24
1 SFB 761 „Stahl ab initioMechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck International Workshop on High-Mn Steels Pohang, November 3-5, 2009 Contents Introduction to mechanism maps Backgrounds of calculations Thermodynamics-based SFE model Variations of SFE maps Experimental validation and observations Future works

Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

1

SFB 761 „Stahl ab initio“

Mechanism Maps and

Deformation Mechanisms

M. Sc. Alireza S. AkbariProf. Wolfgang Bleck

International Workshop on High-Mn SteelsPohang, November 3-5, 2009

Contents

• Introduction to mechanism maps

• Backgrounds of calculations

• Thermodynamics-based SFE model

• Variations of SFE maps

• Experimental validation and observations

• Future works

Page 2: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

2

What is the mechanism map?

• A composition- and/or temperature-dependent2-D diagram

I l di th di t d i t t l h ft• Including the predicted microstructural phases afterdeformation

• Including the approximated Stacking Fault Energy(SFE) values using the thermodynamics-basedmodels

• Flexibility for additions of further alloyingelements, variations of temperature, and changesof grain size!

Why do we need these maps?

• A new way for steel design particularly inhigh-Mn steels

• Better adjustment of chemical composition,grain size, and deformation temperature

• Probably an alternative for the TTT diagrams whenworking with the single-phase austenitic steels!

• Developing new alloy concepts• Developing new alloy concepts

Page 3: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

3

Microstructural Phases in High-Mn Steels

Schumann

Distribution of Phases in Fe-Mn-C System After Deformation5

Source: V. H. Schumann: Neue Hütte, 1972, vol. 17, pp. 605-609

How to Estimate the SFE?

• ab initio techniquese.g. the Density Functional Theory (DFT) to simulate theirregularities in the stacking of atomic layers

• Transmission Electron Microscopy (TEM)e.g. variations in the size of the dislocation nodes

• Inference from the experimental datae.g. observation of TRIP and TWIP mechanisms in practice

• Themodynamics-based modelse.g. subregular solution model

Page 4: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

4

Thermodynamics-based Calculation of SFEεγεγ σργ /22 +Δ= →Gfcc

FeCCFeFeMnMnFeCCMnMnFeFe XXXXGXGXGXG +ΔΩ+ΔΩ+Δ+Δ+Δ=Δ →→→→→→ εγεγεγεγεγεγ

exmgMnCCMn

FeCCFeFeMnMnFeCCMnMnFeFe

GGXX Δ+Δ+ΔΩ →εγ

42500)/( =ΔΩ → molJFeCεγ

)(5322180)/( MnFeFeMn XXmolJ −+=ΔΩ →εγTmolJGFe 309.438.2243)/( +−=Δ →εγ

TmolJGMn 123.100.1000)/( +−=Δ →εγ

Subegular Solution Model7

-22166)/( =Δ → molJGCεγ

10)/( 2/ ≈mmJεγσ

69102)/( =ΔΩ → molJMnCεγ

SGTE Dataset

SFE increases as the grain size decreases below 5 µm

Higher disequilibrium concentration of carbon when quenching from the lower temperature or for a short period of soaking to get a smaller grain

Effect of Grain Size on SFE?

size, increases the SFE

Internal stresses which affect the dissociation of dislocations, are changing by the grain size

The final calculated SFE including the grain size can be called as the apparent SFE!

8Remarks from the Literature

Source: P. Y. Volosevich, V. N. Grindev, and Y. N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126-30.Source: Y. Lee et al.: Met. Mat. Trans. A 31 (2000) pp.355-360.

Page 5: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

5

Gibbs Excess Energy εγεγ σργ /2)(2 +Δ+Δ= →

exfcc GG

exfcc GG Δ++Δ= → ρσργ εγεγ 222 /)

55.18)(exp(06.170)/( mdmoleJGex

μ−=Δ

Excess TermSFE without G.S. effect

G.S. (μm)

2ρΔGex

(mJ/m2)5 7

10 52/00002530

Assumption for our Fe-Mn-C alloys:

Method9

20 330 250 1

150 0

2/.0000253.0 matomg≈ρ

Source: Y. Lee et al.: Met. Mat. Trans. A 31 (2000) pp.355-360.

Source: S. Takaki et al.: Mater. Trans. JIM; 34 (1993) pp. 489-96.

Source: H. Schumann: J. Kristall Technik; 10 (1974) pp. 1141-50.

Composition-Dependent SFE Map

296 K10

Page 6: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

6

Composition-Dependent SFE Map

296 K11

Temperature Dependency of SFE

22 wt.% Mn

12Iso-Mn vs. Temperature SFE Maps

2 µm 94 µm

Page 7: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

7

Validation of the Predicted Mechanisms

Summary of SFE Measurements for Fe-22 wt.% Mn-0.6 wt.% C

___________________________

Assuming:1. No grain size contribution2. σ = 10 + 5 mJ/m2

3. Temperature: 296 K

13Experimental Plan

Resultant SFE is: 18 – 38 mJ/m2

Material: Fe-22Mn-0.6C

Annealing treatment: NA, 1173 K / 60 min., 1303 K / 60 min.

Tensile tests: Strain rate = 0 0004 s-1

Fe-22Mn-0.6C

Tensile tests: Strain rate = 0.0004 s 1

Temperature = 233 K, 296 K, 373 K

Avg. Grain size: 2 µm, 24 µm, 94 µm

LOM

Hardness Mapping

Average grain size: Jeffries planimetric procedure (ASTM E 112-96 (2004) standard)

14Experimental Proc.

Hardness Mapping

EBSD (voltage: 25 kV, probe current: 10 nA, 50-200 nm step size)

TEM

Page 8: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

8

SFE ValuesK

373 47 mJ/m2 40 mJ/m2 37 mJ/m2

296

3

37 mJ/m2 31 mJ/m2 28 mJ/m2

Fe-22Mn-0.6C15

µm2 24 94

233 34 mJ/m2 28 mJ/m2 25 mJ/m2

SFE ValuesK

373 47 mJ/m2 40 mJ/m2 37 mJ/m2SFE > 20 mJ/m2

296

3

37 mJ/m2 31 mJ/m2 28 mJ/m2

No possibility for

Fe-22Mn-0.6C16

µm2 24 94

233 34 mJ/m2 28 mJ/m2 25 mJ/m2

No possibility for TRIP mechanism!

Page 9: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

9

Flow Curves

233 K 296 K

373 K

2 µm, 24 µm, 94 µm17

Flow Curves

296 K18

Page 10: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

10

Microstructures (Fe-22Mn-0.6C)

µm2 24 94

As Received19

µ

X-Ray Patterns

94 µm – 373 K

94 µm – 296 K

94 µm – 233 K

94 µm – No Def.

24 µm – 373 K

24 µm – 296 K

24 µm – 233 K

Before and After Deformation20

24 µm – 233 K

24 µm – No Def.

Page 11: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

11

Different Stages of Work Hardening

Work Hardening Rate (WHR)21

Work Hardening Rate (WHR) Diagrams

Method:Using a software for the first derivative of the flow curve!

Fe-22Mn-0.6C22

Page 12: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

12

WHR Diagrams – Onset of Twinning?

Fe-22Mn-0.6C23

Stress and Strain for Onset of Twinning

Larger grain size is usually favorable for twinning!Grain size may affect the capacity for dislocation pile up in the

Grain Size and Temperature Dependency24

Grain size may affect the capacity for dislocation pile up in theneighbouring grains before the onset of twinning (activation phase)!Increasing temperature generally increases the required twinning stress.As seen here, temperature has a different effect when working at low SFE range!

competetivephenomena?

Page 13: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

13

EBSD Results at Different Strains

ε= 0.02 ε= 0.02

Grain Size ↑

24 µm, 94 µm (296 K)25

24 µm 94 µm

Strain for the Onset of Twinning

= 0.

043

67<Δε

=

Δε

= 0.

06<Grain Size and Temperature Dependency

26

Page 14: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

14

EBSD Results at Different Strains

ε= 0.10ε= 0.10

Grain Size ↑

24 µm, 94 µm (296 K)27

24 µm 94 µm

Strain for the Onset of Twinning

Grain Size and Temperature Dependency28

TEM Measurements at ε = 0.02

Page 15: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

15

Some Selected TEM Results at ε = 0.02

Indexed pattern still must be measuredmeasured

24 µm (233 K)29

Some Selected TEM Results at ε = 0.02

24 µm (373 K)30

Page 16: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

16

Hardness Variations of Twinned Structure

Fe-22 Mn – 0.6 CHadfield Steel

Finding a Suitable Hardness Criteria31

Hardness Mapping

300 µm

Machine and Pattern32

Indentation point

Page 17: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

17

Calculations

If hardness = ~ 600 HV1.0 Kg:

For the grain size of 2 µm ~ 800 grains per indentationFor the grain size of 2 µm 800 grains per indentationFor the grain size of 24 µm ~ 5 grains per indentationFor the grain size of 94 µm ~ 3 indentations per grain

HV1.0 Kg Hardness Mapping Machine

Indentation Size33

Hardness Maps

~ 10 mm

~ 3 mm

Selection of the Specimen34

mountingHardness Mapping

Page 18: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

18

Hardness Maps (Fe-22Mn-0.6C)

K73

> 600 HV1.0 < 600 HV1.0

Tens

ile

Dire

ctio

n

296

3

44% HT

91% HT

67% HT

53% HT

74% HT

62% HT

Finding the Heavily Twinned (HT) Fraction35

µm2 24 94

233

87% HT 62% HT 94% HT

Strain for the Onset of Twinning

Trend of Variations36

Page 19: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

19

Strain for the Onset of Twinning

?

Trend of Variations37

Strain for the Onset of Twinning

Trend of Variations38

Page 20: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

20

EBSD Results of 94 µm Grain Size

94 µm

233 K, 296 K, 373 K39

233 K94% HT

296 K62% HT

373 K74% HT

HT fractions were calculated by hardness mapping!

EBSD Results of 94 µm Grain Size

94 µm

233 K, 296 K, 373 K40

233 K94% HT

296 K62% HT

373 K74% HT

HT fractions were calculated by hardness mapping!

Page 21: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

21

EBSD Results of 24 µm Grain Size

24 µm

233 K, 296 K, 373 K41

233 K62% HT

296 K53% HT

373 K67% HT

HT fractions were calculated by hardness mapping!

EBSD Results of 24 µm Grain Size

24 µm

233 K, 296 K, 373 K42

233 K62% HT

296 K53% HT

373 K67% HT

HT fractions were calculated by hardness mapping!

Page 22: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

22

EBSD Results of 2 µm Grain Size

le!

le!

2 µm

Not

Avai

lab

Not

Avai

lab

233 K, 296 K, 373 Kof Variations43

233 K87% HT

296 K91% HT

373 K44% HT

HT fractions were calculated by hardness mapping!

EBSD Results of 2 µm Grain Size

le!

le!

2 µm

Not

Avai

lab

Not

Avai

lab

233 K, 296 K, 373 K44

233 K87% HT

296 K91% HT

373 K44% HT

HT fractions were calculated by hardness mapping!

Page 23: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

23

Hall-Petch Equation2/1

0−+= dK yTTyT σσ

yKTemperature

dependency?!

233 K, 296 K, 373 K45

Source: M. R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696-698.

Hall-Petch Equation and Twinning

Onset of twinning follows a Hall-Petch –type

equation ?!

233 K, 296 K, 373 K46

equation ?!

Page 24: Mechanism Maps and Deformation Mechanisms · 2017-02-24 · 1 SFB 761 „Stahl ab initio“ Mechanism Maps and Deformation Mechanisms M. Sc. Alireza S. Akbari Prof. Wolfgang Bleck

24

Future Plans

Finding out new techniques to calculate the twins density

Checking the consistency of the room temperature SFE calculations with the TEM based techniques

Further EBSD observations after the interrupted tensile tests to look for the changes of the microstructure

Adding more influential parameters like strain rate to study their effects in conjunction with temperature (SFE variations) and grain size to define the deformation mechanism and twinnability!

Evaluation of the effects of the PLC bands initiation, movement, and

47

variations by changing the grain size and temperature on the mech. prop.

Looking for a possible scalar value to integrate the mentioned parameters for a rather consistent prediction of mechanical properties

SFB 761 „Stahl ab initio“

THANK YOU!Quantum-mechanics guided design

of new Fe-based materials