Upload
others
View
32
Download
2
Embed Size (px)
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
MicrowaveRadiometerRetrievals
Ulrich Löhnert (University of Cologne)
with contributions from Nico Cimini, Susanne Crewell, Harald
Czekala, Thomas Rose,..
Ground-basedprofilingnetworksforimprovingweatherforecasts(COSTES1303TrainingSchool)
EMSWorkshop,3September2017,Dublin
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
What“products”canweexpectfromMWR?
conHnuousdatainall-skycondiHons:resoluHonofsecondstominutes
path-integratedcloudliquidwater
(mostreliablemethodoverall)
lowresoluHonwatervapor(H)profile,but
excellentpath-integratedvalues
temperature(T)profileofthePBL,lowresoluHonprofile
above
rel.humidity
Measurementfocus:PBL
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
Microwaveregion:ExHncHon=AbsorpHon
3
InformaFonfromatmosphericthermalemission
Kirchhoff‘slaw:absorpHonisdirectly
proporHonaltoemission(LTE)
àBrightnesstemperaturespectrum
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
MicrowaveTBspectrumstandardatmosphere
oxygen
watervapor
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TB@51–
58GHz
MWRMeasurementsatJOYCE11June2013
TB@22–
31GHz
cloudliquidsignalincreasesstronglywithfrequency
watervaporsignalisstrongestat22GHzlinecenter
stronglytemperaturedependent
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
ForwardproblemDescribedragon‘strack
Butnow:whataboutthedragonwhenyouonlyknowthetrack?
BernhardMayer,LMUMünchen
Ambiguouscorrectanswers:A,B,CorD??
InverseProblemI
X
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
Track=Brightnesstemperatures
€
y = F(x,b)+εInverseProblemII
Forwardproblem=RadiaHvetransfer Dragon=
Atmosphere Uncertaintyoftrack
measurementandFSo:whattodoiftheanswerstoour
measurementsareambiguous?
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
RetrieveonlyalimitednumberofparametersIntegratedWaterVapour(IWV)LiquidWaterPath(LWP)
10kgm-2correspondtoaliquidcolumnof1cm
àbothintegratedcolumnamounts
IWV = ρWV dzz=0
z=TOA
∫
LWP = ρliquid dzz=0
z=TOA
∫
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
RetrievalofIWVandLWP
IWV=a1+b1*TB24–c1*TB31LWP=a2–b2*TB24+c2*TB31
standardatmosphere
LWP=250gm-2
TBAmplitudeofH2OlineisproporHonaltoIWV
CloudsleadtoaTBincrease,mainlyinwindowchannels
WatervaporleadstoaTBincreasemainlyatH2Oline
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
StaFsFcalcorrelaFonsTBvs.IWV/LWP
IWV
LWP
clearsky
cloudy
IWV
IWV
IWV LWP
IWV=a1+b1*TB24–c1*TB31LWP=a2–b2*TB24+c2*TB31
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
IWV&LWPRetrieval
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TBHmeseriesofmulHplefrequencychannelsonthe
rightsideofthe22GHzline
Whatabouthumidityprofiles?
Frequency / GHz
TB /
K
more WV contribution from higher levels at line center
relatively higher WV contribution from lower levels at line shoulder
However: contributions in different channels highly correlated
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
Typical:TBHmeseriesof7frequencychannelsontherightsideofthe22GHzline
WaterVaporWeighHngFuncHons
2-3degreesoffreedomforsignal
Whatabouthumidityprofiles?
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
ExampleHumidityProfile
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TemperatureProfileRetrieval
O2absorpHoncomplex
O2hasaconstantmixingraHowithheightàTBonlyafuncHonoftemperatureand
pressure
Atmospheresaturated(~blackbody)àTemperature
informaHonfromlowerlevels
ThefurtherawayfromtheabsorpHoncomplex
center,themoreinformaHonoriginatesfromhigherlevelsintheatmosphere
cloudy
clear
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TemperatureRetrieval
surfacetemperature
Typical:TBHmeseriesof7frequencychannelsontheleb
handsideofthe60GHzabsorpHoncomplex
TB@51–
58GHz
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TB@57GHz≈Temp.in100m
Physicaltemperature–TBat57.3GHzcorrelaFon
BrightnessTemperature/K BrightnessTemperature/K
Tempe
rature@
100m
/K
Tempe
rature@
2km/K
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TB@55GHz≈Temp.in2km
Physicaltemperature–TBat55GHzcorrelaFon
BrightnessTemperature/K BrightnessTemperature/K
Tempe
rature@
100m
/K
Tempe
rature@
2km/K
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
19
WhichChannelContributesfromwhichHeights?• Strongredundancyinallchannels• HowcantheheightinformaHonbemadevisible?
àWeighHngFuncHons
~3degreesoffreedomforsignal
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
addiHonaltemperatureprofileinformaHoninopHcallythickcase
MicrowaveradiometerelevaFonscanning
Bri
ghtn
ess
Tem
pera
ture
[K
]
Bri
ghtn
ess
Tem
pera
ture
[K
]
Alt
itud
e [m
]
Alt
itud
e [m
]
Elevation Angle [DEG] Elevation Angle [DEG]
Temperature [K] Temperature [K]
needtoassumehorizontalhomogeneity
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
ABLDevelopment
20 21 22 23
3 2 1
13
0
6 7
9 11 12
9 8
21
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
PotenFaltemperatureretrievalPotenHaltemperature
worksalsoincloudycondiHons
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
RepresentaFvedataset(radiosonde)
ClouddiagnosHcmodel
Atmosphericprofilesp(z),T(z),q(z),LWC(z)
RT-Model
TB(ν)
Inversemodel:e.g.mulHvariateregression,NN
RT-Model
TB(ν)
Algorithm
Training Test
EvaluaHon
RetrievalDesign
T(e.g.@z=1km) T(e.g.@z=1km)
T(z=1km)=a(z)+b(z)·TB1+c(z)·TB12+d(z)·TB2+e(z)·TB22+..
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
ObservaHons:Brightnesstemperature
TBfromHATPRO
“OpFmalEsFmaFon”
aprioriatmosphericprofile:climatologyormodel
forecast
OpHmizedatmosphericprofile
Isatmosphericprofileconsistentwiththe
observaHons?
+
Needtobegiven:Correlated(!)uncertainHesofTBandaprioriprofile
RepeatiteraFvelyunHlconvergencecriterionismet
AdvancedVariaFonalApproaches
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
ProfileofthepreviousiteraHon
SoluHonincrement,ifà0convergenceisreached
„Pulls“soluHontowardsaprioriprofile;howstronglyisdeterminedthroughweighHngwithSa-1
MakessoluHonphysicallyconsistentwithobservaHon;howstronglyisdeterminedthroughweighHngwithSe-1,KTtransformsfromytoxspace
WeighHngofthewholesoluHonupdatebyweighHngwiththesumofobservaHonandaprioriuncertainty
IftheerrorsofobservaHonandaprioriareesHmatedcorrectly,thediagonalcomponentsofSwillgivetheexpectedrandomerrorateachheight
( ) ( )11 1 1 1
1 ( ) ( )T Ti i a i i i a i aFε ε
−− − − −+
⎡ ⎤= + + − − −⎣ ⎦ix x S K S K K S y x S x x
18.Juni201225
OpFmalEsFmaFonEquaFons
y:ObservaHonvector(TB)F:Forwardmodel(radiaHvetransferoperator)K:Jacobian(∂F/∂x)xa:aprioriprofileSε:ErrorcovariancematrixSa:aprioricovariancematrixS:ErrorcovariancesoluHon
Updatedprofile
S−1 = Sa−1 +K i
TSε−1K i( )
COSTES1303TrainingSchool3September2017,Dublin
Ground-basedprofilingnetworksforimprovingweatherforecasts:Microwaveradiometerretrievals
TowhatwouldyouinvertthisK-bandsignal?
Thank’sforyouakenFon!