289
Mass in ahler Geometry Claude LeBrun Stony Brook University 31 st Annual Geometry Festival Princeton University, April 8, 2016

Massin K ahler Geometry - Princeton University · Massin K ahler Geometry Claude LeBrun Stony Brook University 31st Annual Geometry Festival Princeton University, April 8, 2016 1

  • Upload
    dangnhi

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

Mass in

Kahler Geometry

Claude LeBrunStony Brook University

31st Annual Geometry FestivalPrinceton University, April 8, 2016

1

Joint work with

2

Joint work with

Hans-Joachim HeinUniversity of Maryland

3

Joint work with

Hans-Joachim HeinUniversity of Maryland

e-print: arXiv:1507.08885 [math.DG]

4

Joint work with

Hans-Joachim HeinUniversity of Maryland

e-print: arXiv:1507.08885 [math.DG]

To appear in Comm. Math. Phys.

5

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

............................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..................................

..................................

......................................................................................................

...............................................................

.......................................

6

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

............................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..................................

..................................

......................................................................................................

...............................................................

.......................................

n ≥ 3

7

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

............................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..................................

..................................

......................................................................................................

...............................................................

.......................................

n ≥ 3

8

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

............................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..................................

..................................

......................................................................................................

...............................................................

.......................................

n ≥ 3

9

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

............................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................

.......................................

................................................................................. .....................................................

..................................

..................................

......................................................................................................

...............................................................

.......................................

10

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

11

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

~x

gjk = δjk + O(|x|1−n2−ε)

12

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

~x

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

13

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

~x

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

14

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.......

.......

.......

.......

.......

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

......................................................................................................

...............................................................

.......................................

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

15

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.......

.......

.......

.......

.......

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

......................................................................................................

...............................................................

.......................................

...................................

....................

.....................

.......................

..........................

.............................

.................................

........................................

.................................................

.......................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................. ...........

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

16

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.......

.......

.......

.......

.......

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

17

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.......

.......

.......

.......

.......

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

......................................................................................................

...............................................................

.......................................

...................................

....................

.....................

.......................

..........................

.............................

.................................

........................................

.................................................

.......................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................. ...........

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

18

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each component of M − K is diffeo-morphic to Rn −Dn in such a manner that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.......

.......

.......

.......

.......

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

19

Definition. A complete, non-compact Rieman-nian n-manifold (Mn, g) is called asymptoticallyEuclidean (AE) if there is a compact set K ⊂Msuch that each “end” component of is diffeo-morphic to Rn −Dn in such a manner that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.......

.......

.......

.......

.......

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................

.................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

......................................................................................................

...............................................................

.......................................

..................

.....................

.........................

..............................

.......................................

...........................................................

.............................................................................................................................................................................................................................................................................................................................

............................. ...........

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

20

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(R

n −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

21

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(R

n −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

22

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(R

n −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

23

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(Rn −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.................................................................................................................................................

........................................................

...................................................................................................................................

........................................................

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.................................................................

......................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

.............................

................................................

................................................................................................................................................................................................................................... .......

....

24

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(Rn −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.................................................................................................................................................

........................................................

...................................................................................................................................

........................................................

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.................................................................

......................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

.............................

................................................

................................................................................................................................................................................................................................... .......

....

25

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(Rn −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.....................................................................................................................................................................................

.

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

...................................

....................

.....................

.......................

..........................

.............................

.................................

........................................

.................................................

.......................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................. ...........

26

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(Rn −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.................................................................................................................................................

........................................................

...................................................................................................................................

........................................................

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.................................................................

......................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

.............................

................................................

................................................................................................................................................................................................................................... .......

....

27

Definition. Complete, non-compact n-manifold(Mn, g) is asymptotically locally Euclidean (ALE)if ∃ compact set K ⊂ M such that M − K ≈∐i(Rn −Dn)/Γi, where Γi ⊂ SO(n), such that

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

............................

............................

............................

............................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.................................................................................................................................................

........................................................

...................................................................................................................................

........................................................

............................

............................

............................

............................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.......................................

.......................................

................................................................................. .....................................................

.................................................................

......................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

..................................

.............................

.............................

..................................

........

..........................

..................................................

.....................

...............................

.............................

................................................

................................................................................................................................................................................................................................... .......

....

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

28

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

29

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

30

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

31

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

32

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

33

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

34

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

35

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

36

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

37

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

38

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Seems to depend on choice of coordinates!

39

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

40

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik/Chrusciel (1986): With weak fall-offconditions, the mass is well-defined & coordinateindependent.

41

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik/Chrusciel (1986): With weak fall-offconditions, the mass is well-defined & coordinateindependent.

42

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

gjk = δjk + O(|x|1−n2−ε)

gjk,` = O(|x|−n2−ε), s ∈ L1

43

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik/Chrusciel (1986): With weak fall-offconditions, the mass is well-defined & coordinateindependent.

44

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik/Chrusciel (1986): With weak fall-offconditions, the mass is well-defined & coordinateindependent.

45

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Chrusciel-type fall-off:

gjk − δjk ∈ C1−τ , τ >

n− 2

2

46

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik-type fall-off:

gjk − δjk ∈ W2,q−τ , τ >

n− 2

2, q > n

47

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik-type fall-off =⇒

gjk − δjk ∈ C1,α−τ , τ >

n− 2

2.

48

Definition. The mass (at a given end) of anALE n-manifold is defined to be

m(M, g) := lim%→∞

Γ(n2)

4(n− 1)πn/2

∫Σ(%)

[gij,i − gii,j

]νjαE

where

• Σ(%) ≈ Sn−1/Γi is given by |~x| = %;

• ν is the outpointing Euclidean unit normal;and

• αE is the volume (n− 1)-from induced by theEuclidean metric.

Bartnik/Chrusciel (1986): With weak fall-offconditions, the mass is well-defined & coordinateindependent.

49

Motivation:

50

Motivation:

When n = 3, ADM mass in general relativity.

51

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

52

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

53

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

54

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0hypersurface in (n + 1)-dimensional Schwarzschild

55

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0hypersurface in (n + 1)-dimensional Schwarzschild

g = −(

1− 2m%n−2

)dt2+

(1− 2m

%n−2

)−1

d%2+%2hSn−1

56

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0hypersurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

57

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0hypersurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2⊂ C2 × CP1

58

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0hypersurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2 ⊂ C2×CP1

59

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

60

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0 hy-persurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2 ⊂ C2×CP1

61

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0 hy-persurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2 ⊂ C2×CP1

62

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0 hy-persurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2 ⊂ C2×CP1:

ω =i

2∂∂ [u + 3m log u] , u = |z1|2 + |z2|2

63

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0 hy-persurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2 ⊂ C2×CP1:

ω =i

2∂∂ [u + 3m log u] , u = |z1|2 + |z2|2

64

Motivation:

When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of thegravitational field far from an isolated source.

In any dimension, reproduces “mass” of t = 0 hy-persurface in (n + 1)-dimensional Schwarzschild

g =

(1− 2m

%n−2

)−1

d%2+%2hSn−1

Scalar-flat-Kahler Burns metric on C2 ⊂ C2×CP1:

ω =i

2∂∂ [u + 3m log u] , u = |z1|2 + |z2|2

also has mass m .

65

Positive Mass Conjecture:

66

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

67

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

68

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

69

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Physical intuition:

70

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Physical intuition:

Local matter density ≥ 0 =⇒ total mass ≥ 0.

71

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Physical intuition:

Local matter density ≥ 0 =⇒ total mass ≥ 0.

72

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

73

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

74

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

75

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

76

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n.)

77

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

78

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

79

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

80

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

L 1986:

81

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

L 1986:

ALE counter-examples.

82

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

L 1986:

ALE counter-examples.

Scalar-flat Kahler metrics

83

Positive Mass Conjecture:

Any AE manifold with s ≥ 0 has m ≥ 0.

Schoen-Yau 1979:

Proved in dimension n ≤ 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

L 1986:

ALE counter-examples.

Scalar-flat Kahler metrics

on line bundles L→ CP1 of Chern-class ≤ −3.

84

Mass of ALE Kahler manifolds?

85

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

86

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

87

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

88

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

89

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

90

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

n = 2m ≥ 4

91

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Several different proofs are known.

92

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Several different proofs are known.

Several are anlaytic:

93

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Several different proofs are known.

Several are anlaytic:

each end is pseudo-convex at infinity.

94

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Several different proofs are known.

Several are anlaytic:

each end is pseudo-convex at infinity.

Another is more topological:

95

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Several different proofs are known.

Several are anlaytic:

each end is pseudo-convex at infinity.

Another is more topological:

intersection form on H2 of compactification.

96

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

97

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Upshot:

98

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Upshot:

Mass of an ALE Kahler manifold is unambiguous.

99

Mass of ALE Kahler manifolds?

Scalar-flat Kahler case?

Lemma. Any ALE Kahler manifold has onlyone end.

Upshot:

Mass of an ALE Kahler manifold is unambiguous.

Does not depend on the choice of an end!

100

We begin with the scalar-flat Kahler case.

101

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

102

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

103

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

104

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

105

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

106

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

That is, m(M, g, J) is completely determined by

107

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

That is, m(M, g, J) is completely determined by

108

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

That is, m(M, g, J) is completely determined by

• the smooth manifold M ,

109

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

That is, m(M, g, J) is completely determined by

• the smooth manifold M ,

• the first Chern class c1 = c1(M,J) ∈ H2(M)of the complex structure, and

110

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

That is, m(M, g, J) is completely determined by

• the smooth manifold M ,

• the first Chern class c1 = c1(M,J) ∈ H2(M)of the complex structure, and

• the Kahler class [ω] ∈ H2(M) of the metric.

111

We begin with the scalar-flat Kahler case.

Theorem A. The mass of an ALE scalar-flatKahler manifold is a topological invariant.

That is, m(M, g, J) is completely determined by

• the smooth manifold M ,

• the first Chern class c1 = c1(M,J) ∈ H2(M)of the complex structure, and

• the Kahler class [ω] ∈ H2(M) of the metric.

In fact, we will see that there is an explicit formulafor the mass in terms of these data!

112

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

113

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

114

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

115

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

116

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

117

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

118

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

119

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

120

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

121

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

122

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

123

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

124

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

125

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

126

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

127

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

128

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

129

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

130

The explicit formula reproduces the mass in caseswhere it previously had been laboriously computedfrom the definition. But it also allows one to quicklyread it off quite generally.

For example, the mass is zero for an ALE Ricci-flatKahler manifold. Arezzo asked whether, conversely,an ALE scalar-flat Kahler manifold with zero massmust be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-ical types of ALE scalar-flat Kahler surfaces thathave zero mass, but are not Ricci-flat.

(Discovered independently by Rollin, Singer, & Suvaina,using different methods.)

131

Explicit formula depends on a topological fact:

132

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. x Then the natural map

133

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. x Then the natural map

134

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

135

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

136

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

137

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

138

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Here

Hpc (M) :=

ker d : Epc (M)→ Ep+1c (M)

dEp−1c (M)

139

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Here

Hpc (M) :=

ker d : Epc (M)→ Ep+1c (M)

dEp−1c (M)

where

Epc (M) := {Smooth, compactly supported p-forms on M}.

140

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

141

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

If just one end:

142

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

If just one end:

Compactify M as M = M ∪ (Sn−1/Γ).

143

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

If just one end:

Compactify M as M = M ∪ (Sn−1/Γ).

Then Hpc (M) = Hp(M,∂M).

144

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

If just one end:

Compactify M as M = M ∪ (Sn−1/Γ).

Then Hpc (M) = Hp(M,∂M).

Exact sequence of pair:

145

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

If just one end:

Compactify M as M = M ∪ (Sn−1/Γ).

Then Hpc (M) = Hp(M,∂M).

Exact sequence of pair:

H1(∂M)→ H2(M,∂M)→ H2(M)→ H2(∂M)

146

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

If just one end:

Compactify M as M = M ∪ (Sn−1/Γ).

Then Hpc (M) = Hp(M,∂M).

Exact sequence of pair:

H1(Sn−1/Γ)→ H2c (M)→ H2(M)→ H2(Sn−1/Γ)

147

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

148

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

149

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

150

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

151

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

♣ : H2dR(M)→ H2

c (M)

152

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

♣ : H2dR(M)→ H2

c (M)

to denote the inverse of the natural map

153

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

♣ : H2dR(M)→ H2

c (M)

to denote the inverse of the natural map

H2c (M)→ H2

dR(M)

induced by the inclusion of compactly supportedsmooth forms into all forms.

154

Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of realdimension n ≥ 4. Then the natural map

H2c (M)→ H2

dR(M)

is an isomorphism.

Definition. If (M, g, J) is any ALE Kahler man-ifold, we will use

♣ : H2dR(M)→ H2

c (M)

to denote the inverse of the natural map

H2c (M)→ H2

dR(M)

induced by the inclusion of compactly supportedsmooth forms into all forms.

155

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

156

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)ofcomplex dimension m has mass given by

157

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

158

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

159

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

160

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

161

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

162

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

163

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

164

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

where

165

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

where

• s = scalar curvature;

166

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

where

• s = scalar curvature;

• dµ = metric volume form;

167

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

where

• s = scalar curvature;

• dµ = metric volume form;

• c1 = c1(M,J) ∈ H2(M) is first Chern class;

168

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

where

• s = scalar curvature;

• dµ = metric volume form;

• c1 = c1(M,J) ∈ H2(M) is first Chern class;

• [ω] ∈ H2(M) is Kahler class of (g, J); and

169

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

where

• s = scalar curvature;

• dµ = metric volume form;

• c1 = c1(M,J) ∈ H2(M) is first Chern class;

• [ω] ∈ H2(M) is Kahler class of (g, J); and

• 〈 , 〉 is pairing between H2c (M) and H2m−2(M).

170

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

171

4πm(2m−1)(m−1)!

m(M, g) = − 4π(m−1)!

〈♣(c1), [ω]m−1〉+∫Msgdµg

172

For a compact Kahler manifold (M2m, g, J),

∫Msgdµg =

(m− 1)!〈c1, [ω]m−1〉

173

For a compact Kahler manifold (M2m, g, J),

0 = − 4π

(m− 1)!〈c1, [ω]m−1〉 +

∫Msgdµg

174

For an ALE Kahler manifold (M2m, g, J),

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

175

For an ALE Kahler manifold (M2m, g, J),

4πm(2m−1)(m−1)!

m(M, g) = − 4π(m−1)!

〈♣(c1), [ω]m−1〉+∫Msgdµg

So the mass is a “boundary correction” to the topo-logical formula for the total scalar curvature.

176

We can now state our mass formula:

Theorem C. Any ALE Kahler manifold (M, g, J)of complex dimension m has mass given by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

177

We can now state our mass formula:

Corollary. Any ALE scalar-flat Kahler mani-fold (M, g, J) of complex dimension m has massgiven by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

.

178

We can now state our mass formula:

Corollary. Any ALE scalar-flat Kahler mani-fold (M, g, J) of complex dimension m has massgiven by

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

.

So Theorem A is an immediate consequence!

179

Rough Idea of Proof:

180

Rough Idea of Proof:

Special Case: Suppose

181

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

182

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

183

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

• Complex structure J standard at infinity:

184

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

• Complex structure J standard at infinity:

(M −K, J) ≈bih (C2 −B4)/Γ.

185

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

• Complex structure J standard at infinity:

(M −K, J) ≈bih (C2 −B4)/Γ.

Since g is Kahler, the complex coordinates

186

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

• Complex structure J standard at infinity:

(M −K, J) ≈bih (C2 −B4)/Γ.

Since g is Kahler, the complex coordinates

(z1, z2) = (x1 + ix2, x3 + ix4)

are harmonic. So xj are harmonic, too, and

187

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

• Complex structure J standard at infinity:

(M −K, J) ≈bih (C2 −B4)/Γ.

Since g is Kahler, the complex coordinates

(z1, z2) = (x1 + ix2, x3 + ix4)

are harmonic. So xj are harmonic, too, and

188

Rough Idea of Proof:

Special Case: Suppose

•m = 2, n = 4;

• Scalar flat: s ≡ 0; and

• Complex structure J standard at infinity:

(M −K, J) ≈bih (C2 −B4)/Γ.

Since g is Kahler, the complex coordinates

(z1, z2) = (x1 + ix2, x3 + ix4)

are harmonic. So xj are harmonic, too, and

gjk(gj`,k − gjk,`

)ν`αE = −?d log

(√det g

)+O(%−3−ε).

189

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

190

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

Now set θ = i2(∂ − ∂)

(log√

det g), so that

191

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

Now set θ = i2(∂ − ∂)

(log√

det g), so that

ρ = dθ

is Ricci form, and

192

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

Now set θ = i2(∂ − ∂)

(log√

det g), so that

ρ = dθ

is Ricci form, and

−?d log(√

det g)

= 2 θ ∧ ω.

193

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

Now set θ = i2(∂ − ∂)

(log√

det g), so that

ρ = dθ

is Ricci form, and

−?d log(√

det g)

= 2 θ ∧ ω.Thus

m(M, g) = − lim%→∞

1

6π2

∫S%/Γ

θ ∧ ω

194

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

Now set θ = i2(∂ − ∂)

(log√

det g), so that

ρ = dθ

is Ricci form, and

−?d log(√

det g)

= 2 θ ∧ ω.Thus

m(M, g) = − lim%→∞

1

6π2

∫S%/Γ

θ ∧ ω

However, since s = 0,

d(θ ∧ ω) = ρ ∧ ω =s

4ω2 = 0.

195

m(M, g) = − lim%→∞

1

12π2

∫S%/Γ

? d(

log√

det g)

Now set θ = i2(∂ − ∂)

(log√

det g), so that

ρ = dθ

is Ricci form, and

−?d log(√

det g)

= 2 θ ∧ ω.Thus

m(M, g) = − 1

6π2

∫S%/Γ

θ ∧ ω

196

Let f : M → R be smooth cut-off function:

197

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

............................................................................................

...........................................................................................

198

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

............................................................................................

...........................................................................................

199

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

............................................................................................

...........................................................................................

200

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

“end”

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.

..........................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................

...........................................................................................

201

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

“end”

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.

..........................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................

...........................................................................................

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................

..................................

..................................

..................................................

.....................

...............................

202

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

............................................................................................

...........................................................................................

203

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

M%

%

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..........................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.....

............................................................................................

...........................................................................................

204

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

radius

M%

%

1

.............................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..........................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.....

............................................................................................

...........................................................................................

.........................................................................

.........................................................................

......................................................................................................................................................................................................................................................

......................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

205

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

206

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

207

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

Compactly supported, because dθ = ρ near infinity.

208

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

209

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 =

∫Mψ ∧ ω

210

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 =

∫M%

ψ ∧ ω

where M% defined by radius ≤ %.

211

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 =

∫M%

ψ ∧ ω

212

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 =

∫M%

[ρ− d(fθ)] ∧ ω

213

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫M%

d(fθ ∧ ω)

because scalar-flat =⇒ ρ ∧ ω = 0.

214

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫M%

d(fθ ∧ ω)

215

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫∂M%

fθ ∧ ω

by Stokes’ theorem.

216

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫∂M%

θ ∧ ω

by Stokes’ theorem.

217

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫S%/Γ

θ ∧ ω

by Stokes’ theorem.

218

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫S%/Γ

θ ∧ ω

by Stokes’ theorem.

219

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫S%/Γ

θ ∧ ω

by Stokes’ theorem.

So

m(M, g) = − 1

6π2

∫S%/Γ

θ ∧ ω

220

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫S%/Γ

θ ∧ ω

by Stokes’ theorem.

So

m(M, g) = − 1

3π〈♣(c1), ω〉

221

Let f : M → R be smooth cut-off function:≡ 0 away from end,≡ 1 near infinity.

Set

ψ := ρ− d(fθ)

[ψ] = ♣([ρ]) = 2π♣(c1) ∈ H2c (M)

〈2π♣(c1), ω〉 = −∫S%/Γ

θ ∧ ω

by Stokes’ theorem.

So

m(M, g) = − 1

3π〈♣(c1), ω〉

as claimed.

222

We assumed:

223

We assumed:

•m = 2;

• s ≡ 0; and

• Complex structure J standard at infinity.

224

General case:

225

General case:

•General m ≥ 2: straightforward. . .

226

General case:

•General m ≥ 2: straightforward. . .

227

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

228

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

229

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

230

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

231

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

The last point is serious.

232

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

Example: Eguchi-Hanson.

233

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

Example: Eguchi-Hanson.

.....................

......................................................................................................................................................................................................................................................................................................................................................................................................

..................

....................................................................................................................................................................................................

...................

.................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................

...............................................................................................

234

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

Example: Eguchi-Hanson.

.....................................................................................................................................................

.......

..................

.............................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................

............................................................................................................................................................................................................................................

..........................

.......

...................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................... .............

.....................................................................................................................

........

235

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

Example: Eguchi-Hanson.

.....................

......................................................................................................................................................................................................................................................................................................................................................................................................

..................

....................................................................................................................................................................................................

...................

.................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................

...............................................................................................

236

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

Example: Eguchi-Hanson.

.....................................................................................................................................................

.......

..................

.............................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................

............................................................................................................................................................................................................................................

..........................

.......

...................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................... .............

.....................................................................................................................

........

237

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

One argument proceeds by osculation:

238

General case:

•General m ≥ 2: straightforward. . .

• s 6= 0, compensate by adding∫s dµ. . .

• If m > 2, J is always standard at infinity.

• If m = 2 and AE, J is still standard at infinity.

• If m = 2 and ALE, J can be non-standard at∞.

One argument proceeds by osculation:

J = J0 + O(%−3), OJ = O(%−4)

in suitable asymptotic coordinates adapted to g.

239

To understand J at infinity:

240

To understand J at infinity:

Let M∞ be universal over of end M∞.

241

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

242

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

243

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

Belongs to m-dimensional family of hypersurfaces.

244

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries O projective structure

245

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries O projective structure

with many totally geodesic hypersurfaces.

246

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries O projective structure

with many totally geodesic hypersurfaces.

So flat if m ≥ 3.

247

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries O projective structure

with many totally geodesic hypersurfaces.

So flat if m ≥ 3.

When m = 2, Cotton tensor may be non-zero,

248

To understand J at infinity:

Let M∞ be universal over of end M∞.

Cap off M∞ by adding CPm−1 at infinity.

Added hypersurface CPm−1 has normal bundleO(1).

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries O projective structure

with many totally geodesic hypersurfaces.

So flat if m ≥ 3.

When m = 2, Cotton tensor may be non-zero,

but ‘‘flatter” than might naively expect.

249

To understand J at infinity:

250

To understand J at infinity:

AE case:

Compactify M itself by adding CPm−1 at infinity.

251

To understand J at infinity:

AE case:

Compactify M itself by adding CPm−1 at infinity.

Linear system of CPm−1 gives holomorphic map

M → CPmwhich is biholomorphism near CPm−1.

252

To understand J at infinity:

AE case:

Compactify M itself by adding CPm−1 at infinity.

Linear system of CPm−1 gives holomorphic map

M → CPmwhich is biholomorphism near CPm−1.

Thus obtain holomorphic map

Φ : M → Cm

which is biholomorphism near infinity.

253

To understand J at infinity:

AE case:

Compactify M itself by adding CPm−1 at infinity.

Linear system of CPm−1 gives holomorphic map

M → CPmwhich is biholomorphism near CPm−1.

Thus obtain holomorphic map

Φ : M → Cm

which is biholomorphism near infinity.

This has some interesting consequences. . .

254

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

255

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

256

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

257

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

258

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

AE & Kahler & s ≥ 0 =⇒ m(M, g) ≥ 0.

259

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

AE & Kahler & s ≥ 0 =⇒ m(M, g) ≥ 0.

Moreover, m = 0 ⇐⇒

260

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

AE & Kahler & s ≥ 0 =⇒ m(M, g) ≥ 0.

Moreover, m = 0⇐⇒ (M, g) is Euclidean space.

261

Theorem D (Positive Mass Theorem). Any AEKahler manifold with non-negative scalar curva-ture has non-negative mass:

AE & Kahler & s ≥ 0 =⇒ m(M, g) ≥ 0.

Moreover, m = 0⇐⇒ (M, g) is Euclidean space.

Proof actually shows something stronger!

262

Theorem E (Penrose Inequality). Let (M, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

263

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

264

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

265

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

266

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

267

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

268

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

269

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

270

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

271

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑njVol (Dj)

272

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑njVol (Dj)

273

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑njVol (Dj)

274

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑njVol (Dj)

with = ⇐⇒

275

Theorem E (Penrose Inequality). Let (M2m, g, J)be an AE Kahler manifold with scalar curvatures ≥ 0. Then (M,J) carries a canonical divisorD that is expressed as a sum

∑jnjDj of com-

pact complex hypersurfaces with positive integercoefficients, with the property that

⋃jDj 6= ∅

whenever (M,J) 6= Cm. In terms of this divi-sor, we then have

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑njVol (Dj)

with = ⇐⇒ (M, g, J) is scalar-flat Kahler.

276

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

277

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

278

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

of the canonical line bundle which vanishes exactlyat the critical points of Φ.

279

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

of the canonical line bundle which vanishes exactlyat the critical points of Φ.

280

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

of the canonical line bundle which vanishes exactlyat the critical points of Φ.

The zero set of ϕ, counted with multiplicities, givesus a canonical divisor

281

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

of the canonical line bundle which vanishes exactlyat the critical points of Φ.

The zero set of ϕ, counted with multiplicities, givesus a canonical divisor

D =∑

njDj

282

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

of the canonical line bundle which vanishes exactlyat the critical points of Φ.

The zero set of ϕ, counted with multiplicities, givesus a canonical divisor

D =∑

njDj

and

−〈♣(c1),ωm−1

(m− 1)!〉 =

∑njVol (Dj)

283

This follows from existence of a holomorphic map

Φ : M → Cm

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

ϕ = Φ∗dz1 ∧ · · · ∧ dzm

of the canonical line bundle which vanishes exactlyat the critical points of Φ.

The zero set of ϕ, counted with multiplicities, givesus a canonical divisor

D =∑

njDj

and

−〈♣(c1),ωm−1

(m− 1)!〉 =

∑njVol (Dj)

so the mass formula implies the claim.

284

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

285

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

286

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

287

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

288

m(M, g) = −〈♣(c1), [ω]m−1〉(2m− 1)πm−1

+(m− 1)!

4(2m− 1)πm

∫Msgdµg

...............................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................. .....................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................................

.....................

...............................

289