Takeoff Weight: 172,300 lbs

Engine: CFM56-7B26

Observer X Locations (nmi)-2 0 2 4 6 8 10

Obs

erve

r Y L

ocat

ions

(nm

i)

-4

-3

-2

-1

0

1

2

3

4

65

65

65

7575

85 8595

95

Effective Percieved Noise Level (dB), Boeing 737-800 Departure

Minimum Noise Cutback

No Cutback

Preliminary Observer

Page 14: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

14

MIT ICAT MIT ICAT

Example Application: Delayed Deceleration Approach

•  In conventional approaches aircraft decelerate early in the approach −  Often commanded by air

traffic control for spacing traffic flows

•  In DDA approaches, initial flap speed velocity held as long as possible during approach to lower drag and thrust requirements −  Lower thrust levels and

reduce engine noise −  Higher velocities increase

airframe noise

Conventional vs. DDA Approach

Page 15: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

15

MIT ICAT

Delayed Deceleration Approach Profile: Glideslope Intercept from Level Flight

Flaps 30 + Gear

Reverse Thrust Onset

Idle Thrust

0 1000 2000 3000 4000 5000 6000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 Airc

raft

y Po

sitio

n (ft

)

Aircraft x Position (nmi)

130 150 170 190 210 230 250

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Velo

city

(kno

ts)

Arcraft x Position (nmi)

Constant Speed Approach

Delayed Deceleration Approach

Flaps 15

0

2000

4000

6000

8000

10000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Thru

st (l

bs/e

ng)

Aircraft x Position (nmi)

Flaps 30

Clean

Boeing 737-800 Flight Profile Landing Weight: 146,300 lbs

Engine: CFM56-7B26

Page 16: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

16

MIT ICAT

Impact of Delayed Deceleration Approach on Noise Contour Geometry

Boeing 737-800 Flight Profile Landing Weight: 146,300 lbs

Engine: CFM56-7B26

Observer X Locations (nmi)-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Obs

erve

r Y L

ocat

ions

(nm

i)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

65

75

75

85 85 9595

Effective Percieved Noise Level (dB), Boeing 737-800 ApproachDelayed Deceleration Approach

Constant Speed Approach

Preliminary

Page 17: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

17

MIT ICAT MIT ICAT

Example Application: Modeling New Aircraft Configurations

Figure: D8 Aircraft Concept, from Aurora Flight Sciences

Figure: Boeing 737-800, from Boeing.com

•  New aircraft configurations, compared to existing baseline aircraft with the same passenger number and range requirements, may feature: −  Cleaner, lighter airframes, engine noise shielding −  Reductions in fuel burn, emissions, community noise

Page 18: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

18

MIT ICAT

Boeing 737-800 vs. D8.2 Concept Aircraft Approach Profile

Flaps 30 + Gear

0 1000 2000 3000 4000 5000 6000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 Airc

raft

y Po

sitio

n (ft

)

Aircraft x Position (nmi)

130 150 170 190 210 230 250

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Velo

city

(kno

ts)

Arcraft x Position (nmi)

Flaps 30

Boeing 737-800 vs. D8.2 Concept Landing Weight: 146,300 lbs (B738) vs. 102,000 lbs (D8.2)

0

2000

4000

6000

8000

10000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Thru

st (l

bs/e

ng)

Aircraft x Position (nmi)

D8.2

Boeing 737-800

Reverse Thrust Onset

Idle Thrust

Page 19: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

19

MIT ICAT

Boeing 737-800 vs. D8.2 Concept Aircraft: Noise Contour Comparison

D8.2

737-800

Preliminary

Boeing 737-800 vs. D8.2 Concept Landing Weight: 146,300 lbs (B738) vs. 102,000 lbs (D8.2)

Page 20: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

20

MIT ICAT MIT ICAT

Moving Forward

•  Continue developing flight procedure generator

•  Continue validating the TASOPT/ANOPP program noise results with FAA data for more aircraft types

•  Use TASOPT/ANOPP program for computation of noise for more aircraft types and operational procedures

Page 21: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

21

MIT ICAT MIT ICAT

Acknowledgements and References

•  Acknowledgements: −  Prof. John Hansman, Prof. Warren Hoburg, Dr. Brian Yutko, & Luke Jensen – MIT −  Prof. Philip Morris & Prof. Victor Sparrow – Penn State University −  Tom Reynolds & Lanie Sandberg – MIT Lincoln Lab −  Chris Dorbian & Joe DiPardo – FAA −  Flavio Leo & Frank Iacovino - Massport

•  References: −  Boeker, Eric R., et al. "Integrated noise model (INM) version 7.0 technical manual." Washington, DC, Federal

Aviation Administration, Office of Environment and Energy (2008). −  Drela, M., “Transport Aircraft System OPTimization, Technical Description.”, Massachusetts Institute of

Technology, Cambridge, MA (2011). −  Drela, M., “Design Drivers of Energy Efficient Transport Aircraft.”, Massachusetts Institute of Technology,

Cambridge, Cambridge, MA (2011) −  Russel, J., and Berton, J., “ANOPP Theoretical Manual.”, ver.25, NASA Langley Research Center, Hampton, VA −  Dumont, J., Reynolds, T., Hansman, J., “Analyzing Opportunities and Barriers of Delayed Deceleration

Approach Procedures to Reduce Fuel Burn.” 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Indianapolis, IN (2012)

This work was completed in conjunction with Aviation Center of Excellence Project 23 under the US Federal Aviation Administration Office of Environment and Energy. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Page 22: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

22

MIT ICAT

Appendix

Page 23: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

23

MIT ICAT MIT ICAT

TASOPT Calculation Flow

Engine sizing/performance parameters

Fuselage/Wing/Tails sizing and weight computations Operating/mission

parameters

Aircraft sizing/performance parameters

Drag build-up

Engine sizing, weight, performance computations

Trajectory computations

Mission fuel computations

Final weight computation

TASOPT Outputs: Aircraft Performance Airframe geometry

Engine performance Engine geometry

TASOPT Inputs (user defined): TASOPT Calculation Flow:

Page 24: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

24

MIT ICAT MIT ICAT

ANOPP Calculation Flow

Engine Performance

Engine Geometry

Aircraft Performance

Airframe Geometry

Flight profile definition

Source to observer geometry

Engine and airframe noise computations

Propagation and ground effects

Wing shielding effects

ANOPP Outputs: Noise contours for each observer location

Thrust, velocity, position, gear/flap settings

Propagation Settings

Observer array

ANOPP Calculation Flow: TASOPT Outputs:

Flight Profile

Generator:

User Inputs:

Page 25: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

25

MIT ICAT MIT ICAT

Flight Profile Generator: Detailed Methodology

•  Goal: to generate position, velocity, and thrust of an aircraft flight profile from a combination of user specified requirements at each profile segment, including: •  Flap and gear settings: •  Segment end velocity: •  Deceleration: •  Thrust: •  Glideslope: •  Segment end position: or

•  The user initially specifies: •  Aircraft weight, wing area, air density: •  Drag coefficients: •  Initial position, altitude, velocity: •  Number of profile segments

xstart, zstart,Vstart

Aircraft x Position (nmi)-25 -20 -15 -10 -5 0

Airc

raft

Altit

ude

(ft)

0

1000

2000

3000

Aircraft x Position (nmi)-25 -20 -15 -10 -5 0

Velo

city

(kno

ts)

150

200

250

Aircraft x Position (nmi)-25 -20 -15 -10 -5 0

Thru

st (l

b/en

g)

0

2000

4000

6000

Idle Thrust

W,S,ρCD (δ flap,δgear,CL )

γ

a

xend

T

δ flap,δgear

zend

Vend

Sample Approach Profile: Boeing 737-800

Page 26: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

26

MIT ICAT MIT ICAT

Flight Profile Generator: Computation Methodology

γa,Vend,

xend, zend,

Tδ flap,δgear

xstart, zstart,Vstartxend, zend,Vend

•  At each segment:

•  of one segment become of the next segment

a =F∑m

=T +W sin(γ)−D

W / g

(Vend )2 − (Vstart )

2

2a=(xend − xstart )cos(γ )

=(zend − zstart )sin(γ )

D =12ρV 2SCD (δ flap,δgear,CL ) CL =

W cos(γ)12ρV 2S

The user specifies: The generator computes:

remaining three One of: or variables not yet specified, & two of: or using the equations below:

Segment sign conventions; negative value of indicates climb

γ

Page 27: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

27

MIT ICAT MIT ICAT

Flight Profile Generator: Computation Methodology

•  To get thrust (or reverse thrust ) profile ( ) on the runway, the user specifies (with the velocity upon liftoff or upon touchdown): •  Takeoff/Landing roll length: •  Runway coefficient of friction:

•  Lastly, the user specifies the

the lateral aircraft position profile with

2

0-2

-4-6

Aircraft x Position (nmi)

-8-10

-12-140Aircraft y Position (nmi)

1

2

3

0

500

1000

1500

2000

2500

3000

4

Airc

raft

Altit

ude

(ft)

a =F∑m

=−T /+Treverse +D+µ(W − L)

W / g(Vstart )

2

2LRoll= a

LRollµ

TReverse

y(s)

L = 12ρV 2SCL,start

CL,start =W

12ρ(Vstart )

2S

Sample Approach Profile: Boeing 737-800 including Landing Roll

s = x2 + z2

T

D =12ρV 2SCD (δ flap,δgear,CL )

Landing Roll

Takeoff Roll

Vstart

Page 28: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

28

MIT ICAT MIT ICAT

Drag Coefficients for Flight Profile Generator

•  Drag coefficients for existing aircraft currently obtained from Base of Aircraft DAta (BADA) •  BADA provides aerodynamic drag coefficients for various flap and

gear configurations of supported aircraft types:

CD =CD0 (δ flap,δgear )+CD2 (δ flap )*(CL )2

Page 29: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

29

MIT ICAT

Delayed Deceleration Approach Profile: Continuous 3-degree Glideslope

0 1000 2000 3000 4000 5000 6000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 Air

craf

t y

Pos

itio

n (f

t)

Aircraft x Position (nmi)

130

150

170

190

210

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Vel

ocit

y (k

nots

)

Arcraft x Position (nmi)

Constant Speed Approach Delayed Deceleration Approach

0

2000

4000

6000

8000

10000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Thru

st (

lbs/

eng)

Aircraft x Position (nmi)

Boeing 737-800 Flight Profile Landing Weight: 146,300 lbs

Engine: CFM56-7B26

Flaps 30 + Gear

Reverse Thrust Onset

Idle Thrust

Flaps 15

Flaps 30 Flaps 30

Flaps 5

Page 30: MIT ICAT - Federal Aviation Administration CFM56-7B26 Observer Location Preliminary 13 MIT ICAT Impact of Thrust Cutback Location on Departure Noise Contour Geometry Boeing 737-800

30

MIT ICAT

Impact of Delayed Deceleration on Noise Contour

Boeing 737-800 Flight Profile Landing Weight: 146,300 lbs

Engine: CFM56-7B26

Observer X Locations (nmi)-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Obs

erve

r Y L

ocat

ions

(nm

i)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

65

7575

8585 9595

Effective Percieved Noise Level (dB), Boeing 737-800 Approach

Delayed Deceleration Approach

Constant Speed Approach

Preliminary