24
1 Micromechanics of macroelectronics Zhigang Suo Harvard University th , Yong Xiang, Joost Vlassak (Harvard University) Wagner, Stephanie Lacour (Princeton University)

Micromechanics of macroelectronics

  • Upload
    feryal

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

Micromechanics of macroelectronics. Zhigang Suo Harvard University. Work with Teng Li, Yong Xiang, Joost Vlassak (Harvard University) Sigurd Wagner, Stephanie Lacour (Princeton University). Displays. Sony e-Reader. Roll-to-roll printing Low cost, large area. defect. - PowerPoint PPT Presentation

Citation preview

Page 1: Micromechanics of macroelectronics

1

Micromechanics of macroelectronics

Zhigang Suo

Harvard University

Work with

Teng Li, Yong Xiang, Joost Vlassak (Harvard University)Sigurd Wagner, Stephanie Lacour (Princeton University)

Page 2: Micromechanics of macroelectronics

2

Displays

Sony e-Reader

Page 3: Micromechanics of macroelectronics

3

Roll-to-roll printing Low cost, large area

Page 4: Micromechanics of macroelectronics

4

polymer

inorganicdefect

Challenges to the mechanics of materials and structures

•Large structures•Hybrid materials (organic/inorganic)•Small features

Polymer substrate

Active device

Hermetic seal

Thin-film transistor (TFT)Al

undoped a-Si:HSiNxTi/Cr

100 nm

100 nm360 nm100 nm

180 nmSiNx(n+) a-Si:H 50 nm

Page 5: Micromechanics of macroelectronics

5

How to make brittle materials flexible?

310mm10

μm10 R

ctop

Thin substrateStrain caused by bending

2

621110

m10N/m10

N/m10

Eac

Small flawsStrain to cause fracture

R

Neutral plane

c

top

Suo, Ma, Gleskova, Wagner Appl. Phys. Lett. 74, 1177-1179 (1999).

Page 6: Micromechanics of macroelectronics

6

G

S D TFT island

a-Si thin-film transistor (TFT)on polyimide substrate

0

1

-3 -2 -1 0 1 2 3Strain (%)

TensionCompression

n /

n0

High strain and fractureGleskova, Wagner, Suo Applied Physics Letters, 75, 3011 (1999)

Cracks

Page 7: Micromechanics of macroelectronics

7

How to make stretchable circuits?

Islands, linked by interconnects•Fracture at crossovers•Fatigue of metals•Small island size

Most microelectronic materials fracture at small strains (less than about 1%)

Polymer substrate

Springs•3D microfabrication

Hsu, Bhattacharya, Gleskova, Huang, Xi, Suo, Wagner, Sturm, APL 81, 1723 (2002).

Page 8: Micromechanics of macroelectronics

8

G

S D TFT island

a-Si thin-film transistor (TFT)on Kapton substrate

Debonding and cracking

Gleskova, Wagner, Suo Applied Physics Letters, 75, 3011 (1999)

Cracks

SiN island on Kapton substrate

Bhattacharya, Salomon, WagnerJ. Electrochm. Soc. 153, G259 (2006)

Page 9: Micromechanics of macroelectronics

9

Metal on polymer

nm100~Al, Cu, Au

•Metal film deforms plastically (Ho, Kraft, Arzt, Spaepen…)•What is the rupture strain of the metal film?

Kapton, Silicone

Page 10: Micromechanics of macroelectronics

10

Ductile vs. brittle film

metal film

Rupture by necking

ceramic film

Rupture by breaking atomic bonds

ceramic film

polymer substrate

metal film

polymer substrate

Page 11: Micromechanics of macroelectronics

11

FEM: large-amplitude perturbation

023.0

8.0

Free-standing

Substrate-bondedLong-wave perturbation

Conclusion from nonlinear analysis:Substrate retards perturbation of ALL wavelengths.

Substrate-bondedshort-wave purturbation=0.8

Li, Huang, Suo, Lacour, Wagner, Mechanics of Materials 37, 261 (2005)

Page 12: Micromechanics of macroelectronics

12

Al film on Kepton substrate

5000 Å Al film, 7 % Strain 5000 Å Al film, 10 % Strain

Gage, Phanitsiri (2001)

Chiu, Leu, Ho, (1994)

Alaca, Saif, Sehitoglu (2002)

Channel cracks start at ~2% strain

Page 13: Micromechanics of macroelectronics

13

Possible causes for small rupture strains of metal on polymer

• The film is brittle.

• The film debonds from the substrate.

• The substrate is too compliant.

Page 14: Micromechanics of macroelectronics

14

Co-evolution: necking and debonding

      

  

Coupled rupture and debond

EE10.4 Thursday 2:30pm, Teng Li Ductility of thin metal films on polymer substrates modulated by interfacial adhesion.

Page 15: Micromechanics of macroelectronics

15

MPa5max

T22

35%

37.3%

38%

38.5%

T12

35%

37.3%

38%

38.5%

Li, Suo, IJSS (2006)

Page 16: Micromechanics of macroelectronics

16

Xiang, Li, Suo, Vlassak,

APL 87, 161910 (2005)

100nm Cu /10nm Ti/Kapton, strained to 10%

100nm Cu /20nm C/ Kapton, strained to 6%

Effect of adhesion

Page 17: Micromechanics of macroelectronics

17

170nm Cu /10nm Ti/ Kapton strained to 30%

Xiang, Li, Suo, Vlassak, APL 87, 161910 (2005)

Page 18: Micromechanics of macroelectronics

18

The effect of substrate stiffness

Esub = 2 MPa, = 2.8%

Esub = 300 MPa, = 47%

Esub = 150 MPa, = 37%

Li, Huang, Suo, Lacour, Wagner, Appl. Phys. Lett. 85, 3435 (2004)

Page 19: Micromechanics of macroelectronics

19

Au film on PDMS substrate survives large elongation

0 10 20 30 40 50 60 700.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R/R

init

time (h)

•electron-beam evaporation•101 cycles of elongation by 35%

PDMS (1mm)

Cr (5 nm)

Au (25 nm)

Lacour, Wagner, Huang, Suo,, APL 82, 2404 (2003).

Page 20: Micromechanics of macroelectronics

20

Au film is cracked from the beginning, but…

1µm

stretching direction

b 1µm

stretching direction

c

1st cycle to 35% strain

1µma As deposited

101st cycle to 35% strain

Lacour, Li, Chen, Wagner, Suo, APL 88, 204103 (2006).

Page 21: Micromechanics of macroelectronics

21

Other Compliant Patterns

When pulled, the sheet elongates by buckling

Y-shaped cracks

Page 22: Micromechanics of macroelectronics

22

The importance of being compliant

5 10 15 20 25 301E-7

1E-6

1E-5

1E-4

1E-3

0.01

stretch and out-of-plane buckle

pure in-plane stretch

J/Ea

Engineering strain (%)

L a

A

L aL aL a

A

46

8

11

9

1010

10

10

10

m

m

Pa

Pa

Ea

h

Ea

J Yc

Page 23: Micromechanics of macroelectronics

23

Serpentine:a compliant pattern of a stiff material

Top surface

Bottom surface

Li, Suo, Lacour, Wagner, JMR 20, 3274 (2005)

Large elongation, small strainA platform for devices

Page 24: Micromechanics of macroelectronics

24

Summary

A stiff polymer substrate can retard necking in a metal film.

A compliant polymer substrate can accommodate large displacement of a patterned film.