27
Thermo Thermo - - mechanical coupled simulation of hot forming mechanical coupled simulation of hot forming processes considering die cooling processes considering die cooling M. Medricky , R. Struck , C. Sunderkötter , D. Lorenz , P. Olle , B.-A. Behrens Volkswagen Group Research, Wolfsburg DYNAmore GmbH, Stuttgart Institute of Metal Forming and Metal-Forming Machines, Hannover

Medricky Volkswagen

Embed Size (px)

Citation preview

Page 1: Medricky Volkswagen

ThermoThermo --mechanical coupled simulation of hot forming mechanical coupled simulation of hot forming processes considering die coolingprocesses considering die coolingM. Medricky �, R. Struck �, C. Sunderkötter �, D. Lorenz �, P. Olle�, B.-A. Behrens �

� Volkswagen Group Research, Wolfsburg

� DYNAmore GmbH, Stuttgart� Institute of Metal Forming and Metal-Forming Machines, Hannover

Page 2: Medricky Volkswagen

2as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 3: Medricky Volkswagen

3as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 4: Medricky Volkswagen

4as of 11/12/09 group research: K-EFW/F (M. Medricky)

Deployment of hot formed high strength steelsMotivation

18%

30%25%

12%

15%

percent by weight

≤ 140 MPa

180 - 240 MPa

260 - 300 MPa

300 - 420 MPa

≥ 1000 Mpa

Yield strength

source: Cordes et. al. EuroCarBody Award 2005VW Passat B6

15 % of hot formed steel!

Page 5: Medricky Volkswagen

5as of 11/12/09 group research: K-EFW/F (M. Medricky)

VW VW TiguanTiguan

VW VW PassatPassat CCCC

outer: hot formed

inner: HSStailored blank

inner: HSS

source: Thiele/Hahn/Lamprecht/Hahn

Audi A4Audi A4outer: hot formed tailored blank

Audi Q5Audi Q5

inner: HSS

outer:partially press hardened

Example – hot formed parts – B-pillarMotivation

inner: HSS (conventional)

Page 6: Medricky Volkswagen

6as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 7: Medricky Volkswagen

Fut

ure

Tod

ay

7as of 11/12/09 group research: K-EFW/F (M. Medricky)

Objectives

Method Experimentaltool

Mass productiontool

Partdevelopment

Construction

Method Hot formingsimulation withcooling system

Mass productiontool

Partdevelopment

Construction

SOP

SOP

Hot formingsimulation

Page 8: Medricky Volkswagen

8as of 11/12/09 group research: K-EFW/F (M. Medricky)

Frontloading and achievable benefitsObjectives

• Virtual optimization of the tool design

• Reducing try out through frontloading effects (time, cost)

• Optimizing process time (quenching)

• Virtual tuning of local material properties (quality)

100%virtual press shop

Frontloading

100%actual press shop

SOP

source: Liebig

Page 9: Medricky Volkswagen

9as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 10: Medricky Volkswagen

10as of 11/12/09 group research: K-EFW/F (M. Medricky)

State of the art

FrictionFriction

Matrial lawMatrial law Thermal valuesThermal values

Yield loci, flow curve,r-values, strainrate, …

Yield loci, flow curve,r-values, strainrate, …

Emissivity, conductivity ,specific heat

Emissivity, conductivity ,specific heat

Transitional valuesTransitional values

Material lawMaterial law

CCT - diagramm, …CCT - diagramm, …

Cooling design

Mechanical simulation

Material properties

Thermal simulation

Phase transition

Energy dissipation

Late

nt h

eat

Stressind. transition

Thermal strains

CCT

-ch

arac

teris

ticsTransitionind. stress

Cooling simulationToo

lP

art

Coupling Coupling

State of the art

Page 11: Medricky Volkswagen

11as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 12: Medricky Volkswagen

12as of 11/12/09 group research: K-EFW/F (M. Medricky)

Sensitivity analysisConsidering die cooling

Contact pressure (MPa)

Hot blank

Heat transfer (tool surface)

Heat flow

Conductivity(tool)

Thermal convection(cooling channel w/ water)

Thermal conductivity (W/mK)

Thermal convection (W/m²K)

Parameter Values

1, 5, 10, 15, 20, 25, 30, 35, 40

1, 5, 10, 20, 50, 66, 80, 110, 130

1, 50, 500, 1000, 6000, 9000, 20000, 50000

resultant temperature in single node

Page 13: Medricky Volkswagen

13as of 11/12/09 group research: K-EFW/F (M. Medricky)

Example – after 20 s of quenchingConsidering die cooling

low pressure

high pressure

tem

pera

ture

(°C)

conductivity (W/mK)convection (W/m²K)

pressure increase

convection increase

conductivity increase

Page 14: Medricky Volkswagen

14as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 15: Medricky Volkswagen

15as of 11/12/09 group research: K-EFW/F (M. Medricky)

Die model generationMethods

1. Die surface geometry accurately modeled with shell elements

2. Die volume geometry modeled with volume elements

3. Shell and volume mesh coupled with contact definition

Heat transfer from blank to die surface shell by thermal

contact

Heat dissipation into the dies by thermal contact

between shell and volume mesh

Page 16: Medricky Volkswagen

16as of 11/12/09 group research: K-EFW/F (M. Medricky)

Solution methodsMethods

• Cooling simulation starts with the finalgeometry of the forming simulation

• 3 different solution methods are possible

1. Thermal only simulation;tools rigid and fixed

2. Thermal-mechanical coupled with rigidtools; tool is loaded with force

3. Thermal-mechanical coupled with elastic tools; tool is loaded with force

• All methods can use contact betweentool surface and volume

Heat

Heat

LoadLoad

ElasticElastic

Heat

Heat

LoadLoad

RigidRigid

Heat

Heat

RigidRigid

1.1.

2.2.

3.3.

Page 17: Medricky Volkswagen

17as of 11/12/09 group research: K-EFW/F (M. Medricky)

Cooling channelsMethods

• There are different possibilities to account for cooling passages

• Temperature boundary condition

• Convective boundary condition

• Application of new bulkflow feature

• Convective heat transfer coefficients

• From CFD simulation

• Bulkflow feature is the simplest way to consider cooling systems in a thermal die analysis

com

plex

ityco

mpl

exity

Page 18: Medricky Volkswagen

18as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 19: Medricky Volkswagen

19as of 11/12/09 group research: K-EFW/F (M. Medricky)

ExperimentsExperimental tool

• Variation of several process parameters within the process chain

• Variation of tool material / cooling and heating etc.

• Analysis of measuring data, mechanical properties, microstructure etc.

cooled tool part

heatedtool part

Page 20: Medricky Volkswagen

20as of 11/12/09 group research: K-EFW/F (M. Medricky)

Simulation modelExperimental tool

• Developing a process on the simplified model

• Revealing and eliminating possible problems

• Comparing with the real process

• Evaluation of the results

• Deriving the process for mass production tool

Page 21: Medricky Volkswagen

21as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 22: Medricky Volkswagen

22as of 11/12/09 group research: K-EFW/F (M. Medricky)

Functional description – splitting the hot forming p rocessMass production tool

Heating up Transfer Gravity Closing Pressing + Quenching Opening Removing

Waiting

Repeating the cycle

In reality one process step at one machine

Page 23: Medricky Volkswagen

23as of 11/12/09 group research: K-EFW/F (M. Medricky)

Procedure – Building the simulation modelMass production tool

IGESCAD CAE

• Removing unnecessary parts like clamping and intermediate plates, frames, bolts, nuts, pipes, sealing, pads, fixtures, etc…

• Deleting small unimportant holes for bolts and handles

• Exporting in the IGES format • Meshing in Hypermesh, Medina, and finishing in LS-Dyna

• Building the LS-Dyna Model

Page 24: Medricky Volkswagen

24as of 11/12/09 group research: K-EFW/F (M. Medricky)

Pitfalls – Building the simulation modelMass production tool

• High complexity of the CAD models - necessity of cleaning from unnecessary parts

• Complexity of the cooling channels - necessity of partial simplification

• Application of Bulkflow elements not possible -nonsymmetric matrix resulting in too much memory requirement - necessity of applying the convection cooling method

• The thermal tied contact simplifies the meshing process – experience for obtaining satisfactory results necessary

Page 25: Medricky Volkswagen

25as of 11/12/09 group research: K-EFW/F (M. Medricky)

Agenda

1. Motivation

2. Objectives

3. State of the art

4. Considering die cooling

1. Methods

2. Experimental tool

3. Mass production tool

5. Conclusions and outlook

Page 26: Medricky Volkswagen

26as of 11/12/09 group research: K-EFW/F (M. Medricky)

Conclusions and Outlook

• Demand for precision increase in prediction of hot formed part properties

• Development of simulation process containing cooling systems

• Creation of experimental tool model and examining the method feasibility

• Creation of mass production tool model and examining the method feasibility

• Thermal tied contact for meshing simplification is applicable

• Bulkflow not applicable for complex tools

• Convection heat transfer in cooling channels used instead

• Comparison with the real mass production process

• Further development of the bulkflow method

Page 27: Medricky Volkswagen

27as of 11/12/09 group research: K-EFW/F (M. Medricky)

Thank you