215
Secţiunea a IV-a ŢESĂTORIE

Manualul inginerului textilist

Embed Size (px)

DESCRIPTION

Cap IV 1-7

Citation preview

Page 1: Manualul inginerului textilist

Secţiunea a IV-a

ŢESĂTORIE

Page 2: Manualul inginerului textilist

Colectivul de autori:

Prof.dr.ing. DUMITRU LIUŢE: cap. IV.1–IV.7 Conf.dr.ing. IOAN IACOB: colaborare la cap. IV.1.5 Şef.lucr.dr.ing. DANIELA LIUŢE: colaborare la cap. IV.4 Prof.dr.ing. MIHAI CIOCOIU: cap. IV.8 Conf.dr.ing. IOAN CIOARĂ: cap. IV.8 Prof.dr.ing. DANIEL CHINCIU Conf.dr.ing. LUCICA CIOARĂ cap. IV.9–IV.13 Şef.lucr.dr.ing. IRINA CRISTIAN

Revizie tehnico-ştiinţifică: Expert.cons.dr.ing. LIVIU CĂLIN: cap. IV.1–IV.13

Page 3: Manualul inginerului textilist

IV.1 BOBINAREA FIRELOR

Bobinarea este operaţia tehnologică de prelucrare a firelor pentru obţinerea bobinelor.

Pe maşinile de bobinat au loc următoarele procese: desfăşurarea firelor de pe formatele de alimentare, tensionarea firelor prin frânele de fir, curăţirea firelor de impurităţi şi defecte, înfăşurarea firelor pe bobine.

IV.1.1. Condiţiile de echilibru şi tensiunea firului în punctul

de desfăşurare prin tragere axială Pentru asigurarea unor desfăşurări echilibrate, fără alunecarea mai multor spire deodată

sau a unui strat întreg, trebuie îndeplinite anumite condiţii privind forma suprafeţei de desfăşurare şi a curbei spirei firului (condiţia formei), şi anumite condiţii privind tensiunea firului în spirele supuse desfăşurării (condiţia tensiunilor). Condiţia formei şi condiţia ten-siunilor se realizează în procesul de înfăşurare, constituind şi condiţiile de echilibru ale înfăşurării, dar se manifestă ca efect în procesul de desfăşurare.

Pe baza echilibrului tensiunilor TT T dşi + a reacţiunii sRd , cu componentele sale d şi dN s F s (fig. IV.1.1) ce acţionează asupra elementului de spiră ds, aflat în proces de

desfăşurare (înfăşurare), condiţia formei pentru desfăşurarea echilibrată a spirelor se poate preciza prin relaţiile [ ]54[],5[],78 :

, ;sin tg;sintgtg ε≤θγµ=θ= γεθ (IV.1.1)

unde: θ reprezintă unghiul dintre normala principală la curba firului υ şi normala n la supra-faţa de desfăşurare, numit şi unghi de înclinare geodezică;

ε – unghiul dintre reacţiunea R a suprafeţei şi componenta N normală la suprafaţă, numit şi unghi de frecare (tg )µ=ε ;

γ – unghiul dintre componenta dF s a reacţiunii dR s , tangentă la suprafaţa de desfăşurare, şi tangenta τ la curba spirei firului în punctul A;

µ – coeficient de frecare dintre fir şi suprafaţa de desfăşurare. Unghiul de înclinare geodezică este dependent de toţi factorii care determină coefi-

cientul de frecare fir–fir. Desfăşurarea firului de pe ţevile de alimentare, realizate prin depunerea spirelor cu diverse unghiuri θ , va conduce la un număr diferit de alunecări de spire şi ruperi la desfăşurarea prin tragerea axială (tabelul IV.1.1) [5], [6].

Page 4: Manualul inginerului textilist

1134 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.1. Elemente geometrice şi forţe în punctul de desfăşurare.

Tabelul IV.1.1

Influenţa unghiurilor θ şi β asupra alunecărilor de spire (fir 29,5 tex)

Unghiul θ

Unghiul conicităţii,

β

Densitatea ţevii, ρ (g/cm3)

Alunecări de spire

Unghiul θ

Unghiul conicităţii,

β

Densitatea ţevii, ρ (g/cm3)

Alunecări de spire

12°20' 9°20 0,491 0 14° 10° 0,485 3

13°40' 10°40 0,860 2 15°20' 11°20' 0,489 2

15° 12° 0,483 7 16°40' 12°40' 0,476 12

16°20' 13°20' 0,482 7 18° 14° 0,475 29

17°40' 14°40' 0,475 15 19°20' 15°20' 0,470 78

19° 16' 0,471 37 20°40' 16°40' 0,467 127

La β = arctgµ , echilibrul forţelor spirelor pe suprafaţa de desfăşurare nu mai este

posibilă. Pentru asigurarea unor condiţii bune de desfăşurare trebuie satisfăcută condiţia: µ=ε≤θ≤β arctg . Pentru fire din bumbac, 024,4critic =θ , unghi ce trebuie evitat; valorile

reale trebuie să fie mai mici decât θ critic. Condiţia formei se poate reflecta mai uşor prin conicitatea β a suprafeţei şi prin unghiul

de înclinare α al spirelor (1/2 din unghiul de încrucişare). Relaţiile dintre βθ, şi α sunt [ ]5[],78 :

α−

αθ=β 2cos2

cos tgtg , pentru spire cu pas constant; (IV.1.2)

αθ=β cos tgtg , pentru fire cu α constant. (IV.1.3) Coeficientul de frecare µ depinde de natura firelor şi de auxiliarii chimici de filare şi

poate avea diverse valori: µ = 0,40–0,55 la bumbac pe bumbac; µ = 0,45–0,65 la in pe in;

Page 5: Manualul inginerului textilist

Bobinarea firelor 1135

µ = 0,33–0,70 la lână pe lână; µ = 0,25–0,35 la filament pe filament tip mătase etc. Rezultă necesitatea alegerii unghiurilor α şi β în funcţie de natura materiei prime.

La desfăşurarea de pe ţevile de la maşina de filat, influenţa unghiului α se va evidenţia mai des, prin influenţa lungimii firului din stratul de umplere şi separaţie (lus). La acelaşi tip de fir şi aceeaşi conicitate a suprafeţei, creşterea lungimii lus (micşorarea pasului spirelor h şi a unghiuluiα ) conduce la creşterea numărului de ruperi din cauza alunecărilor de spire (tabelul IV.1.2) [ ]5 .

Tabelul IV.1.2

Ruperi provocate de alunecările de spire la bobinarea firului 29,4 tex cu viteza de 1000 m/min, la diferite valori lus

Conicitatea β

Densitatea, ρ (g/cm3)

Ruperi la 1 kg de fir bobinat, din cauza alunecărilor de spire, la diferite valori lus (m)

2,44 3,04 3,76 4,64 5,70 7,16

15°10' 0,55 13,7 21,4 – 128,5 244 –

12°30' 0,55 0 0 1,8 48 88,8 171,5

14° 0,53 8,1 22,7 36,3 106,3 186,3 204,5

15°40' 0,55 – 1,0 23,1 35,2 99,3 118,7

13°10' 0,51 – 0 2,1 2,1 7,0 12,5

10°55' 0,51 – 0 – 0 – 1,2

Conicitatea suprafeţei de desfăşurare, în cazul ţevilor de la filare, exprimată prin raportul

dintre înălţimea hc a conului şi diametrul D al ţevii ,⎟⎠⎞

⎜⎝⎛

Dhc se reflectă în condiţia formei pentru

echilibrul spirelor, tot prin alunecări de spire şi ruperi. Creşterea raportului Dhc în anumite

limite contribuie la micşorarea ruperilor (tabelul IV.1.3 [ ]5 , pentru fire din bumbac bobinate la 750 m/min).

Tabelul IV.1.3

Ruperi în funcţie de raportul hc/D

Tt (tex) Ruperi pe cauze Ruperi (%) faţă de ruperile la hc/D = 1 considerate 100%, la valori hc/D

egale cu:

1,00 1,10 1,14 1,19 1,22 1,27 1,29 1,34

41,7 Totale 100 – – 55,8 – – 33,0 0

Alunecări spire 94 – – 18,8 – – 18,8 –

25 Totale 100 120 121 62 – – – –

Alunecări spire 99 116 125 59,2 – – – –

18,5 Totale 100 31,6 – – 49,0 50,6 – 52,5

Alunecări spire 58 0 – – 7,9 3,0 – 1,7

Page 6: Manualul inginerului textilist

1136 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

A doua condiţie de asigurare a echilibrului la desfăşurare, cea a tensiunilor, se exprimă

prin relaţiile [ ]78 :

T0 ≤ T ≤ T0 eϕ−∫

ϕdtgcos

0

22 θµθ

, (IV.1.4)

sau la limită: ,e0ϕ≤≤≤ µ

go TTTT unde: T0 reprezintă tensiunea firului în spira aflată pe suprafaţa de desfăşurare;

T – tensiunea firului în punctul de începere a mişcării sale pentru desprindere; ϕ – unghiul subîntins la centru de segmentul de spiră aflat în mişcare pe suprafaţa de

desfăşurare, înainte de desprindere; Tg – tensiunea în fir, când spira s-a aşezat de-a lungul curbei geodezice, adică la θ = 0. Cu cât tensiunea To este mai mare, cu atât şi tensiunea T, necesară pentru scoaterea

spirei din repaus, va fi mai mare, iar stabilitatea spirelor la desfăşurare mai bine asigurată. Pentru aprecierea practică a tensiunii asupra echilibrului spirelor se va folosi densitatea formatului de desfăşurare. La densităţi mari, obţinute la valori mari ale tensiunii To, condiţia tensiunii pentru echilibrul spirelor va fi mai bine asigurată, iar ruperile din cauza alunecărilor spirelor vor fi mai mici (tabelul IV.1.4) [ ]5 . Desfăşurările de pe ţevi, bobine, canete etc., cu densităţi prea mici vor prezenta dificultăţi de desfăşurare.

Tabelul IV.1.4

Influenţa densităţii asupra ruperilor

Densitatea ţevii de desfăşurare, ρ (g/cm3) 0,43 0,55 0,63

Ruperi pe 1 kg de fir bobinat (29,4 tex) din cauza alunecărilor de spire 118 1,8 0

În punctul de desfăşurare, prin tragere axială pe de suprafeţe conice fixe, firul capătă o

viteză şi o tensiune care depind de mai mulţi factori. Viteza unghiulară de rotaţie a punctului de desfăşurare în jurul axei suprafeţei fixe se calculează cu relaţia [54], [60]:

)cos cos1(

sin 2,1 δβ±

δ=ω

x

a

Rv , (IV.1.5)

unde: 2,1ω este viteza unghiulară de rotaţie în jurul axei suprafeţei de desfăşurare, respectiv viteza unghiulară a firului în balonul de desfăşurare, în punctul de desprindere de pe suprafaţă;

va – viteza axială a firului (viteza de bobinare); δ – unghiul dintre spiră şi generatoarea suprafeţei de desfăşurare. Viteza unghiulară ω1,2 variază ciclic, în funcţie de variaţia razei Rx, între raza vârfului

conului de desfăşurare Rv şi raza bazei conului de desfăşurare Rb. Semnul + se foloseşte la stratul cu acelaşi sens de golire cu viteza va, iar semnul – la stratul cu sens contrar de golire faţă de viteza va. La bobinarea de pe ţevi de filare cu 08060−=δ , raportul vitezelor la golirea straturilor de umplere ωu şi cele de separaţie ωs poate fi [ ]5 :

3...4,1coscos1coscos1

=δβ−δβ+

=ωω

s

u .

Viteza absolută a firului, v1,2, tangentă la curba firului în punctul de desfăşurare, se calculează cu relaţia:

Page 7: Manualul inginerului textilist

Bobinarea firelor 1137

δβ±

=cos cos1

22,1

avv . (IV.1.6)

Semnul + se foloseşte pentru stratul golit în acelaşi sens cu va, iar semnul – pentru stratul golit invers faţă de va.

Tensiunea firului în punctul de desprindere de pe o suprafaţă fixă, prin tragere axială, se calculează cu relaţia:

)cos cos1(10

; cos cos1

6

22

δβ±+=

δβ±+= at

oa

ovTTTvmTT , (IV.1.7)

unde: m reprezintă masa unităţii de lungime a firului, în kg/m, dacă T este în N. Unghiurile δ , realizate la depunerea spirelor în cele două straturi succesive, influen-

ţează tensiunea de desprindere T. Valorile lui δ sub 45° conduc la variaţii mari în tensiunea T. Tensiunea T variază mai mult la desfăşurarea axială de pe bobine la urzire, la canetare sau ţesere. Folosirea unor unghiuri δ diferite în cele două straturi succesive ( 21 δ≠δ ) poate conduce la o uniformizare a tensiunii. Pentru bobine cilindrice, raportul vitezelor ce asigură uniformizarea tensiunii corespunzătoare golirii celor două straturi este:

2cos

2sin

2cos12

cos1

2

1

2

1

2

1

δ

δ

=δ+

δ−

=vv

. (IV.1.8)

Prin alegerea unor valori mici pentru 2δ (straturi golite de la bază spre vârf) se obţine o uniformizare a tensiunii, chiar şi la încrucişări mai puternice ale spirelor în timpul înfăşurării.

IV.1.2. Tensiunea firului în balon şi caracteristicile acestuia

la desfăşurarea axială

Prin rotaţia punctului de desfăşurare în jurul axei suprafeţei de desprindere, curba spaţială a firului capătă o mişcare de rotaţie şi generează un balon de desfăşurare simplu sau multiplu (fig. IV.1.2). Forma curbei firului şi a balonului sunt determinate de forţele din balon, între care şi tensiunea firului (fig. IV.1.3, a).

Raza balonului este determinată de forţa centrifugă elementară dCr, ce acţionează în diferite puncte ale curbei firului, şi care se exprimă prin relaţia:

,)cos cos1(10

sin d ;d d 226

222

δβ±

δ=ω=

x

atrr R

dsrvTCsrmC (IV.1.9)

unde: m reprezintă masa unităţii de lungime a firului, în kg m–1 ⎟⎠⎞

⎜⎝⎛ == 63 1010

1 tTNm

m ;

ω – viteza unghiulară a firului în mişcarea sa de rotaţie în jurul axei ţevii, în s–1; r – raza balonului, în m, în punctul de plasare al elementului ds; Rx – raza suprafeţei de desfăşurare, în m, în punctul de desprindere a firului; ds – lungimea elementului de fir considerat.

Page 8: Manualul inginerului textilist

1138 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

a b

Fig. IV.1.2. Elemente geometrice ale balonului de desfăşurare.

Fig. IV.1.3. Forţe în balonul de desfăşurare.

Forţa centrifugă dCρ = m ω 2ρ ρ ds nu are influenţă hotărâtoare asupra razei balonului.

Deviaţia curbei firului de la forma sa plană şi formarea unor bucle spaţiale este influenţată hotărâtor de forţele elementare Coriolis şi de rezistenţă a aerului.Variaţia acestor forţe de-a lungul curbei firului (fig. IV.1.3, b) rezultă şi din relaţiile: dKr = –2mω v sin )( vω ds ; (IV.1.10)

.)cos cos1( 10

d sin 2d

227

222

δβ±

δ=

x

ar

RNm

srvP (IV.1.11)

Greutatea proprie a elementului dG = mg ds este constantă, dar are o anumită influenţă asupra tensiunilor T T T dşi + ce acţionează asupra elementului de fir din balon.

Dacă prin condiţiile de desfăşurare şi prin compunerea forţelor din balon rezultă o valoare mai mare a tensiunii T a firului, firul se apropie din ce în ce mai mult de o curbă plană, care prin rotire formează balon simplu (fig. IV.1.2, a). La valori mici ale tensiunii T, firul face mai multe bucle elicoidale, care prin rotire formează balon multiplu (fig. IV.1.2, b).

Tensiunea firului variază în orice punct al balonului, iar valoarea din vârful acestuia, la întâlnirea conducătorului de fir, poate fi calculată prin diverse relaţii, ca de exemplu Isacov Macarov [ ]54 sau Walz-Gayler [120], [5]:

Page 9: Manualul inginerului textilist

Bobinarea firelor 1139

2262

222

6

2

)cos cos1( 10 2)(sin

)cos cos1(10

e βδ±

−δ+

βδ±+= ϕµ

x

xatatox R

rRvTvTTT ; (IV.1.12)

222226

222

)1(cos)cos cos1( 10)cos1(sin 2

+γβδ±πγ+δ

=box

oatx NR

vHTT ; (IV.1.13)

2226

2

2

2222

arcsin )cos cos1(10 2

arcsin 20

11sin

⎟⎟⎠

⎞⎜⎜⎝

⎛±πβδ±⋅

⎥⎥⎥

⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛±π+±δ

=

max

xbx

max

xb

xat

x

rR

NR

rR

NH

RvTH

T , (IV.1.14)

unde: T0 reprezintă tensiunea iniţială din spira de desfăşurare, în N (T0 = 1–4 cN, la fire tip bumbac şi lână pieptănată şi T0 = 2–6 cN, la fire tip liberiene sau lână cardată);

µ – coeficient de frecare fir pe fir (µ = 0,3–0,85 la diverse tipuri de fire şi auxiliari chimici de filare);

ϕ – unghiul de cuprindere al suprafeţei de desfăşurare de către firul tras axial, aflat în

mişcare înainte de desprindere (3

22

π−

π=ϕ , la desfăşurarea de pe vârful ţevii, şi

π−π=ϕ 3 , la desfăşurarea de pe piciorul ţevii); va – viteza axială a firului de bobinare, în m/s (va = 400–1500 m/min); Hb – înălţimea balonului de desfăşurare, în m: Hb = (2 – 4)hc, la desfăşurarea vârfului ţevii; Hb = (2 – 4)hc + Hc, la desfăşurarea piciorului ţevii; hc – înălţimea conului de desfăşurare de pe ţeava de alimentare: hc = (0,9 – 1,2)D, unde D este diametrul părţii cilindrice a ţevii; Hc – lungimea părţii cilindrice şi a piciorului ţevii;

oγ – unghiul dintre axa ţevii de desfăşurare şi tangenta la balonul de desfăşurare în punctul de desprindere;

Nb – numărul de bucle în balon (Nb = 2–4 bucle la desfăşurarea vârfului ţevii şi Nb = 1 la desfăşureae piciorului ţevii);

rmax – raza maximă a balonului, în m. Tensiunea firului în balon are o continuă

creştere pe măsura golirii ţevilor de alimentare (fig. IV.1.4). Tensiunea firului, la desfăşurarea piciorului ţevii, devine deosebit de mare la viteze de peste 800 m/min (fig. IV.1.5). Micşorarea ten-siunii la golirea piciorului ţevii se realizează prin utilizarea perturbatorilor de balon, care împiedică formarea balonului simplu la desfăşurarea picio-rului ţevii (fig. IV.1.6), accelerează desfăşurarea prin micşorarea unghiului γ , micşorează alune-cările de spire (tabelul IV.1.5) şi frecările de desfăşurare. Nivelul ruperilor la bobinare scade mult chiar şi la viteze de 1000 m/min (tabelul IV.1.6).

Fig. IV.1.4. Variaţia tensiunii la golirea ţevilor de alimentare.

Page 10: Manualul inginerului textilist

1140 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.5. Tensiunea în funcţie de viteză în diferite zone de golire ale ţevilor.

Fig. IV.1.6. Perturbatori de balon.

Tabelul IV.1.5 Alunecări de spire şi ruperi la bobinare

Viteza de bobinare, v

(m/min)

Numărul de alunecări de spire Ruperi pe 106 m de fir

Fără perturbator Cu ax tangent de perturbare Fără perturbator Cu ax tangent de

perturbare 500 600 800

14 20 143

2 1 11

28 41,5 190,6

15,5 16 49

Page 11: Manualul inginerului textilist

Bobinarea firelor 1141

Tabelul IV.1.6

Ruperi de desfăşurare la bobinarea cu 1000 m/min cu şi fără perturbator

Nr. crt.

Tt (tex)

Număr de ruperi pe 1 kg de fir

Fără perturbator Cu perturbator tubular

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

71,4 41,7 35,7 20,0 17,9 11,1

20 × 2 15,6 × 2 11,1 × 2 10 × 2

15 5,36 25 130 65 31 148 157 153 75

0 0 0 0

1,44 5,76

0 0 0 0

IV.1.3. Desfăşurarea firului prin tragere de pe sculuri

Desfăşurarea de pe sculuri se face prin tragerea firelor de pe vârtelniţă de către organe de tragere sau de înfăşurare. La viteze mici sau la valori constante ale acesteia, vârtelniţa este frânată permanent cu o forţă Ff, care reglează tensiunea T a firului. Tensiunea T a firului desfăşurat de pe vârtelniţă frânată pentru tensionare (fig. IV.1.7) va fi [ ]60 :

α

α⎥⎦

⎤⎢⎣

⎡ α+++

α= 43

222

cos sin

2)cos1(

cos

RvRM

JR

RFT s

off (IV.1.15)

sau:

α

α⎥⎦

⎤⎢⎣

⎡ α+−++

α

µ= 43

2

6

226

cos sin

10 2)cos1( 10(

cos

RvRTLM

JR

RNT tbssi

of (IV.1.16)

unde: N reprezintă forţa de apăsare a sabotului de frânare asupra discului de frânare al vârtelniţei, în N; R şi Rf – raza braţului vârtelniţei, respectiv raza

discului de frânare; α – semiunghiul dintre braţele vârtelniţei; Jo – momentul de inerţie al vârtelniţei, fără scul; Ms şi Msi – masa sculului la un moment dat, respectiv

masa iniţială a sculului, în kg; Lbs – lungimea de fir bobinată de pe un scul la un

moment dat, în m. Tensiunea necesară tehnologic poate fi: T = (0,10–0,25)Sr, la fire filate; T = (0,15–0,3)Sr, la fire filamentare.

unde: Sr reprezintă sarcina de rupere a firului.

Fig. IV.1.7. Desfăşurarea firului de pe scul.

Page 12: Manualul inginerului textilist

1142 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Ca urmare a schimbării punctului de desfăşurare a firului de pe scul, alternativ de

pe braţ sau de pe latura vârtelniţei, tensiunea firului are o variaţie ciclică V, ce se determină cu relaţia:

100 cos

cos1

n

nVπ

π−

= , (IV.1.17)

unde: n reprezintă numărul de braţe ale vârtelniţei;V = 15%, la vârtelniţe cu 6 braţe şi V = 8%, la vârtelniţe cu 8 braţe.

La maşini moderne cu viteze mari de bobinare vârtelniţa se roteşte liber fără frână de tensionare a firului. Se folosesc frâne ale vârtelniţei cu forţe reglabile automat, ce acţionează pentru reducerea turaţiei vârtelniţei şi asigurarea egalităţii între viteza de desfăşurare şi cea de înfăşurare. Tensiunea firului la mersul de regim este:

,cos cos

sin 10 2

)cos1( 10(43

2

6

226

α+

α

α⎥⎦

⎤⎢⎣

⎡ α+−+=

RM

RvRTLM

JT rtbssio (IV.1.18)

unde: Mr – reprezintă momentul ce se opune rotirii vârtelniţei ca urmare a frecării pe fusul vârtelniţei şi a rezistenţei aerului.

În fazele de frânare a vârtelniţei, pentru micşorarea vitezei de desfăşurare de pe scul, şi corelarea sa cu viteza de înfăşurare pe bobina vî, forţa de frânare a vârtelniţei la desfăşurare Ffd (fig. IV.1.7) va fi:

ffvf

dtbssiofd R

TRtRR

vvRTLMJF α

−⎥⎦

⎤⎢⎣

α+−+=

cos cos

10 2

)cos1(10( `6

226. (IV.1.19)

Dacă vârtelniţa trebuie oprită pentru evitarea ruperii firului, adică tfv = tfo şi vî = 0, forţa de frânare pentru oprire, Ffo, va fi:

ffof

dtbssiofo R

TRtRRvRTLM

JF α+

α⎥⎦

⎤⎢⎣

α+−+=

cos cos 10 2

)cos1( 10(6

226, (IV.1.20)

unde, tfv sau tfo reprezintă timpul de frânare al vârtelniţei pentru scăderea vitezei cu valoarea `vvv d −=∆ sau cu valoarea dvv =∆ .

IV.1.4. Tensiunea firului la deplasarea pe ghidaje fixe

şi prin frâne de fir

Ghidajele fixe, cu rol de conducători de fir, au anumite poziţii pe maşină şi au rolul de a schimba traseul tehnologic al firului. Frânele de fir au rolul de a amplifica tensiunea firului până la atingerea valorii necesare tehnologic.

Tensiunea T a firului, la părăsirea unui ghidaj fix, de formă circulară cu raza rc = constant, se calculează cu relaţia:

),1e(

10e

2

6 −⎟⎟

⎞⎜⎜⎝

⎛µµ−

+= ϕµϕµ vraTTT ct

i (IV.1.21)

unde: Ti reprezintă tensiunea firului la intrarea pe conducătorul de fir;

Page 13: Manualul inginerului textilist

Bobinarea firelor 1143

ϕµ şi – coeficientul de frecare al firului şi unghiul de înfăşurare al acestuia pe con-

ducătorul de fir. Coeficientul de frecare depinde de natura firului şi a suprafeţei conducătorului de fir. La

conducătorul de fir din oţel valorile µ pot fi: 0,17–0,24, la fire din bumbac; 0,1–0,17, la fire sintetice; 0,18–0,27, la fire liberiene; 0,17–0,26, la fire din lână.

La pornirea maşinii, sau a unui fus de înfăşurare, tensiunea T atinge valoarea maximă, Tp, ce poate fi calculată cu formula:

),1e(10

e

6 −

µ+= ϕµϕµ cpt

ipraT

TT (IV.1.22)

sau, pentru Ti = 0:

).1e(10

6 −µ

= ϕµcptp

raTT (IV.1.23)

Pentru evitarea supratensionării firelor şi chiar a ruperii lor la pornire, trebuie utilizată o acceleraţie de pornire, ap, cât mai mică, realizabilă prin pornirea lentă a maşinilor, respectiv un timp de pornire, tp, mare. Tensiunea de pornire depinde şi de viteza de regim, v, ce trebuie atinsă. Se poate folosi şi relaţia:

)1e( 10

e 6

−µ

+= ϕµϕµ

p

ctip t

rvTTT . (IV.1.24)

Frânele de fir au o mare diversitate constructivă şi de trasee ale firului printre ele-mentele frânei. Pe baza forţelor ce acţionează pe fir şi a echilibrului momentelor forţelor pentru o frână clasică (fig. IV.1.7), tensiunea firului la ieşirea din frână, Tf, este [31], [32]:

),1e)( (10

)1e()(2

cos e 2

11

6 111 −µ−

µ++

δ+

αµ+= ϕµϕµϕµ vra

TR

RQTT t

t

f

fiff (IV.1.25)

unde: 1 şi µµ reprezintă coeficienţii de frecare dintre fir şi talerul frânei, respectiv tubul central al acesteia;

Tif – tensiunea firului la intrarea în frână, în N; Q –forţa totală de apăsare pe talerul frânei (forţa de greutate a discurilor frânei); Rf – raza talerului la care se exercită apăsarea P asupra firului; δ – dezaxialitatea punctelor de intrare şi ieşire din frână, faţă de centrul acesteia; α – unghiul de înclinare al talerului de presare faţă de cel de reazim, pentru a face loc

firului. La frâne cu trasee mai simple, δ = 0 şi α = 0, şi la neglijarea componentei dinamice,

tensiunea este:

,2

)1e( e

11

+µ+=

ϕµϕµ Q

TT iff (IV.1.26)

iar la fT,0=ϕ este: QTT iff µ+= .

La o suceesiune de două frâne de fir cu talere şi discuri (fig.IV.1.8), tensiunea la ieşirea din frână este:

[ ] ).1e()(2

cos ee

)(2

cos e 21212111

2

2)(

1

1 +δ+

αµ++

δ+

αµ+∑= ϕµϕµϕ+ϕµϕµ

f

f

f

fiff R

RQ

R

RQTT (IV.1.27)

Page 14: Manualul inginerului textilist

1144 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.8. Frână de fir cu talere şi discuri.

Pentru înlăturarea canalelor de uzură pe talere şi discuri, acestea sunt rotite lent, fie de forţa de frecare dintre fir şi aceste elemente, fie de mecanisme specifice. Momentul maxim admis la rotirea de către fir a talerelor, MT, respectiv a tuburilor frânei, Mt, se pot determina cu relaţiile:

Tf

f MR

rRQ≥

δ+

αµ cos , pentru talere şi (IV.1.28)

[ ] tcf

fif Mr

RRQ

T ≥−⎥⎦

⎤⎢⎣

δ+

αµ+ ϕµ 1e

)(2cos 1 pentru tuburi. (IV.1.29)

Dacă forţa Q pentru reglarea frânelor este mică (urzire, canetare etc.) şi nu permite realizarea condiţiilor de mai înainte, se impun mecanisme specifice acestui scop.

Forţa Q de presare pe talerele frânei se poate afla cu relaţiile:

δ+µ

δ+−=

ϕµ

ϕµ

cos)1e(

))(e (2 1

1

f

fiff

R

RTTQ sau (IV.1.30)

)1e(

)e (21

1

−= ϕµ

ϕµiff TT

Q , pentru 0 şi 0 =α=δ . (IV.1.31)

Tensiunea firului la ieşirea din frână, Tf, este un parametru impus de caracteristicile şi destinaţia firului, şi se recomandă a se calcula cu relaţiile:

Tf =(0,07–0,15) Sr, pentru fire tip lână; Tf =(0,10–0,25) Sr, pentru fire tip bumbac,

unde: Sr este sarcina de rupere a firului. La firele tip mătase nu se pot utiliza frâne de fir cu presiune locală şi se folosesc frâne

de fir cu ondulare pe tuburi succesive (fig. IV.1.9). Tensiunea firului la ieşirea din frână va fi:

µ

−∑µ−+∑=

ϕµϕµ

6

2

10)1e)( (

e vraT

TT ctiff , (IV.1.32)

unde: Σϕ reprezintă suma unghiurilor de cuprindere a tuburilor de către fir.

Page 15: Manualul inginerului textilist

Bobinarea firelor 1145

Fig. IV.1.9. Frână de fir cu tuburi succesive.

Valoarea unghiului ϕ se reglează prin mărirea sau micşorarea forţei N de apăsare a grupului de tuburi mobile asupra firului sprijinit pe tuburile fixe. Relaţia dintre N şi ϕ se exprimă prin formula:

[ ] TNNNNNN m mifmm

n

mm

µϕϕµ−

=

=+++==∑ 2)12(2

11 ee

2sin unde ,K şi

[ ] .ee2

sin1

2)12(

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

= ∑=

ϕµϕµ−n

m

m mifTN (IV.1.33)

La ieşirea din frâna cu tuburi succesive, tensiunea Tf a firelor tip mătase se recomandă a avea valorile:

0,2–0,32 cN/den, la viscoză; 0,18–0,28 cN/den, la mătase coproamoniacală; 0,16–0,25 cN/den, la acetat; 0,1–0,15 cN/den, la relon; 0,1–0,2 cN/den, la mătase naturală. La unele fire (viscoză) limitele tensionării maxim admise, de la care încep alungiri mari

peste cele elastice, depind şi de umiditatea firului şi a mediului înconjurător (tabelul IV.1.7) [ ]114 .

Tabelul IV.1.7

Limite admise ale tensionării firelor de viscoză în funcţie de umiditate

Umiditatea relativă

(%)

Tensiuni maxim admise (cN)

Viscoză cu Td (den)

50 75 100 150 200 300 450

60 25 37 50 75 100 150 225

65 25 37 50 75 100 150 225

67,5 20 30 40 60 80 120 180

70 17 26 35 52 70 105 157

75 15 22 30 45 60 90 135

Page 16: Manualul inginerului textilist

1146 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Calitatea unui dispozitiv de frânare, prin ondulare pe tuburi succesive, se apreciază şi

prin instabilitatea I a tensiunii la o anumită viteză, respectiv prin sensibilitatea S a frânării la schimbarea vitezei. Se folosesc relaţiile:

, şi 100 21 mvmv

m

minmax TTST

TTI −=−

=

unde: Tm reprezintă tensiunea medie între valorile maxime şi minime (Tmax şi Tmin);

1mvT şi 2mvT – tensiunea medie la viteza v1 = 1000 m/min şi tensiunea medie la

v2 = 300 m/min. Se apreciază calitatea frânelor ca fiind [114], [60]: – bună, dacă I < 70% şi S < 7 cN/fir; – satisfăcătoare, dacă I = 70–100% şi S = 7–13 cN/fir; – nesatisfăcătoare, dacă I > 100% şi S > 15 cN/fir. IV.1.5. Curăţirea firelor

Curăţirea firelor la bobinare are scopul de a înlătura anumite defecte de filare, impurităţi aderente, noduri mari etc., prin ruperea sau tăierea firului la locul defectului. Dispozitivele de curăţire lucrează pe principii mecanice sau electronice.

IV.1.5.1. Curăţitori mecanici Curăţitorii mecanici elimină anumite categorii de defecte de filare prin ruperea firului

la locul defectului. Dimensiunea fantei f se reglează în funcţie de diametrul d al firului (fig. IV.1.10) pe baza relaţiei:

.)5,25,1( df K= (IV.1.34)

Fig. IV.1.10. Curăţitori cu lamă fixă (a) şi cu lamă oscilantă (b).

Diametrul firului se poate calcula pe baza relaţiilor clasice:

NmCd = sau tTAd = , unde

f

Aρπ

= 1000

2 . (IV.1.35)

Page 17: Manualul inginerului textilist

Bobinarea firelor 1147

Constantele C şi A depind de densitatea firului, iar A are valorile orientative din

tabelul IV.1.8. Tabelul IV.1.8

Valori ale constantei A

Tip fir Fire din bumbac

Fire din bumbac + celo

Fire tip lână cardată

Fire tip lână pieptănată

Fire tip lână cu celo

Fire poliamidice

Constanta A 0,033–0,034 0,0388 0,0427–0,0438 0,0410–0,0434 0,0385–0,0428 0,0474

IV.1.5.2. Curăţitori electronici capacitivi a. Principiul capacitiv de măsurare şi clase de defecte folosite la reglarea cură-

ţitorilor. La curăţitorii capacitivi, lungimea şi grosimea defectului se măsoară indirect de către plăcile paralele ale condensatorilor de măsurare (fig. IV.1.11). Modificarea relativă a capaci-tăţii condensatorului în raport cu masa şi volumul firului analizat este:

)1(

)1(

0

01

0 λ−ε−λ−ελ

=−

=∆

CCC

CC , (IV.1.36)

unde: C0 reprezintă capacitatea condensatorului fără fir (fără dielectric); C1 – capacitatea condensatorului cu fir (cu dielectric); ∆ C – modificarea capacităţii la trecerea firului; λ – gradul de umplere cu fir al condensatorului (fig. IV.1.12.); ε – constanta dielectrică a firului.

Fig. IV.1.11. Principiul curăţitorilor electronici capacitivi: a – schema bloc; b – panou de reglare;

1 – fir; 2 – oscilator de înaltă frecvenţă; 3 – dispozitiv capacitiv de măsurare; 4 – unitatea de amplificare, analiză şi dirijare a semnalelor; 5–5' – unitatea pentru sensibilitatea de curăţire; 6–6' – unitatea pentru lungimea de referinţă; 7–7' – unitatea pentru fire duble; 8 – multivibrator monostabil; 9 – cuţit de tăiere; 10 – viteza de bobinare; 11 – indice material.

Page 18: Manualul inginerului textilist

1148 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Măsurătorile de capacitate se recomandă a se face la grade mici de umplere ale

condensatorului (5–10%) (fig.IV.1.13.). În funcţie de fineţea firelor se pot folosi diverse tipuri de curăţitori capacitivi (tabelul IV.1.9).

Fig. IV.1.12. Factor de umplere. Fig. IV.1.13. Capacitatea relativă în funcţie de ε şi λ.

Tabelul IV.1.9

Tipuri principale de curăţitori capacitivi

Curăţitori Uster Curăţitori Keisokki

Tip Clasa de fineţe a firelor Gama de fineţe, Nm Tip Clasa de fineţe a

firelor Gama de

fineţe, Nm

Z Fine şi foarte fine 40–1000 F Fine 20–485

C Medii 10–200 C Medii 9–218

W Groase 5–125 W Groase 5–120

X Foarte groase şi extrem de groase 1–25 W1 Foarte groase 2–48

D Pentru 23 de clase de defecte W2 Extrem de groase 1,2–29

Principalele defecte ale firelor, care condiţionează calitatea şi aspectul acestora, sunt:

neregularităţi pe distanţe scurte, imperfecţiuni de filare relativ frecvente (nopeuri, subţieri şi îngroşări, cuprinse între anumite limite) şi defecte rare.

Neregularităţile pe distanţe scurte se controlează cu ajutorul regularimetrelor de tip Uster. Imperfecţiunile se determină cu ajutorul aparatelor de tip Uster-Imperfection şi sunt raportate la lungimi de 1000 m fir. Defectele rare sunt defecte ale firelor cu o frecvenţă de apariţie redusă, şi se analizează pe o lungime de cel puţin 105 m de fir.

Defectele rare sunt înregistrate şi clasificate automat cu ajutorul instalaţiilor de tip Uster-Classimat sau Classifault-Keissoki. Se poate utiliza clasificarea de bază, cu 16 clase de defecte, sau clasificări extinse, cu 32 sau 40 clase de defecte.

În cadrul clasificării de bază, sunt considerate defecte rare numai îngroşările firelor care au o creştere a suprafeţei secţiunii transversale a firului faţă de secţiunea nominală (sensi-bilitatea) cuprinsă între + 100% şi + 400%, şi cu lungimi ale îngroşării între 0,1 cm şi 4 cm (16 clase de defecte) (fig. IV.1.14).

Page 19: Manualul inginerului textilist

Bobinarea firelor 1149

Fig.

IV.1

.14.

Cla

sific

area

de

bază

a d

efec

telo

r rar

e (1

6 cl

ase)

.

Page 20: Manualul inginerului textilist

1150 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

La clasificarea extinsă cu 32 clase de defecte (fig. IV.1.15) sunt considerate ca defecte

rare îngroşările şi subţierile firelor de toate categoriile şi anume: – îngroşări mari şi scurte, împărţite în 16 clase cu lungimi ale defectelor de 0,1–1; 1–2;

2–4 şi 4–8 cm şi cu creşteri ale suprafeţei secţiunii transversale (sensibilitatea) între +100% şi +400% (clasele de defecte A1–D4 din fig.IV.1.14);

– îngroşări mari şi lungi (clasa E) care au lungimea de peste 8 cm şi creşterea suprafeţei secţiunii mai mare de +100%;

– îngroşări mici şi lungi (clasele F şi G). Clasa F conţine îngroşările cu lungimi între 8 şi 32 cm şi creştere asuprafeţei secţiunii transversale între +45% şi +100%, iar clasa G conţin îngroşările cu creşterea suprafeţei secţiunii între +45 şi +100% şi cu lungimi de peste 32 cm;

– subţieri lungi şi foarte lungi, care sunt împărţite în patru clase (H1, H2, I1, I2). Subţie-rile din clasele H1 şi H2 au o scădere a suprafeţei secţiunii între –30% şi –75% pe lungimi între 8 cm şi 32 cm. Subţierile din clasele I1 şi I2 au o scădere a secţiunii transversale între –30% şi –75% pe lungimi de peste 32 cm.

Fig. IV.1.15. Clasificarea extinsă a defectelor rare (23 clase). Clasificarea extinsă cu 40 clase de defecte (fig. IV.1.16), realizată de instalaţia

Classifault II – Keissoki, echipată cu computer, monitor, unitate disc de memorare şi imprimantă, conţine:

– îngroşări mari şi scurte, cu creşteri ale suprafeţei secţiunii transversale (sensibilitatea) de 100–150%; 150–250%; 200–400% şi peste 400% pe lungimi de 0,1–1; 1–2; 2–4; 4–8 şi peste 8 cm (clasele A1–E4);

– îngroşări mici şi lungi, cu creşteri ale secţiunii transversale de 30–45% şi 45–100% pe lungimi de 1–9; 9–25; 25–57; 57–121 şi peste 121 cm (clasele F1–J2);

– subţieri cu scăderi ale suprafeţei secţiunii transversală (sensibilitatea) de –30…– 45% şi –45…–90% pe lungimi de 1–9; 9–25; 25–57; 57–121 şi peste 121 cm (clasele K1–Q2).

Page 21: Manualul inginerului textilist

Bobinarea firelor 1151

Fig. IV.1.16. Clasificarea extinsă a defectelor rare (40 clase).

b. Parametrii de reglare ai curăţitorilor capacitivi şi defecte eliminate. Pe centrala de reglaj a curăţitorilor se fixează următorii parametrii: fineţea firului, indicele de material, sensibilitatea de curăţire, lungimea de referinţă (USTER) sau lungimea defectului (Keisokki) şi viteza firului. Fineţea firului se reglează în interiorul gamei pentru care este construit tipul de curăţitor utilizat (tabelul IV.1.9).

Măsurarea indirectă a masei firului pe unitatea de lungime, în dispozitivul capacitiv de măsurare, necesită un reglaj în funcţie de natura fibrelor şi umiditatea acestora, care se realizează prin indicele de material (tabelul IV.1.10) – curăţitori Keisokki. Pentru umidităţi mai mari de 80%, indicele de material reglat se măreşte cu o unitate faţă de valoarea din tabel, iar pentru umidităţi mai mici de 50%, indicele reglat se micşorează cu o unitate. Pentru fire din amestecuri de fibre, indicele de material se calculează ca medie ponderată a indicilor specifici, cu relaţia:

∑=

=n

i

iia

PII1 100

, (IV.1.37)

unde: Ia reprezintă indicele de material al amestecului fibros din care este realizat firul; Ii, Fi – indici de material şi procentele de participare ale fiecărui component i din

structura firului. Tabelul IV.1.10

Indicele de material

Nr. crt. Natura fibrei Indicele de material

1. Bumbac, lână, viscoză 7,5 2. Acetat, poliacrilonitril, polialcool-vinilic 5,5 3. Poliamidă 5,0 4. Polipropilenă, polietilenă 4,5 5. Poliester 3,5 6. Policlorură de vinil 2,5

Page 22: Manualul inginerului textilist

1152 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Indicele de material al amestecului fibros al firului poate fi determinat pe baza

diagramei din fig. IV.1.17.

Fig. IV.1.17. Diagramă pentru alegerea indicelui de material.

Sensibilitatea de curăţire şi lungimea de referinţă pentru reglarea curăţitorilor de tip Uster se stabilesc în funcţie de nivelul calitativ mondial, exprimat prin treptele procentuale de calitate 5%;25%; 75%; 95% (fig. IV.1.18). Numărul defectelor pe 105 m de fir, pe clase de de-fecte şi nivel de calitate, pentru diverse amestecuri fibroase, se poate urmări în fig. IV.1.19, a–f. Numărul practic de defecte, pe clase şi pe 105 m de fir, rezultat în urma controlului curent de calitate cu instalaţii de tip Uster Clasimat, poate avea diverse valori (tabelul IV.1.11), care vor fi înscrise pe fişa tip a plăcilor Grades (fig. IV.1.20). Prin curăţire trebuie eliminate numai defectele considerate grave şi dăunătoare pentru cerinţele de calitate ale ţesăturilor sau trico-turilor. Sunt considerate grave şi dăunătoare defectele din clasele A4–B4–C4–D4–C3–D3–D2, fără a

exclude şi alte clase. Se trasează, pe plăcile Grades, linia de curăţire în trepte, pe sub clasele considerate grave şi dăunătoare (fig. IV.1.20).

Linia reală de curăţire va fi dată de acea curbă Correlator (fig. IV.1.21), care intersectează în cât mai multe puncte linia de curăţire în trepte, în urma aşezării curbelor Correlator cu originea axelor suprapusă peste va-loarea adoptată a sensibilităţii de curăţire precizată pe plă-cile Grades (fig. IV.1.20). La capătul curbei Correlator, aleasă drept linie reală de curăţire, se află lungimea de referinţă pentru reglajul centralei. La curăţirea firelor des-tinate ţesăturilor se aleg, de preferinţă, curbele Correlator mai abrupte, cu lungimi de referinţă mai mari.

Fig. IV.1.18. Nivel mondial calitativ exprimat prin trepte procentuale.

Page 23: Manualul inginerului textilist

Bobinarea firelor 1153

Fig. IV.1.19, a. Numărul defectelor firelor din bumbac 100% cardat, pe nivele Uster.

Fig. IV.1.19, b. Numărul defectelor firelor din bumbac 100% pieptănat, pe nivele Uster.

Page 24: Manualul inginerului textilist

1154 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.19, c. Numărul defectelor firelor din celofibră tip bumbac, pe nivele Uster.

Fig. IV.1.19, d. Numărul firelor din amestecuri poliester cu bumbac, pe nivele Uster.

Page 25: Manualul inginerului textilist

Bobinarea firelor 1155

Fig. IV.1.19, e. Numărul defectelor firelor din lână 100%, pe nivele Uster.

Fig. IV.1.19, f. Numărul defectelor firelor din fibre acrilice, pe nivele Uster.

Page 26: Manualul inginerului textilist

Tabelul IV.1.11 Valori experimentale pentru defectele rare ale firului necurăţat, la 105 m fir, obţinute cu instalaţia Uster-Classimat

Amestec fibros Nm Defecte rare ale firului necurăţat la 100 km fir

A B C D1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Bumbac 100%

10/1 12/1 34/1 40/1 140/1 50/1 50/2 40/1 60/1 70/1

50 43

3206 880 1175 6862 245 2900 2142 1813

86

280 102 220 600 50 445 194 367

41 34 26 42 26 9 70 21 70

00 11 7 11 7 3 20 6 19

1410 143 75 80 302 14 168 135 119

96 43 40 54 78 13 90 44 80

41 15 13 22 14 5 40 11 39

01 7 3 8 1 2 10 2 12

7 10 23 28 27 35 4 45 38 40

54 14 23 19 12 4 30 19 26

42 7 8 9 1 2 16 6 18

20 5 3 5 1 1 7 3 10

2226 28 24 63 30 1 48 67 40

1218 12 15 44 11 0 29 42 26

68 7 6 22 4 0 14 22 12

53 3 3 12 2 0 6 9 6

Bumbac 67% + poliester

33%

70/1 70/2 50/2 50/1 32/2 60/1 40/1 54/1

360 103 94

1809 75 284 791 381

8930 36 220 26 76 108 57

155 9 32 3 18 16 23

11 1 13 0 7 7 7

2215 18 100 19 55 56 30

129 13 39 11 38 28 20

91 4 10 4 20 14 9

20 0 3 2 9 3 2

6 1 2 27 5 25 26 13

51 2 22 4 21 13 11

21 1 10 2 15 3 7

00 0 6 2 7 1 2

141 3 52 5 35 26 8

91 2 37 4 25 14 4

81 1 20 2 17 4 3

20 1 6 0 10 1 2

Poliester 67% + bumbac 33%

100/2 70/2 140/2 34/1 70/1 54/1 34/2 100/1 100/2 140/1 40/1

172 124 339 149 347 4700 79 922 235 1860 309

5938 103 49 101 777 37 217 81 363 81

107 26 13 28 94 9 56 18 67 22

23 8 5 13 27 4 14 4 18 7

2014 42 29 35 271 7 66 40 182 57

1411 25 19 26 125 6 42 27 70 41

53 10 7 10 44 2 25 11 27 29

10 4 3 7 13 1 11 3 11 18

7 8 23 15 24 80 4 17 14 70 20

66 19 13 21 43 2 13 13 30 19

22 10 10 15 21 0 8 3 16 13

00 4 6 7 15 0 4 2 8 8

47 18 17 24 82 6 38 13 50 34

44 11 13 18 50 4 27 7 38 20

31 5 9 15 30 3 19 4 22 16

20 4 8 8 18 3 9 1 16 12

Poliester 59%+celofibră 50%

50/1 65/1

2113 2837

477516

6260

616

213219

116131

1640

16

31 51

1638

719

16

1013

69

34

01

Lână şi tip lână 700–1539 100–389 20–75 2–18 60–195 45–155 27–85 5–25 25–100 20–79 10–47 3–22 14–38 10–35 8–22 2–18

Page 27: Manualul inginerului textilist

Bobinarea firelor 1157

Fig. IV.1.20. Linia de curăţire în trepte şi curbele Correlator.

Fig. IV.1.21. Curbele Correlator.

Defectele rare, situate deasupra curbei Correlator, vor fi înlăturate prin curăţire, iar cele situate sub curbă vor rămâne pe fir. În cazul în care o clasă de defecte este intersectată de curba Correlator stabilită, numărul de defecte rare eliminate de curăţitor din clasa intersectată se calculează conform schemei din fig. IV.1.22. Se consideră defecte eliminate numai numărul defectelor situate deasupra diagonalei clasei intersectate.

La unii curăţitori capacitivi (Keisokki) se foloseşte ca parametru de reglare lungimea defectului, în locul lungimii de referinţă, şi curba translator (fig. IV.1.23) în locul curbelor Correlator. După aşezarea curbei Translator pe sub clasele cu îngroşări grave şi dăunătoare (fig.IV.1.24), se preia sensibilitatea de curăţire indicată de săgeata orizontală a translatorului şi lungimea îngroşărilor eliminate indicată pe segmentul lungimilor (cm) suprapus, sau cel mai apropiat de dreapta înclinată a translatorului. Vor fi eliminate toate îngroşările situate deasupra curbei translatorului. Utilizarea translatorului permite şi un reglaj distinct pe canalul nopeurilor

Page 28: Manualul inginerului textilist

1158 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

(fig. IV.1.24). Valoarea sensibilităţii pentru curăţirea noperurilor este determinată de dreapta nopeurilor, paralelă cu axa lungimilor claselor. Vor fi eliminate toate îngroşările şi nopeurile situate deasupra acestei drepte.

Fig. IV.1.22. Defecte eliminate din clasa intersectată de curba Correlator.

Fig. IV.1.23. Clasele de defecte şi curba Translator la curăţitorii Keisohi KC 60.

Fig. IV.1.24. Folosirea curbei Translator pentru stabilirea sensibilităţii de curăţire şi a reglajului pe canalul nopeurilor.

Curăţirea firelor asistată de calculator permite renunţarea la curbele pentru reglarea

sensibilităţii de curăţire şi a lungimii defectelor şi alegerea directă pe monitorul computerului a claselor de îngroşări şi subţieri ce vor fi eliminate la bobinare (fig. IV.1.25).

Page 29: Manualul inginerului textilist

Bobinarea firelor 1159

Fig. IV.1.25. Curăţirea firelor asistată de calculator: a – sistem de clasificare a defectelor firelor asistat de calculator:

1 – unitate de măsurare; 2 – sistem de clasificare a defectelor; 3 – computer; 4 – imprimantă; 5 – monitor; 6 – disc de stocare a datelor;

b – date afişate pe monitor privind curăţirea.

Programul de curăţire se stabileşte în funcţie de necesităţile tehnologice concrete

(fig. IV.1.25, b). Toate îngroşările mari şi scurte situate deasupra liniei în trepte trasată pe monitor pe sub anumite clase de defecte grave şi dăunătoare ABCDE, toate îngroşările mici şi lungi situate deasupra liniei în trepte de sub anumite clase FGHIJ şi toate subţierile de sub linia în trepte trasată pe monitor peste clasele de defecte considerate dăunătoare KLMNO vor fi eliminate prin curăţire.

Numărul de tăieri efectuate de curăţitoare se înregistrează pe monitor, pe clase de defecte, pe sensibilităţi de curăţire, pe fus şi pe total fuse, pe lungimi controlate etc. (fig. IV.1.25, b).

Stabilirea sensibilităţii pentru canalul de subţieri poate fi făcută şi în următoarele ipoteze:

– lipsa totală a componentului fibros cu cea mai mică cotă de participare a firului filat;

a

b

Page 30: Manualul inginerului textilist

1160 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

– lipsa unui component din firul răsucit; – lipsa învelişului din firul răsucit cu miez. În aceste ipoteze, sensibilitatea teoretică necesară pentru reglarea reducerii procentuale a

suprafeţei transversale a zonei subţiri de la care începe tăierea firului reprezintă tocmai procentul din suprafaţa totală nominală ocupată de componentul lipsă. Suprafaţa procentuală faţă de suprafaţa totală ocupată de un component oarecare, i, se calculează pe baza coefi-cientului de contribuţie al acestui component la indicele de material al întregului fir. Se foloseşte relaţia:

,100 sau 100∑

==c

cisi

c

cisi K

KS

KK

S (IV.1.38)

unde: Ssi reprezintă sensibilitatea teoretică de curăţire a subţierilor, în %, respectiv reducerea procentuală a suprafeţei transversale a zonei subţiri, ca urmare a lipsei din secţiunea firului simplu a fibrelor de tipul i, sau a lipsei unui component oarecare i din firul răsucit sau a învelişului din componentul i la firul răsucit cu miez;

Kci – coeficientul contribuţiei unui component oarecare i la indicele de material al întregului fir;

Kc =∑ ciK – suma coeficienţilor contribuţiei componenţilor la indicele de material al

întregului fir. Valorile Kci se determină după diagrama din fig. IV.1.26. Sensibilitatea reglată efectiv pe canalul subţierilor se face la un nivel cu circa 5% mai

mic faţă de sensibilitatea calculată. Numărul de noduri de curăţire reprezintă suma defectelor rare şi dăunătoare din toate

clasele de defecte programate a fi eliminate. Numărul de noduri de curăţire pe lungimea de 105m de fir trebuie să se plasaze sub curbele limită admise ale ruperilor de curăţire corespun-zătoare nivelului mondial impus firului bobinat (fig. IV.1.27). În fig. IV.1.27 se pot urmări şi curbele care delimitează numărul de ruperi cauzate de zonele slabe, din care rezultă nodurile de rupere pe 105m de fir. Nodurile de schimbare a ţevilor de alimentare pe o lungime de 105m de fir se calculează cu relaţia:

t

a Ln

000100= (IV.1.39)

unde: na reprezintă numărul de noduri de alimentare, corespunzător unei lungimi de 105 m de fir;

Lt – lungimea firului de pe ţeava de alimentare a maşinii de bobinat, în m. Numărul total de noduri de bobinare pe 105m de fir bobinat, Nt, se calculează cu relaţia:

arct nnnN ++= , (IV.1.40)

unde: nc este numărul de noduri de curăţire pe 105 m de fir bobinat; nr – numărul de noduri de rupere pe 105 m de fir bobinat. Numărul total de noduri astfel calculat trebuie să fie mai mic decât numărul total de

noduri admis la bobinare pentru nivelul mondial Uster al calităţii adoptate, şi care rezultă din însumarea nodurilor rezultate de pe curbele din fig. IV.1.27. Pentru asigurarea unor randamente bune la ţesere, se recomandă ca numărul total de noduri de bobinare să fie mai mic de 50 noduri/105 m de fir, la ţeserea cu suveică, şi mai mic de 25 de noduri la 105 m de fir, la ţeserea fără suveică.

Page 31: Manualul inginerului textilist

Bobinarea firelor 1161

Fig. IV.1.26. Coeficienţi de contribuţie la indicele de material.

a

b

Page 32: Manualul inginerului textilist

1162 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.27. Nivelul Uster mondial al numărului de noduri: a – frecvenţa nodurilor la fire de bumbac; b – frecvenţa nodurilor la fire de lână.

IV.1.5.3. Curăţitori optoelectronici a. Principiul optoelectronic, clasificarea defectelor şi parametri de reglare ai

curăţirii. Curăţitorii optoelectronici elimină defectele de filare prin măsurarea diametrului secţiunii transversale a firului şi a lungimii defectului (fig. IV.1.28).

Pentru curăţitorii optoelectronici, criteriul de clasificare a defectelor îl constituie diametrul acestora. Defectele sunt împărţite în 5 categorii (fig. IV.1.29):

– nopeuri, ce reprezintă îngroşări cu lungimi foarte mici, sub 0,5 cm, dar cu diametre mari;

Page 33: Manualul inginerului textilist

Bobinarea firelor 1163

– îngroşări mari şi scurte, ce reprezintă defecte cu lungimea de 0,5–10 cm şi diametrul

îngroşării multiplicat de 1,8–3,8 ori diametru mediu nominal; – îngroşări mici şi lungi, ce reprezintă defecte cu lungimea de 4–40 cm şi cu diametru

îngroşării multiplicat de 1,2–1,8 ori diametru mediu nominal; – fire duble, ce reprezintă capete de fire desfăşurate simultan sau fire rătăcite şi filate

împreună pe lungimi mari; – subţieri de filare cu lungimea de 10–200 cm şi cu diametrul subţierii demultiplicat de

0,84–0,5 ori diametrul mediu nominal.

Fig. IV.1.28. Principiul optoelectronic de curăţire:

1 – defect de filare; 2 – fotocelulă; 3 – amplificator semnale; 4 – comparator

semnale; 5 – centrala de reglare; 6 – cuţitul de tăiere.

Fig. IV.1.29. Tipuri de defecte.

Clasele defectelor, pentru fiecare din categoriile acestora, sunt grupate în funcţie de

lungimea L a defectului şi raportul D dintre diametrul defectului şi diametrul mediu nominal. Valorile L şi D, pe clase, se pot urmări în fig. IV.1.30. Clasificarea de bază a defectelor conţine 16 clase de îngroşări mari şi scurte (clasele 1.1–4.4). Clasificarea extinsă conţine în plus 6 clase pentru îngroşări mici şi lungi (5.1–7.2), 4 clase pentru subţieri (8.1–9.2), la care se adaugă nopeurile (N) şi firele duble (C).

Pe centrala de reglare a eliminării defectelor se folosesc următorii parametri (fig. IV.1.31):

φ – reglarea de bază, care corelează sensibilitatea de curăţire cu diametrul nominal d al firului prelucrat, determinat în prealabil cu ajustorul LDN încorporat în staţia centralei electronice;

L – lungimea defectelor eliminate, în cm; v – viteza firului la bobinare, în m/min; D(–D–) – limita raportului D dintre diametrul defectului eliminat şi diametrul nominal

al firului prelucrat; C – limita de grosime a firelor duble, precizate prin rapoartele C-static şi C-dinamic,

dintre diametrul firului dublu şi diametrul nominal al firului; N – limita de grosime pentru nopeuri ce urmează a fi eliminate, precizată prin raportul

dintre diametrul nopeului şi diametrul nominal al firului.

Page 34: Manualul inginerului textilist

1164 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.30. Clasificarea defectelor.

Fig. IV.1.31. Centrala de reglare Loepfe tip LDN/–D.

b. Linii de curăţire şi defecte eliminate. Clasificarea defectelor după diametru şi

lungime oferă posibilitatea aşezării lor pe o diagramă LD (fig. IV.1.32), unde orice defect este reprezentat ca un punct localizat prin valoarea lungimii şi a diametrului său. Separarea defectelor ce trebuie eliminate de pe fir, faţă de cele ce pot rămâne pe fir, se face prin aşa-numita linie de curăţire LD. Curba de curăţire reală are anumite abateri faţă de curba teoretică. De exemplu, la curăţitorii de tip Loepfe FR-600 se pot folosi 6 sisteme diferite: LD; LD/–D; LDL; LDL/–D; LDN; LDN/–D (tabelul IV.1.12).

La sistemul standard, linia de curăţire LD (fig. IV.1.33) conţine o succesiune de două curbe, una pentru îngroşări mari şi scurte (curba LD) şi alta pentru fire duble (curba de deviaţie C). La sistemul LDL, linia de curăţire conţine o succesiune de 3 curbe: curba LD pentru

Page 35: Manualul inginerului textilist

Bobinarea firelor 1165

îngroşări mari şi scurte, curba de deviaţie C pentru fire duble. La sistemul LDN, cu cea mai mare flexibilitate, linia de curăţire conţine o succesiune de 4 curbe: curba de deviaţie LDN pentru nopeuri, curba LD pentru îngroşări mari şi scurte, curba de deviaţie C pentru fire duble. Toate sistemele pot fi adaptate pentru a include şi eliminarea subţierilor – D.

Fig. IV.1.32. Linia teoretică de curăţire pe diagrama LD a defectelor.

Tabelul IV.1.12

Tipuri de defecte şi de curăţitori optoelectronici tip Löepfe

Tipuri de defecte Limite de reglare a defectelor pe tipuri de curăţitori

LD LD/–D LDL LDL/–D LDN LDN/–D

Îngroşări mari şi scurte: D × d L, cm

1,8–3,8 0,5–10

1,8–3,8 0,5–10

1,8–3,8 0,5–10

1,8–3,8 0,5–10

1,8–3,8 1–10

1,8–3,8 1–10

Îngroşări mici şi lungi: D × d L, cm

– –

– –

1,2–1,8 4–40

1,2–1,8 4–40

– –

– –

Fire duble: D × d

1,2–1,8

1,2–1,8

1,2–1,8

1,2–1,8

1,2–1,8

1,2–1,8

Nopeuri: D × d L, cm

– –

– –

– –

– –

3–11

0,1–8,5

3–11

0,1–8,5

Subţieri: D × d L, cm

– –

0,1–0,6 8–200

– –

0,1–0,6 8–200

– –

0,1–0,6 8–200

D

L

Page 36: Manualul inginerului textilist

1166 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.33. Linii teoretice de curăţire pe tipuri de curăţitori.

Detectarea variaţiilor diametrului la firele duble şi la subţieri include două reglări (două

canale) diferite: o reglare statică, pentru faza de pornire şi una dinamică, pentru faza de funcţi-onare la mersul de regim. În funcţie de creşterea procentuală admisă a diametrului firului dublu faţă de diametrul nominal, (sensibilitatea de curăţire c– dinamic) pe baza datelor din tabelul IV.1.13, se alege o anumită combinaţie pentru comutatorul static (C– static) şi pentru cel dinamic (C– dinamic). Limita de curăţire a subţierilor (–d) se trasează pe baza limitei procentuale admise a scăderii diametrului firului faţă de valoarea nominală (sensibilitatea de curăţire –d), care permite stabilirea valorilor de reglaj static (–D static) şi dinamic (–d dinamic) (tabelul IV.1.14).

Tabelul IV.1.13

Sensibilitatea de curăţire c–dynamic (%)

C–static c–dynamic

c–1,0 c–0,8 c–0,6 c–0,4

1,2 1,25 1,3 1,35 1,4 1,5 1,6 1,7 1,8

20% 25% 30% 35% 40% 50% 60% 70% 80%

16% 20% 24% 28% 32% 40% 48% 56% 64%

12% 15% 18% 21% 24% 30% 36% 42% 48%

8% 10% 12% 14% 10% 20% 24% 28% 32%

Limita D a raportului dintre diametrul defectului şi diametrul mediu nominal al firului

este în strânsă legătură cu limita L a lungimii defectului. Această legătură este reflectată în fig. IV.1.34 şi este redată prin curba limită de lungime din fig. IV.1.35, atât pentru zonele groase, cât şi pentru cele subţiri. Orice valoare L a lungimii defectului are altă curbă limită L, care va fi trasată pe diagramele tipizate „Setinng chart“.

Page 37: Manualul inginerului textilist

Bobinarea firelor 1167

Tabelul IV.1.14

Sensibilitatea de curăţire – d dynamic (%)

Reglaje statice, – D static

Reglaje dinamice – d dynamic

– d 1,2 – d 1,0 – d 0,8 – d 0,6

10% 13% 16% 20% 25% 30% 40% 50% 60%

12% 15,6% 19,2% 24% 30% 36% 48% 60% 72%

10% 13% 16% 20% 25% 30% 40% 50% 60%

8% 10%

12,8% 16% 20% 25% 32% 40% 48%

6% 7,8% 9,6% 12% 15% 18% 24% 30% 36%

Fig. IV.1.34. Diametrul şi lungimea defectului. Fig. IV.1.35. Curbe limite de lungime.

Curbele practice de curăţire sunt reprezentate ca linii drepte ce-şi schimbă direcţia în

puncte specifice (fig. IV.1.36). Unghiurile ce rezultă între diverse segmente liniare sunt rotun-jite, pentru ca linia de curăţire reală să aproximeze curba teoretică.

Trasarea segmentelor specifice ale liniilor de curăţire depinde de tipul curăţitorului. La sistemul FR-600 sunt utilizate două mijloace de reglare: şablonul „Seleset“ (fig. IV.1.37) şi diagramele tipizate „Setting chart“ (fig. IV.1.38).

Şablonul „Seleset“ conţine canale pen-tru trasarea segmentelor de drepte înclinate şi orizontale ale limitelor D, pentru îngroşări mari şi scurte, o muchie înclinată, pentru de-viaţia C–dinamic şi un orificiu circular, pen-tru reperarea limitei L de pe axa diagramelor tip „Setting chart“.

Linia de curăţire LD se trasează după aşezarea şablonului peste diagrama tip, având linia orizontală suprapusă peste axa lungimilor defectelor (fig. IV.1.39), iar cerculeţul de re-

Fig. IV.1.36. Linii practice de curăţire.

Page 38: Manualul inginerului textilist

1168 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

perare „D ref“ suprapus peste valoarea L aleasă pentru curăţire şi fixată şi pe panoul centralei de reglaj. Segmentul înclinat al liniei de curăţire LD (fig. IV.1.39) se trasează folosind canalul înclinat de pe şablonul „Seleset“, la capătul căruia este înscrisă valoarea D aleasă pentru reglaj (D = 2,8). Orizontala AB a liniei de curăţire LD se trasează pe canalul orizontal al şablonului situat în dreptul valorii D aleasă anterior (D = 2,8).

Fig. IV.1.37. Şablonul „Seleset“.

Segmentele C constituie linia de curăţire pentru defectele de fire duble şi se trasează în

continuarea liniei de curăţire LD. La reglarea statică, limita de lungime nu poate fi modificată, fiind programată în instalaţie la valori de 0,5–1 m.

Precizia fazei dinamice este apreciată prin luarea în considerare a poziţiei comuta-torului C-dynamic de pe centrala de reglaj (1; 0,8; 0,6 sau 0,4). În tabelul IV.1.13 sunt indicate toate valorile sensibilităţii reglajului C-dynamic. Sensibilitatea C-dynamic = 100 (C– static –1) C– dynamic, ca de exemplu 100 (1,4–1) 0,6 = 24%. Dacă această valoare nu este satisfăcătoare, atunci sensibilitatea C–dynamic poate fi reglată la oricare din valorile tabelului IV.1.13, corespunzătoare lui C–static, de 1,4. Un reglaj de Cdyn = 0,8 va reduce sensibilitatea la 40%, iar un reglaj de 0,4 va creşte sensibilitatea la 20%. După alegerea valorii sensibilităţii C–dynamic şi a vitezei de bobinare, se localizează punctul E al deviaţiei liniei C, aflat la intersecţia orizontalei sensibilităţii C–dynamic cu dreapta vitezei adoptată şi reglată pe panoul central (800 m/min, fig. IV.1.39). Segmentul înclinat BE al liniei de curăţire C se trasează de-a lungul liniei diagonale C–dynamic a şablonului, până la intersecţia în punctul B cu orizontala liniei de curăţire LD.

Lungimea limită de tăiere a defectului de fir dublu depinde de viteza de bobinare, iar pentru aflarea acestei lungimi se coboară verticala din punctul de deviaţie E al liniei C până la axa lungimilor defectului de pe diagrama tip „Setting chart“.Vor fi eliminate toate defectele ale căror caracteristici se află deasupra segmentelor liniilor de curăţire LD şi C.

Page 39: Manualul inginerului textilist

Bobinarea firelor 1169

Fig.

IV.1

.38.

Dia

gram

ă tip

izată

„Set

ting“

.

Page 40: Manualul inginerului textilist

1170 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig.

IV.1

.39.

Lin

ii de

curăţ

ire p

e di

agra

ma

„Set

ting

char

t“ p

entru

curăţ

itori

Loep

fe L

D.

Page 41: Manualul inginerului textilist

Bobinarea firelor 1171

Fig.

IV.1

.40.

Lin

ia d

e cu

răţir

e pe

dia

gram

a „S

ettin

g Ch

art“

pen

tru c

urăţ

itori

Lopf

e LD

L.

Page 42: Manualul inginerului textilist

1172 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig.

IV.1

.41.

Lin

ia d

e cu

răţir

e pe

dia

gram

a „S

ettin

g ch

art“

pen

tru c

urăţ

itori

Loep

fe L

DN

.

Page 43: Manualul inginerului textilist

Bobinarea firelor 1173

Fig.

IV.1

.42.

Lin

ia d

e cu

răţir

e pe

dia

gram

a „S

ettin

g ch

art“

pen

tru c

urăţ

itori

Loep

fe –

D.

Page 44: Manualul inginerului textilist

1174 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

La curăţitorii Loepfe tip LDL, pe lângă liniile de curăţire LD şi C, se intercalează

limita liniei de curăţire LDL (fig. IV.1.40). Pe diagrama tip se localizează valorile limită L–lung şi D–lung al îngroşărilor mici şi lungi (20 cm şi 1,34, în fig. IV.1.40). Punctul B, în care verticala ridicată din dreptul valorii L–lung (12 cm) intersectează segmentul orizontal LD, devine primul punct al deviaţiei liniei LDL faţă de linia LD. Punctul C, în care orizontala valorii D–lung aleasă şi reglată (1,4) intersectează curba limitei de lungime L–lung aleasă şi reglată (20 cm), devine al doilea punct al deviaţiei liniei LDL, de unde începe segmentul orizontal LDL. Segmentul orizontal LDL se prelungeşte, până la întâlnirea în punctul D, cu linia de curăţire C, trasată anterior pentru fire duble. Vor fi eliminate toate îngroşările mari şi scurte situate deasupra liniei de curăţire LD, toate îngroşările mici şi lungi situate deasupra liniei LDL şi toate defectele de fir dublu situate deasupra liniei C.

La curăţitorii tip LDN, linia limită de curăţire se extinde cu segmentul N, destinat eliminării nopeurilor. Punctul A0 (fig. IV.1.41) reprezintă valoarea limită reglată a raportului N dintre diametrul nopeului şi diametrul nominal (mediu normal) al firului de la care începe tăierea (exemplu N = 7). Punctul A reprezintă intersecţia orizontalei raportului D al îngroşărilor mari şi scurte (D = 2,8) cu linia curbei L–limită a aceluiaşi tip de îngroşări (L limită = 2,5 cm). Segmentul orizontal AB se prelungeşte până la intersecţia în punctul B cu primul segment al liniei de curăţire C pentru fire duble, trasat după principiul descris pentru linia de curăţire LD şi C. Vor fi eliminate toate nopeurile, îngroşările mari şi scurte şi firele duble situate deasupra liniei de curăţire trasată pe diagrama tip din fig. IV.1.41.

Linia de curăţire a subţierilor –D se trasează pe baza limitei procentuale admise a scă-derii diametrului firului faţă de valoarea nominală (sensibilitatea – d–dynamic), care permite stabilirea valorilor de reglaj static (–D–static) şi dinamic (–d–dynamic) (tabelul IV.1.14). Reglarea statică, pentru faza de pornire, este determinată de valoarea –D de pe tabloul de comandă.

Reglajul dinamic, pentru faza de funcţionare, se face fixând valoarea –L pe axa ori-zontală a diagramei tip (G la –60 cm, fig. IV.1.42) şi valoarea sensibilităţii –D, pe axa verticală a aceleiaşi diagrame (–25%, fig. IV.1.42). Punctul H, la care orizontala limitei sensibilităţii – D, (–25%) întâlneşte curba limită –L aleasă (60 cm) devine punctul de deviaţie pentru –d, iar segmentul de dreaptă GH devine linia de curăţire –d. Din punctul H, linia de curăţire –d se prelungeşte orizontal spre dreapta. Vor fi eliminate toate subţierile situate la dreapta şi sub liniile de curăţire –d.

Defectele eliminate, în urma stabilirii liniilor de curăţire şi fixării parametrilor de reglaj pe panoul central, vor fi înlocuite cu noduri sau cu fir retorsionat pneumatic şi vor fi contorizate pe centrala curăţitorilor. Numărul total de noduri trebuie să se încadreze în limitele admise de nivelul Uster mondial (fig. IV.1.27) şi în cerinţele procesului de ţesere.

IV.1.6 . Înfăşurarea firului pe bobine IV.1.6.1. Caracteristicile generale de înfăşurare ale firului pe bobine Înfăşurarea firului pe bobină se caracterizează prin pasul h al spirei, înclinarea şi

încrucişarea spirelor (α şi 2α ), conicitatea β a suprafeţei de înfăşurare, lungimea Ls a stratului (bobinei), raza Rx a bobinei, numărul de spire în strat (Ns) şi desimea spirelor (ns), grosimea şi grosimea radială a straturilor (δ şi δr), desimea şi desimea radială a straturilor (n şi nr), distribuţia spirelor pe suprafaţa bobinei, (unghiul ψ de deplasare al punctelor de

Page 45: Manualul inginerului textilist

Bobinarea firelor 1175

întoarcere), coeficientul de umplere Ku, porozitatea P şi densitatea ρ a bobinelor (fig. IV.1.43). Între caracteristicile înfăşurării există următoarele relaţii:

tgα =xR

β2cos =

1

2

vv , la bobine tronconice; (IV.1.41)

tgα =xR

hπ2

= 1

2

vv , la bobine cilindrice; (IV.1.42)

constant.;1

şi;; ===== sss

s

s

ss

ss h n

nh

NL

h LN

n hL

N (IV.1.43)

Dacă 0 ,5°≤α≤ înfăşurarea este paralelă, iar dacă α >5°, respectiv 2 α > 10°, înfăşurarea este încrucişată. Dacă la creşterea razei Rx, unghiurile α şi 2α = constant şi h creşte liniar, înfăşurarea este în cruce neuniformă (pentru fire filate), iar dacă h şi NS sunt constante şi α scade, înfăşurarea este în cruce de precizie (pentru fire filamentare).

Fig. IV.1.43. Caracteristicile înfăşurării. Fig. IV.1.44. Unghiul de deplasare a punctelor de întoarcere.

Stratul conţine un număr de spire egal cu numărul de rotaţii făcute de bobină în timpul

deplasării cursorului pe distanţa Ls. La suprapunerea a N straturi, raza bobinei creşte cu valoarea R∆ . Între grosimea şi desimea straturilor există relaţiile:

δ=∆

=δNR

r , la bobine cilindrice:

β

δ=

∆=δ

cosNR

r , la bobine tronconice; (IV.1.44)

r

r RNn

δ=

∆=

1 , respectiv constant.1 ==δrrn (IV.1.45)

Distribuţia spirelor pe suprafaţa bobinei se caracterizează prin unghiul ψ de deplasare al punctelor de întoarcere (fig. IV.1.44). Se calculează cu relaţia:

ψ = 2π [ ]*22 ss NN − , (IV.1.46)

Page 46: Manualul inginerului textilist

1176 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

unde *2 sN reprezintă partea întreagă a dublului numărului de spire în strat Ns. Dacă Ns = constant, atunci şi ψ = constant şi înfăşurarea este de precizie. Dacă la creşterea razei R valoarea Ns scade, atunci ψ este variabil şi înfăşurarea este în cruce neuniformă.

Coeficientul de umplere Ku, porozitatea P (%) şi densitatea ρ (g/cm-3) a bobinelor se calculează cu relaţiile [59], [60], [61]:

;cos cos 10

sau cos cos 10

55 βαρδπ

=βαρπ

=fr

tu

f

rstu h

TKnnTK (IV.1.47)

;100cos cos 10

1 sau 100cos cos 10

1 55 ⎟⎟⎠

⎞⎜⎜⎝

βαρδ−=⎟

⎟⎠

⎞⎜⎜⎝

βαρπ−=

fr

t

f

rst

hTPnnTP (IV.1.48)

.cos cos 10

sau cos cos 10

55 βαδ

=ρβα

=ρr

trst

hTnnT (IV.1.49)

La formarea bobinelor pe maşinile de bobinat se poate regla numai desimea radială a straturilor nr, prin tensiunea firului şi presarea asupra bobinei.

IV.1.6.2. Caracteristicile bobinelor cu înfăşurare paralelă În funcţie de raportul dintre viteza periferică a bobinei şi viteza cursorului pentru

distribuţia spirelor, înfăşurarea paralelă poate fi cu spire strânse sau spire distanţate (fig. IV.1.45). Înfăşurarea paralelă cu spire strânse se caracterizează prin (fig. IV.1.45, a):

;11 şit

stTAh

n TAdh ==== (IV.1.50)

; 2

tgarc şi 2

tgx

t

x RTA

Rh

π=α

π=α (IV.1.51)

btb nTAvnhv == 22 ; (nb = turaţia bobinei); (IV.1.52)

.10

sau 10

55

t

rtrst

TAnTnnT

=ρ=ρ (IV.1.53)

a b

Fig. IV.1.45. Tipuri de înfăşurare paralelă.

Page 47: Manualul inginerului textilist

Bobinarea firelor 1177

Înfăşurarea paralelă cu spirele distanţate (fig. IV.1.45, b) se caracterizează prin:

;1şixTA

n x TAxdht

st+

=+=+= (IV.1.54)

; 2

tgarc şi 2

tgx

t

x

t

RxTA

RxTA

π+

=απ

+=α (IV.1.55)

( ) ; ;)( 22 btb nxTAvnxdv +=⋅+= (IV.1.56)

( )xTAnT

t

rt

+=ρ

510 . (IV.1.57)

Presiunea pe unitatea de suprafaţă p, exercitată de straturi asupra tubului suport de rază Ro, depinde de tensiunea T din spirele înfăşurate, densitatea bobinei ρ , densitatea de lungime a firului Tt (tex) şi raza Rx a bobinei, conform relaţiei [121], [59]:

ot

ux

RTRRTp

)( 105 −ρ

= . (IV.1.58)

Presiunea liniară pl exercitată pe unitatea de lungime a spirei depinde de raza Rx şi de tensiunea T a spirei, conform relaţiei [98], [114]:

x

l RTp = . (IV.1.59)

IV.1.6.3. Caracteristicile bobinelor cu înfăşurare în cruce neuniformă Înfăşurarea în cruce neuniformă este rezultatul combinării a două mişcări cu viteză

constantă, indiferent de raza înfăşurării: viteza periferică a mişcării de rotaţie a bobinei şi viteza de translaţie a firului de-a lungul generatoarei bobinei. Caracteristicile de bază ale înfăşurării variază conform curbelor din fig. IV.1.46, conform relaţiilor:

constant;vv

arctg1

2 ==α (IV.1.60)

liniară; creştere,cos

tg 2x

x CRR

h =β

απ= (IV.1.61)

xx

s RC

RL

N 1

tg 2cos

=απ

α= , scădere hiperbolică; (IV.1.62)

xx

s RC

CRhn 211

=== , scădere hiperbolică; (IV.1.63)

xx

tr R

CRT 3

5 sin 10 2=

ραπ=δ , scădere hiperbolică; (IV.1.64)

xr

r RCn 41=

δ= , creştere liniară. (IV.1.65)

Page 48: Manualul inginerului textilist

1178 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.46. Caracteristicile înfăşurării în cruce neuniformă.

Unghiul de înclinare al spirelor este determinat de caracteristicile constructive ale meca-nismului de bobinare şi poate avea valori de:

=α 12 – 19°, la bobine tari pentru urzire, canetare, ţesere etc.; α = 20 – 30°, la bobine moi pentru albire şi vopsire. Unghiul α influenţează şi stabilitatea spirelor în punctele de întoarcere de la extre-

mităţile bobinei, unde spira se aşează pe suprafaţa de înfăşurare după curba lănţişorului (fig. IV.1.47).

,cos

1cos

1tg

⎟⎠

⎞⎜⎝

⎛α

−αθ

=o

xRy (IV.1.66)

unde: =µ=θtg coeficientul de frecare fir/fir. Raza minimă a spirelor Rm de la care începe alunecarea, spre mijlocul bobinei, se calculează cu relaţia:

α−αµ

=cos1

sin HRm . (IV.1.67)

Fig. IV.1.47. Curbele de întoarcere.

Scurtarea totală a lungimii bobinelor cilindrice la atingerea razei finale Rx este deter-minată α şi µ , conform relaţiei:

αµ

α−=

ααµ

α−α=

cos )cos1(

cos cos )cos(cos xf

o

oxff

RRy . (IV.1.68)

RxRxi

α

NS

δ

Rxf

Page 49: Manualul inginerului textilist

Bobinarea firelor 1179

Pentru echilibrul spirelor de margine în punctele de întoarcere de la baza bobinei

tronocnice, unghiul α trebuie să îndeplinească condiţia [4], [47]: β−θ≤αβ−µ≤α sau arctg , (IV.1.69)

unde: θ este unghiul de înclinare geoedezică a spirei (unghiul dintre normala principală la curba firului şi normala la suprafaţa de înfăşurare). Unghiul θ critic este dat de coeficientul de frecare µ , care are valori orientative de: 0,49–0,65, la bumbac pe bumbac; 0,50–0,70, la in pe in; 0,32–0,68, la lână pe lână; 0,28–0,38, la fire tip mătase.

Conicitatea β a bobinelor poate avea valori de 1°51’; 3°16’; 3°30’; 3°50’; 4°20’; 5°57’; 8°15’; 9°10’; 9°30’; 11° etc. Stabilitatea spirelor de margine la bobinele conice este satisfăcută corespunzător pentru valori α = 12°30’–25°. La bobinele cilindrice (β = 0), echilibrul spirelor de margine este asigurat dacă cr θ≤α .

Lungimea bobinelor (înfăşurării) poate fi Ls = 80–200 mm, valorile concrete depinzând de tipul maşinii RAS 15-SAVIO (tabelul IV.1.15). Conicitatea şi lungimea bobinelor se adoptă şi în funcţie de destinaţia acestora (tabelul IV.1.16).

Tabelul IV.1.15

Conicitatea şi lungimea bobinelor

Conicitate Lungime bobină, mm

Lungime tub, mm

Diametru bază tub, mm

Diametru vârf tub, mm

1°51'

85 110 127 152

95 120 140 165

62 62 62 62

56 56 56 56

3°30' 152 175 46 24,7

4°20' 127 152

145 170

55 59

33 33

5°57' 152 170 68 33

9°15' 152 170 65,6 –

Tabelul IV.1.16

Conicitatea bobinelor în funcţie de destinaţie

Destinaţia bobinelor Conicitatea bobinelor Diametrul tubului, mm Lungimea bobinei, mm

Urzire 4°20'; 5°57' – 85; –

Ţesere cu proiectul 0°; 2°; 4°20' 105; – ; – 80; 125; –

Tricotare 5°57'; 9°15' – –

Distribuţia spirelor pe suprafaţa bobinelor, caracterizată de unghiul de deplasare a

punctelor de întoarcere ψ (fig. IV.1.44) şi de distanţa dintre spirele alăturate, l, variază ciclic.

Page 50: Manualul inginerului textilist

1180 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Segmente hiperbolei de distribuţie (fig. IV.1.48) reprezintă legea de variaţie a unghiului ψ scrisă sub forma [59], [60]:

⎟⎠

⎞⎜⎝

⎛ −π=⎥⎥⎦

⎢⎢⎣

αβ

−απβ

π=ψ **

2 cos

cos 2 A

RA

tgRL

tgRL

xx

s

x

s . (IV.1.70)

*tg

cos *

AR

L

x

s =απβ este partea întreagă a expresiei .

tg cos

απβ

x

s

RL Segmentele de drepte din

fig. IV.1.49 reprezintă legea de variaţie a distanţei l dintre punctele de întoarcere succesive, scrisă sub forma:

xx

xs

x RAAtgR

LRtg

LRl 2 2

cos 2cos 2 **

−π=⎥⎦

⎤⎢⎣

⎡απβ

π−α

β=ψ= . (IV.1.71)

Fig. IV.1.48. Segmentele hiperbolei de

distribuţie a punctelor de întoarcere.Fig. IV.1.49. Variaţia distanţei dintre punctele

de întoarcere succesive. Defectele ciclice de benzi (fig. IV.1.50), ce se formează ori de câte ori ;;0 π=ψ=ψ

23 sau

=ψπ

=ψ etc., se elimină sau se diminuează prin perturbarea ciclică a raportului dintre

viteza periferică a bobinei şi viteza de translaţie a firului de-a lungul bobinei (se perturbă

1

2tgvv

=α ), realizată prin mecanisme specifice, care produc perturbarea ciclică a turaţiei

bobinei, a turaţiei tamburului sau a turaţiei tamburului şi a frecvenţei cursorului de distribuţie a firului (fig. IV.1.51).

Densitatea bobinelor este influenţată de caracteristicile înfăşurării, şi variază de-a lungul generatoarei bobinei, în funcţie de α , conform relaţiei:

.sin 2 10

5 απ

=ρx

rt

RnT

(IV.1.72)

La extremităţile bobinei , şi 0 ∞→ρ→α rezultând margini cu densităţi mai mari. Diminuarea densităţii margi-nilor, uniformizarea şi creşterea densităţii medii a bobinei şi a stabilităţii spirelor la desfăşurare se realizează prin înfă-şurarea diferenţiată a straturilor (fig. IV.1.52). Amplitudinea de diferenţiere este reglabilă (λ = 0–5 mm), pentru a permi-te şi uniformizarea circulaţiei flotei de vopsire (fig. IV.1.53). Densitatea bobinelor depinde de natura materiei prime, fineţea firelor şi destinaţia bobinelor (tabelul IV.1.17).

Fig. IV.1.50. Defecte ciclice de benzi.

Page 51: Manualul inginerului textilist

Bobinarea firelor 1181

Fig. IV.1.51. Perturbarea turaţiilor. Fig. IV.1.52. Înfăşurarea diferenţială.

Fig. IV.1.53. Circulaţia flotei de vopsire prin corpul bobinei.

Tabelul IV.1.17

Densitatea bobinelor

Fire tip bumbac Fire tip lână Fire tip liberiene

Tt, tex ρ, g/cm3 Tt, tex ρ, g/cm3 Tt, tex ρ, g/cm3

a. Înfăşurare normală. a. Fire cardate 56

56 – 84 84 – 120

120

0,50 – 0,52 0,48 – 0,50 0,46 – 0,48 0,42 – 0,45

10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40 40 – 50

0,38 – 0,39 0,37 – 0,38 0,36 – 0,37 0,35 – 0,36 0,34 – 0,35 0,33 – 0,34 0,32 – 0,33

68 – 84 110 – 125 140 – 170 230 – 240 340 – 500

0,35 0,34 0,33 0,32

0,22 – 0,30

b. Înfăşurare normală b. Fire pieptănate

10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40 40 – 45

0,30 – 0,31 0,29 – 0,30 0,27 – 0,28 0,26 – 0,27 0,25 – 0,26 0,24 – 0,25 0,23 – 0,24

15 – 17 17 – 25 25 – 35 19x2 32x2 42x2

0,38 – 0,39 0,36 – 0,38 0,35 – 0,36

0,38 0,37 0,38

Page 52: Manualul inginerului textilist

1182 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.1.6.4. Caracteristicile bobinelor cu înfăşurare în cruce cu precizie Înfăşurarea în cruce cu precizie, folosită la firele filamentare, este rezultatul combinării

mişcării de rotaţie a bobinei, cu viteză periferică constantă, cu mişcarea de translaţie a firului, cu viteză descrescătoare la creşterea razei înfăşurării. Prin scurtarea cursei cursorului de distribuţie a spirelor se pot realiza bobine biconice (fig. IV.1.54), la care lungimea stratului Ls variază în funcţie de raza Rx, conform relaţiei:

;

tg1

tg1

2tg

1

tg1

tg1

cos1

tgtgcos1

21

212

2

1

10

⎟⎟⎠

⎞⎜⎜⎝

β−

β

β−

⎟⎟⎠

⎞⎜⎜⎝

β+

ββ−⎟⎟

⎞⎜⎜⎝

β+

ββ+

=x

s

Rrr

LL (IV.1.73)

xs RCCL 21 −= . (IV.1.74)

Fig. IV.1.54. Bobine biconice.

Caracteristicile de bază ale structurii înfăşurării bobinelor de precizie variază conform

curbelor din fig. IV.1.55, conform relaţiilor:

,arctg2

arctgxsx

s

RC

NRL

=α la bobinele cilindrice sau tronconice; (IV.1.75)

,arctg2

arctg 21

x

x

sx

x

RBRA

N R RCC −

=π−

=α la bobinele biconice; (IV.1.76)

kbs iN 21

= , raportul de transmisie ikb dintre axul camei cursorului şi axul bobinei este

constant;

s

ss L

Nn = la bobine cilindrice sau tronconice; ](IV.1.77)

x21 RCCNn s

s −= , la bobine biconice; (IV.1.78)

constant,==s

s

NL

h la bobine cilindrice sau tronconice; (IV.1.79)

s

x

NRCCh 21 −= , la bobine biconice; (IV.1.80)

Page 53: Manualul inginerului textilist

Bobinarea firelor 1183

222 4 xRh π+=λ , la bobine cilindrice sau tronconice; (IV.1.81)

221

222 )(4 xsx RCCNR −+π=λ , la bobine biconice; (IV.1.82)

constant;)22(2 * =−π=ψ ss NN (IV.1.83)

2224

hR

Rhe

x

x

θ= , la bobine cilindrice sau tronconice; (IV.1.84)

221

22221

)(4

)(

xsx

x

RCCNR

RRCCe

−+π

−θ= , la bobine biconice. (IV.1.85)

Fig. IV.1.55. Caracteristicile înfăşurării de precizie.

Page 54: Manualul inginerului textilist

1184 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Pentru bobinarea aţei de cusut sau a unor fire tehnice se foloseşte înfăşurarea strânsă fir

lângă fir, la care distanţa e dintre spirele alăturate este egală cu diametrul firului. La firele textile pentru ţesere sau tricotare se foloseşte înfăşurarea în romburi deplasate, la care distanţa e este mai mare decât diametrul firului.

Densitatea bobinelor de precizie este influenţată de caracteristicile înfăşurării, conform relaţiilor [63]:

β

⎟⎠

⎞⎜⎝

⎛π

β+

=ρcos 10

2cos 1

5

2

s

sx

ssrt

LNR

LNnT, la bobinele tronconice; (IV.1.86)

s

sx

ssrt

LNR

LNnT

5

2

102

1 ⎟⎠

⎞⎜⎝

⎛π

+=ρ , la bobinele cilindrice; (IV.1.87)

β−

⎟⎠

⎞⎜⎝

⎛π

β−+

=ρcos)(10

2cos )(1

215

221

RCCNR

RCCNnTsx

xsrt

, la bobine tronconice

biconice. (IV.1.88) Densitatea bobinelor cu înfăşurare de precizie poate avea

valorile: 0,72–0,77 g/cm3, la fire de viscoză; 0,70–0,74 g/cm3, la mătase cuproamoniacală; 0,68–0,72 g/cm3, la fire acetat; 0,72–0,77 g/cm3, la fire sintetice P.A. Micşorarea densităţii capetelor bobinelor şi uniformizarea

acesteia de-a lungul generatoarei se relizează prin variaţia ciclică a lungimii straturilor (fig. IV.1.56), ce conduce la înfăşurarea diferenţiată a acestora.

IV.1.6.5. Caracteristici tehnologice ale profilului de conducere a firelor

la mecanismele de bobinare

La bobinarea paralelă, rotaţia bobinei se face prin acţionarea directă a fusului bobinei sau prin acţionarea prin fricţiune a bobinei. Cursorul pentru distribuţia spirelor pe suprafaţa înfăşurării este acţionat cu came. Între viteza cursorului de distribuţie a spirelor, v, şi raza de înfăşurare a bobinei, Rx (fig. IV.1.57, a, b) are loc relaţia:

CtnT

vnNT

RRv btbtox =

ρ=δ

ρ=− 55 10

4 sau

10 4

)( . (IV.1.89)

La anumite valori ale Tt (tex), turaţiei nb a bobinei şi a densităţii bobinei, ρ , viteza v a cursorului, dată de cama înfăşurării, trebuie să satisfacă curba din fig. IV.1.57, c.

Înlăturarea întrepătrunderii spirelor din straturi suprapuse se face prin variaţia ciclică, lentă şi cu valori mici a pasului spirelor, variaţia ciclică a turaţiei n a camei cursorului, respectiv a vitezei v a cursorului (fig. IV.1.57, d), chiar şi la bobine cilindrice. Evitarea întăririi

Fig. IV.1.56. Înfăşurarea diferenţială

la bobinarea de precizie.

Page 55: Manualul inginerului textilist

Bobinarea firelor 1185

capetelor bobinei, a urcării sau a căderii spirelor la flanşele de capăt, cursorul poate avea o mişcare suplimentară de transport, lentă şi alternativă, prin care se realizează dispersarea punctelor de întoarcere la cele două extremităţi pe o distanţă λ = 0,5–2 mm (fig. IV.1.58) şi o decalare a spirelor din straturi suprapuse.

Fig. IV.1.57. Variaţii ale vitezei cursorului. La înfăşurarea în cruce neuniformă, cele mai răspândite mecanisme sunt mecanismul cu

tambur tăiat şi mecanismul cu tambur şănţuit. Profilul tehnologic de conducere a firului la tamburul tăiat pentru bobine tronconice trebuie să îndeplinească următoarele condiţii tehnologice (fig. IV.1.59):

1. Siguranţa parcurgerii de către fir a întregii lungimi L a bobinei şi evitarea ieşirii firului din tăietură sau canal la cele două extremităţi (x = L şi x = 0) se realizează prin:

);63( respectiv şi 010,101 −−α=β=αβ<βα<α LL

,1914 respectiv , 2 0−=β=απ

=α llt

l DL pentru bobine tari şi (IV.1.90)

02520 −=β=α ll , pentru bobine moi. (IV.1.91) 2. Compensarea abaterii înclinării reale faţă de

cea liniară pe zona de întoarcere liberă a firului faţă de cea de împingere a acestuia la extremităţi, realizată prin:

010100 β−β=β∆=α−α=α∆ ; (IV.1.92)

lLLLl α−α=α=β−β=β∆ 0 . (IV.1.93) 3. Pentru un element de lungime ∆x a bobinei

(fig.IV.1.59), suma lungimilor de fir depuse pe bobină la deplasarea firului în cele două sensuri succesive să fie constantă, condiţie definită prin relaţiile:

constant=∆=∆ xx ba ; (IV.1.94)

constantsin

1sin

1=

β+

α xx;

Fig. IV.1.58. Înfăşurarea diferenţială la bobinarea paralelă.

Page 56: Manualul inginerului textilist

1186 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.59. Profilul tăieturii tamburului.

Page 57: Manualul inginerului textilist

Bobinarea firelor 1187

xL

oL

ox

α+

α+

α=

αsin

1sin

1

sin1

sin1 ; (IV.1.95)

xL

Lo

ox

β−

β−

β=

βsin

1sin

1

sin1

sin1 . (IV.1.96)

4. Scăderea continuă şi fără salturi a unghiurilor ,şi xx βα de la Lo αα la şi de la

ola ββL , conform cu sensul de deplasare a firului, pentru a diminua pericolul de apariţie a defectului de corzi şi a asigura o creştere constantă a razei de-a lungul generatoarei.

5. Profilul tehnologic al tăieturii tamburului poate fi construit şi prin puncte, folosind ecuaţiile:

lx

Lxyαα

α=

tg tgtg pentru ;

2 0 şi 0 tDyLx π

≤≤≤≤ (IV.1.97)

x

ot xLDyβββ−

=tg tgtg)(

2

1 pentru .

2 şi 0 t

t DyDxL π≤≤π

≥≥ (IV.1.98)

Profilul tăieturii de conducere a firului poate fi trasat şi cu respectarea altor cerinţe tehnologice. Astfel, profilul exponenţial (fig. IV.1.60, a) asigură scăderea exponenţială a vite-zei de translaţie a firului corespunzător cu sensul de depunere al stratului, profilul liniar cu pante diferite pe zone (fig. IV.1.60, b) şi pe fiecare jumătate a bobinei, asigură suprapunerea alternativă de straturi cu spire rare şi straturi cu spire dese, depuse în sens invers (fig. IV.1.60, c), şi, în consecinţă, creşterea constantă a razei.

Fig. IV.1.60. Profil exponenţial şi profil liniar cu diferite înclinări pe zone.

Pentru realizarea bobinelor cu conicitate variabilă (bobine pentru tricotaje), profilul tăieturii de conducere a firului trebuie să asigure condiţia:

.cos

1cos

1cos

1 sau bxvb

b

x

x

v

v

Dl

Dl

Dl

α<

α<

α<< (IV.1.99)

Scăderea lungimii spirei lx de la valoarea lv, corespunzătoare diametrului Dv al vârfului bobinei, la valoarea lb corespunzătoare diametrului Db al bazei bobinei, trebuie să se facă astfel încât generatoarea bobinei să rămână rectilinie.

Page 58: Manualul inginerului textilist

1188 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.1.61. Caracteristicile tamburului şănţuit. Profilul tehnologic de bază al canalului tamburului şănţuit prezintă o serie de particu-

larităţi (fig. IV.1.61). Numărul de spire ale canalului tamburului de conducere al firului, Nst, corespunzător depunerii unui strat, poate avea una din valorile:

Nst = 1; 1,5; 2 sau 2,5 spire pe canal. Nst = 1 sau 1,5 spire pe canal, la tamburi pentru bobine moi pentru vopsire cu încrucişarea α2 mare, şi Nst = 2 sau 2,5 spire, la tamburi pentru bobine cu densitate mare şi încrucişare

mică a spirelor. Pasul mediu al canalului tamburului este:

st

t NLh = unde L = Lb + 2–4 mm,

unde: Lb reprezintă lungimea generatoarei bobinei. Desfăşurata în plan al profilului tehnologic de bază al canalului tamburului şănţuit

(fig. IV.1.62) se defineşte pe baza următoarelor relaţii: stt NhL = ; (IV.1.100) 2 max t sty D N= π ; (IV.1.101)

Fig. IV.1.62. Profilul teoretic al canalului.

Page 59: Manualul inginerului textilist

Bobinarea firelor 1189

t

tlt D

h

tgtgπ

=α=α ; (IV.1.102)

100

100tgtg at

−α=α ; (IV.1.103)

,2013 0−=β=α=α llt la bobine tari; (IV.1.104)

,2520 0−=β=α=α llt la bobine moi; (IV.1.105)

)15...11( 00 +α=α l ; (IV.1.106)

)7...4( 0−α=α lL ; (IV.1.107)

00 şi β=αα=β LL . (IV.1.108)

Unghiurile xx βα şi se determină după aceleaşi rela-ţii ca la tamburul tăiat, inclusiv valorile y pentru curba teoretică. În punctele de intersecţie, canalele de conducere a firului au adâncimi diferite, iar profilul canalului de supra-faţă are modificări importante faţă de profilul teoretic (fig. IV.1.63).

La bobinele tronconice rotite de tamburi cilindrici (fig. IV.1.64), alunecarea bobinei faţă de tambur variază liniar de-a lungul generatoarei bobinei (fig. IV.1.65). Alu-necarea la vârful bobinei, av, la baza bobinei, ab, şi alune-carea medie, am, se calculează cu relaţiile:

.1100 ; 1100 ; 1100 ⎟⎠

⎞⎜⎝

⎛−=⎟

⎞⎜⎝

⎛−=⎟

⎞⎜⎝

⎛−=

c

mm

c

bb

c

vv R

RaRRa

RRa (IV.1.109)

Fig. IV.1.64. Rotirea bobinelor.

Fig. IV.1.65. Variaţia alunecării de-a lungul generatoarei.

Alunecările depind de parametrii cinematici şi dinamici care poziţionează raza Rc pe

generatoarea bobinei tronconice. Echilibrul momentelor forţelor ce acţionează asupra bobinei permite calculul razei conducătoare cu formula:

Fig. IV.1.63. Modificări al profilului în punctele

de intersecţie a canalelor.

Page 60: Manualul inginerului textilist

1190 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

, sin

2

22

qMRRR rbv

c µβ

++

= (IV.1.110)

unde: Mr este momentul ce se opune rotirii bobinei ca urmare a frecărilor de pe fusul acesteia, a frecării cu aerul şi a tensiunii firului înfăşurat;

q – presiunea unitar-liniară dintre bobină şi tambur; L

q 52 −= [N ⋅ m–1], la bobinele moi

şi L

q 209 −= [N ⋅ m–1], la bobinele tari;

µ – coeficientul de frecare dintre bobină şi tambur )25,02,0( −=µ . Condiţiile de antrenare ale bobinei ),,,( qM r µ trebuie să aibă astfel de valori încât

bcm RRR << şi să fie situată la o distanţă faţă de baza bobinei egală cu 31 din lungimea L a

generatoarei acesteia. Pe baza unei alunecări medii de 2–5% se stabileşte raza conducătoare normală, Rcn, cu relaţia:

,100100

aRR m

cn −= (IV.1.111)

iar momentul rezistent admis la rotirea bobinei, Mra, cu relaţia:

.sin2

)( 2 222

β+µ−µ

= bvcnra

RRqRqM (IV.1.112)

Rezistenţe mari la rotirea bobinei şi conicităţi mari pot conduce la alunecări importante şi scămoşări ale bobinelor, în special în zona vârfului acestora. Pentru înlăturarea alunecărilor şi scămoşărilor, la bobinele cu conicităţi mari se recomandă utilizarea tamburilor de acţionare tronconici.

În tabelul IV.1.18 se prezintă principalele cracteristici ale unor maşini de bobinat.

Page 61: Manualul inginerului textilist

Bobinarea firelor 1191

Tabelul IV.1.19

Caracteristici tehnice ale maşinilor de bobinat

Tipul maşinii Tipul înfăşurării şi al firelor prelucrate

Dimensiunile bobinelor

Viteza de bobinare, m/min Dotări specifice

IMATEX BA (România)

– În cruce neuniformă – Bumbac, lână, sintetice şi amestecuri, cu Nm = 10–170

LS = 110; 150 mmβ = 1°51'; 4°20';

5°57'; 9°10' φmax = 250 mm 440–1200

– Tambur şănţuit – Automat pentru

schimbare ţevi, înnodare şi schimbare bobină

– Curăţitori electronici – Dispozitive Splicer

„Jointair“ SCHLAF-HORST AUTOCONER 238 (Germania)

– În cruce neuniformă – Bumbac, lână, sintetice şi amestecuri, cu Nm = 1,5–240

LS = 83; 108; 125; 150 mm

β = 0°; 4°20'; 5°57'

φmax = 320 mm

500–1500

– Tambur şănţuit – Automat pentru

schimbare şi înnodare – Curăţitori electronici – Parafinare

SAVIO-ESPERO (Italia)

– În cruce neuniformă – Bumbac, lână şi

amestecuri, cu Nm > 3,5

β = 0°; 4°20'; 5°57'

φmax = 300 mm 400–1500

– Tambur şănţuit – Automat pentru

încărcare, schimbare, înnodare

– Curăţitori electronici

SAVIO R AS-15 (Italia)

– În cruce neuniformă – Fire simple şi răsucite

din fibre naturale, chimice şi amestecuri, cu Nm > 5

LS = 85; 110; 127; 152 mm

β = 0°; 1°51'; 4°20'; 5°57

φmax = 300 mm

400-1500

– Tambur şănţuit – Automat pentru

schimbare şi înnodare – Curăţitori electronici sau

mecanici

SCHWEITER

– În cruce de precizie – Fire filamentare

chimice, răsucite sau texturate, cu Td = 15–1000 den

LS = 190 mm β = 3°16' φmax Td, den130 15–20 140 30–45 160 50–75 180 80–100

I: 491–786II: 483–662

III: 388–534

– Dispozitiv de uleiere–antistatizare

SCHÄRER-SCHWEITER METLER AG (SSM) Elveţia

– Înfăşurare de precizie φmax = 280 mm cu masă maximă de 10 kg

Tip Viteza maximă, m/min

SSM-PSM 1600 PW1-P 1200 PW1-S 950

– Parafinare, emulsionare – Comandă cu memorie

pentru programul de bobinare

Tip SSM-PW1F Preciflex SSM-PW1S Preciflex SSM-PSM

Fir bobinat Texturate Elastice 10-10000 dtex Sintetice Artificiale Fire SET 10–10000 dtex Fire filate Nm 1–200

HACOBA (Germania)

– Înfăşurare paralelă – Orice tip de fir

Tip Ls φmax, max. mm mm S2 260 120 495 350 125

Tip Turaţie fus, rot/min FSA-11T 5000 SZ 5000 495 4500

– Contor pentru prestabilirea lungimii

– Automatizarea alimentării maşinii

RATTI R202 M/120

– Înfăşurare paralelă – Fire cu înveliş elastic

LS = 70–165 mmφmax = 135 mm max. 800 m/min

– Dispozitiv de uleiere – Schimbare automată a

bobinei

Page 62: Manualul inginerului textilist

IV.2 RĂSUCIREA, FIXAREA ŞI ROTOSETAREA

IV.2.1. Fineţea şi densitatea de lungime a firelor răsucite a. Fire răsucite sau cablate. Numărul metric este:

snmnsmsmsm CNCNCNCN

Nm 1...

1

1

1

332211++++= , (IV.2.1)

pentru n fire cu fineţe şi coeficient de scurtare diferit.

D

CNNm sm 1= , (IV.2.2)

pentru D fire cu aceeaşi fineţe şi acelaşi coeficient de scurtare;

2211

2121

smsm

ssmm

CNCNCCNNNm

+= , (IV.2.3)

pentru două fire de fineţe şi coeficient de scurtare diferite. Densitatea de lungime a firului răsucit este:

sn

tn

s

t

s

tt C

TCT

CTT +++= ...

2

2

1

1 , (IV.2.4)

pentru n fire cu densitate liniară şi coeficient de scurtare diferit;

s

tt C

DTT 1= , (IV.2.5)

pentru D fire cu aceeaşi densitate liniară şi acelaşi coeficient de scurtare;

21

2211

ss

ststt CC

CTCTT += , (IV.2.6)

pentru două fire cu densitate liniară şi coeficient de scurtare diferit. Pentru determinarea rapidă a fineţii firului răsucit se poate folosi nomograma din

fig. IV.2.1. Notarea fineţii şi a densităţii de lungime a firelor răsucite se face prin precizarea fineţii

şi a densităţii de lungime a firului simplu, respectiv a dublajului. În sistemul metric:

DNmNm 1= , fire răsucite din fire unice de aceeaşi fineţe, Nm1 şi dublaj D (Nm

250 );

Page 63: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1193

Fig. IV.2.1. Nomogramă pentru determinarea fineţii firului răsucit.

2

21 NmNmNm += , fire răsucite din fire unice de fineţe diferită (Nm

24020+ );

21

1

DDNmNm = , fire cablate din fire unice de aceeaşi fineţe, cu dublaj D1, la prima

răsucire, şi dublaj D2, la cablare (Nm 2,3

50 sau Nm 50/3/2);

21

321

DDNmNmNmNm ++

= , fire cablate din fire unice de fineţe diferită şi cu dublaj D1 ,la

răsucire şi D2 la cablare (Nm 2.3

607050 ++ sau Nm(50 +70+60)/3/2).

În sistemul tex, pentru aceleaşi tipuri de fire se folosesc notaţiile: ( )2tex201 ×== ttt TDTT ;

Tt = (Tt1 + Tt2) tex (Tt = (50 + 25)tex); ( );23tex20211 ××=××= ttt TDDTT

( ) ,2tex321 ×++= tttt TTTT ( )( ).2tex66,1628,1420 ×++=tT La notarea firelor răsucite se precizează şi sensul torsiunii la filare prin s şi z, respectiv

sensul torsiunii la răsucire şi cablare prin S şi Z. De exemplu: z/S/Z – fir răsucit în S din două

Page 64: Manualul inginerului textilist

1194 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

fire filate în z, reunit şi cablat în Z. La firele polifilamentare răsucite se precizează natura materiei prime, numărul de filamente, sensul şi valoarea torsiunii de răsucire, ca de exemplu:

• PA 67 dtex f 20,Z 300 = fir de poliamidă 67 dtex, din 20 filamente răsucite Z, cu 300 răsucituri/metru;

• PES tehnic 1100 dtex f 200x2 Z 80 = fir tehnic de poliester 1100 dtex din 200 fila-mente răsucite cu dublaj 2, în sens Z, cu 80 torsiuni/metru.

b. Fire răsucite de efect. Numărul metric se poate calcula cu relaţiile:

1,21312321

321

... ... ... ...

−++=

nmnmnmn

ne NNmNmlNNmNmlNNmNml

NmNmNmNmNm , (IV.2.7)

pentru fir de efect, la care, într-un metru de fir de efect, firele cu fineţea mnmm NNN ... 21 intră cu lungimile de l1, l2 …ln;

213312321

321

NmNmlNmNmlNmNmlNmNmNmNme ++

= , (IV.2.8)

pentru un fir de efect din trei fire cu fineţea 321 mmm NNN , la care, într-un metru de fir de efect, firele intră cu lungimile l1, l2, l3.

În funcţie de vitezele de debitare ale componenţilor, la răsucire, fineţea firului rezultat se calculează cu relaţia [ ]58 :

,

111⎟⎟⎠

⎞⎜⎜⎝

⎛++=

mfs

f

mab

a

mbsbe Nvv

Nvv

NCNm (IV.2.9)

unde: sfab vvvv ,,, reprezintă vitezele de debitare ale firului de bază, ale firului auxiliar de efect, ale firului de fixare şi ale semifabricatului la răsucirea a doua;

Csb – coeficientul de scurtare al firului de bază în firul răsucit de efect. Densitatea de lungime a firului răsucit de efect se poate calcula cu relaţia:

, ... 2211 tiitnnttte TlTlTlTlT ∑=+++= (IV.2.10)

pentru un fir de efect din n fire, cu Tt1 …Ttn, ce intră într-un metru de fir de efect cu lungimile l1 …ln.

În funcţie de vitezele de debitare, relaţia de calcul este:

⎟⎟⎠

⎞⎜⎜⎝

⎛++=

s

tffta

b

atb

sbte v

TvT

vvT

CT

1 . (IV.2.11)

Consumul procentual al unui component oarecare i, la fabricarea firelor răsucite de efect, se calculează cu relaţia:

.

100∑

=tii

tiii Tl

TlP (IV.2.12)

În funcţie de viteza de debitare a unui component oarecare (firul auxiliar de filare), consumul procentual este:

. ⎟⎟

⎞⎜⎜⎝

⎛++

⋅=

tfs

fta

b

atbb

taaa

Tvv

TvvTv

TvP (IV.2.13)

Page 65: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1195

IV.2.2. Torsiunea de răsucire

Torsiunea de răsucire, T, se poate calcula cu relaţia lui Koechlin:

, sau t

tm

TTNmT α=α= (IV.2.14)

unde: )( tm αα este coeficientul de torsiune la răsucire, în sistemul metric (tex);

mt α=α 623,31 . (IV.2.15)

În tabelul IV.2.1 sunt indicate valori ale coeficientului mα la diferite tipuri de fire. Coeficientul de torsiune la răsucire nu trebuie să depăşească α critic, care are valorile:

166–197, la fire de bumbac; 91–106, la fire de celofibră; 102–111, la fire de in; 112–142, la fire de cânepă; 144–24, la fire de iută; 128–135, la fire de lână pieptănată.

Tabelul IV.2.1

Coeficientul αm şi torsiuni de răsucire

Natura şi tipul firului filat

αm pentru fire filate Natura şi tipul firului filamentar Torsiuni / metru

Urzeală Bătătură Bumbac 120–150 80–100 Acetat 80 Vigonie 84–93 60–72 Viscoză 80; 90; 80–120 Fuior de in 91–101 76–86 Poliamidice:

PA–6 neted

200 Câlţi de in 101–111 86–96 Fuior de cânepă 100–106 86–91 PA–6 profilat 150–200 Câlţi de cânepă 122–127 112–117 PA–6 texturat 80–120 Iută 116–147 66–81 PA– termoetirat Lână pieptănată 86–110 55–75 Poliesterice:

PES–110 dtex textil

300; 250 400–800

Lână cardată 100–120 50–60 Celofibră 75–125 70–115 Aţă de cusut zS 150–200 PES–167 dtex 120; 400 Aţă de cusut zSZ 180–280 PES–167 dtex x 2 250 Fire crep zZ 150–250 PES–50 dtex (voal) 750 Fire crep zS 250–300 PES–50; 76 dtex 1000–1700

Fire pentru tricoturi 60–80

PES–83 dtex 350 PES-texturat 167 dtex x 2 40; 60; 80 PES-texturat 167 dtex 40; 120 PES-texturat 50 dtex, 76 dtex 200 PES-texturat SET, 150 dtex 350 PES texturat 76 dtex 40 PES-texturat 110 dtex 40 PES-texturat 110 dtex x 2; 167 dtex x2

60

Fire filamentare crep 2000–2700

Page 66: Manualul inginerului textilist

1196 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Coeficientul de torsiune, ce permite obţinerea unui fir tip bumbac răsucit, complet

stabil, se poate calcula în funcţie de coeficientul de torsiune la filare, 0mα , şi valoarea dublajului D, folosind relaţia [ ]100 :

0 1m mD

Dα = α

−. (IV.2.16)

Pentru fire răsucite din mai mult de doi componenţi se recomandă calculul torsiunii de răsucire cu relaţia lui Holtzhausen [ ]100 :

3

( 1)

m D NmTD D

α −= , unde D este valoarea dublajului.

Pentru obţinerea unor fire cablate stabile, coeficientul de torsiune la răsucire se poate calcula cu relaţiile[100], [109]:

1 11 0

1

1

sm m

D CD

α = α−

, la prima răsucire (IV.2.17)

şi

1 2 1 22 0

1 2

( 1) ( 1)

s sm m

D D C CD D

α = α− −

, la a doua răsucire, (IV.2.18)

unde: 1 2 1 2, , ,s sD D C C reprezintă valoarea dublajelor şi a coeficienţilor de scurtare la cele două răsuciri.

Coeficientul de utilizare a sarcinii la rupere a fibrelor în firele răsucite are valorile: 50–60%, la firele răsucite; 60–70%, la firele cablate. Sarcina de rupere a firelor răsucite este mai mare decât cea a firelor componente, iar

valoarea minimă a acesteia, Sr, se calculează în funcţie de sarcina de rupere a firului Sr1 simplu cu relaţia:

Sr = 2,2 Sr1, la fire răsucite din două fire simple; Sr = 3,45 Sr1, la fire răsucite din trei fire simple. Neregularitatea la sarcina de rupere se micşorează prin răsucire, conform relaţiei: Ur = 0,95 U1, la fire răsucite din două fire simple; Ur = 0,90 U1, la fire răsucite din trei fire simple.

IV.2.3. Modificarea lungimii firelor prin răsucire

Scurtarea S, în procente, se calculează cu relaţia:

1

1 1

1100 sau 100 1 l

l lS Sl

⎛ ⎞−= = −⎜ ⎟

⎝ ⎠, (IV.2.19)

unde: l1 este lungimea firului dublat; l – lungimea firului răsucit;

1s

l Cl= – coeficientul de scurtare;

Page 67: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1197

.100

100 sau 100)1( SCCS ss−

=−= (IV.2.20)

Scurtarea poate avea următoarele valori: 0–4%, la fire slab răsucite; 2–8%, la fire puternic răsucite; 15%, la aţa de cusut puternic răsucită; 20%, la firele crep; 25%, la firele cord ZZS la prima răsucire şi o alungire de 10% la a doua răsucire.

IV.2.4. Torsionarea şi înfăşurarea firelor la răsucire

Organele principale cu ajutorul cărora se realizează răsucirea şi înfăşurarea firelor la maşinile de răsucit sunt:

– fusul cu bobina de înfăşurare şi ansamblul inel cursor, la maşinile de răsucit cu inele; – furca şi bobina de înfăşurare, la maşinile de răsucit cu furci; – fusul de dublă torsiune, pentru răsucire, şi fusul de bobinare pentru înfăşurare, la ma-

şinile de răsucit cu dublă torsiune; – fusul cu bobina de desfăşurare, pentru răsucire, şi fusul de bobinare pentru înfăşurare,

la maşinile de răsucit fire crep. La răsucirea cu inele se folosesc aceleaşi tipuri de inele ca la maşinile de filat

(fig. IV.2.2 şi tabelul IV.2.2). Corelarea diametrului inelului cu fineţea firului răsucit se poate urmări în fig. IV.2.3. Cursorii ce se rotesc pe pista de alunecare a inelelor au o mare diversitate de forme şi mărimi (tabelul IV.2.3 şi fig. IV.2.3). Duritatea suprafeţelor de contact se reco-mandă a fi:

60–70 HRC (duritate Rockwel), la inel; 55–68 HRC (630-940 HV – duritate Vickers), la cursor; 80–88o Shore D, la cursor din poliamidă (Nyltex). Viteza cursorului pe inel depinde de diametrul inelului şi turaţia fusului (fig. IV.2.4). Se

recomandă valorile: 25–30 m/s, la inel simetric tip T; 30–35 m/s, la inel asimetric; 60–70 m/s, la inel din pulberi metalice.

Tabelul IV.2.2

Dimensiuni pentru inele (SR ISO 96–1; SR ISO 96–2)

Tipul inelului Dimensiuni inel

Diametrul interior, d (mm)

Diametrul de fixare, d1 (mm) Înălţimea, h (mm) Înălţimea

flanşei, b (mm) Flanşă T 30–75 37–83 8; 10 2,6; 3,2; 4 Flanşă A, B, C 38–70 43,4–75,4 – 3,2; 4,2 Vertical HZCZ 45–250 58–263 6,3; 8; 9,5 –

Vertical HZ 45–250 54,5–263 6,3; 8; 9,5; 10,3; 11,1; 16,7; 25,4;

38,1 –

Conic J 45–250 52,5–191 9,1; 11,1; 17,4 –

Page 68: Manualul inginerului textilist

1198 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.2.2. Tipuri de inele şi cursori.

Fig. IV.2.3. Alegerea diametrului inelului.

Page 69: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1199

Tabelul IV.2.3

Tipuri de cursori (SR ISO 96–1; SR ISO 96-2)

Simbolul cursorului Secţiunea sârmei Simbolul sârmei Numărul cursorului

T Plată f

4–900 Circulară r Semicirculară dr

HZ

Plată f

9–20 000 Circulară r Semicirculară dr Material plastic –

J

Circulară r

9–20 000 Semicirculară dr

Material plastic –

Exemplu de notare: Cursor ISO 96–1–T4 Cf–45 (cursor pentru inel T, cu lăţimea flanşei b = 4 mm, tip C, din sârmă plată de oţel şi număr cursor 45).

Fig. IV.2.4. Determinarea vitezei cursorului.

Page 70: Manualul inginerului textilist

1200 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Temperatura cursorilor metalici, în timpul rotirii pe inel, poate fi: 200...250oC, în condiţii normale de funcţionare; 300...400oC, în condiţii de uzură. Presiunea dintre inel şi cursor este de 40–50 daN/cm2. Culorile cursorilor ce indică temperaturile de lucru sunt: – alb spre galben maro: temperatură de 150...300oC; – roş spre albastru: temperatura de peste 300oC. Tensiunea medie a firului, T, pe zona cursor-ţeavă, se poate calcula, cu aproximaţie, cu

relaţia [60], [103]:

,1800

5,1 22icf Dmn

Tµπ

= (IV.2.21)

unde: nf este turaţia fuselor, în rot/min; µ – coeficientul de frecare dintre inel şi cursor (µ = 0,05–0,075 – inel cu ungere); mc – masa cursorului, în kg; Di – diametrul inelului, în m. Masa cursorului, pentru un anumit fir, se poate alege în baza relaţiei:

if

rrc Dn

SKm 5,1

8,122π

= , (IV.2.22)

unde: mc este masa unui cursor, în g; Kr – coeficient de folosire al sarcinii de rupere (Kr = 0,08–0,1); Sr – sarcina de rupere a firului, în N. Masa cursorului foloseşte la alegerea numărului cursorului. Conform ISO, numărul

cursorului reprezintă masa nominală, în grame, a 1000 de cursori. Notarea cursorilor conform ISO trebuie să conţină: referirea la ISO, simbol inel, lăţimea flanşei inelului, notarea producă-torului la tipul de cursor („C“ sau „EL“), simbolul secţiunii sârmei metalice, materialul, dacă este altul decât oţel, numărul cursorului (tabelul IV.2.3). Cursorii din material plastic pot fi marcaţi cu litere, în funcţie de tipul şi înălţimea inelului, urmate de un număr, ce reprezintă masa nominală a cursorului, în mg şi din nou litere, ce indică forma cursorului (cursor K 160 ENC). Abaterea limită a masei cursorului poate fi de ± 5%. Se întâlnesc şi alte numerotări, specifice firmelor producătoare, ca, de exemplu, numerotarea cursorilor Bräcker (tabelul IV.2.4). Numărul cursorului se corelează direct cu fineţea firului răsucit (tabelul IV.2.5), luând ca bază o viteză a cursorilor de 20–24 m/s.

La răsucirea cu furci (folosită pentru fire tehnice), tensiunea firului se poate calcula cu relaţiile [ ]60 :

, 2

00x

xRRgH

RgRRHRG

T ρµπ+ρπµ−µ

= (IV.2.23)

la mersul de regim şi bobine frânate prin propria greutate;

, 2

2

2

22

400

200

xpxp

xx

Rt

vHRt

vRHvJRRgH

RgRRHRG

Tρπ

+ρπ−

+ρµπ+ρπµ−µ

= (IV.2.24)

la pornirea maşinii şi bobine frânate prin proprie greutate. Relaţiile exprimă dependenţa tensiunii firului, T, în punctul de înfăşurare, faţă de

elementele geometrice ale bobinei, Ro, H, R, Rx (fig. IV.2.5), coeficientul de frecare µ pe zona de frânare a bobinei, greutatea suportului bobinei, Go, densitatea înfăşurării firului, ρ , momentul de inerţie al suportului bobinei, Jo, viteza de înfăşurare a firului, v şi timpul de pornire, tp.

Page 71: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1201

Tabelul IV.2.4

Corespondenţă între numărul ISO şi numărul Bräker al cursorilor

Cursori tip C Cursori tip J

N° ISO N° Bräcker N° ISO N° Bräcker N°ISO N° Bräcker N°ISO N° Bräcker

5 5,6 6,3 7,1 8 9 10 20 40 56 63 71 80 90 100

30/0 29/0 28/0 26/0 24/0 22/0 20/0 11/0 4/0 1/0 1 2 3 4 6

112 125 140 160 400 500 630 800 850 900 1250 1400 1600 1800 2000

7 8 9 10 24 32 40 55 60 65 90 100 120 130 140

12500 11200 10000 9000 8000 7100 6300 5600 5000 4500 2500 2240 1600 1000 900

7/0 6/0 5/0 4/0 3/0 2/0 1/0 1 2 3 8 9 11 13 14

500 350 355 180 125 112 90 21 63 50 40 28 20 16

12,5

16 17 18 20 22 23 24 25 26 27 28 30 34 37 40

Tabelul IV.2.5

Tipuri şi număr recomandări la răsucire

Cursori tip C Cursori ureche (tip J)

Tt, tex Număr cursor, N°ISO

Număr cursor, N° Bräcker Tt, tex

Cursor de oţel Cursor nylon N° ISO N° ISO N° Bräcker

25 × 2 170 × 2 150 × 2 120 × 2 100 × 2 85 × 2 60 × 2 50 × 2 36 × 2 30 × 2 25 × 2 20 × 2 17 × 2 14 × 2

12,5 × 2 11 × 2 10 × 2 8,3 × 2 7,1 × 2 6,2 × 2 5,5 × 2 5 × 2

720 650 560 500 450 400 355 315 250 200 160 125 100 90 80 71 63 56 50 45 40

31,5

50 40 36 32 28 24 20 18 14 12 10 8 6 4 3 2 1

1/0 2/0 3/0 4/0 6/0

250 × 2 170 × 2 120 × 2 100 × 2 72 × 2 56 × 2 42 × 2 34 × 2 30 × 2 25 × 2 23 × 2 21 × 2 20 × 2 17 × 2

12,5 × 2 10 × 2 8,4 × 2 7,4 × 2 6,4 × 2 4,8 × 2

– –

3150 2500 1800 1250 900 710 560 450 355 250 180 160 125 112 90 71 63 50 40 28 – –

6 8 10 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 – -

1400 1120 800 630 400 315 250 200 160 112 80 70 60 50 40 30 25 – – – – –

Page 72: Manualul inginerului textilist

1202 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.2.5. Bobina de înfăşurarea la răsucirea cu furci: 1 – axul suport; 2 – bobina; 3 – pinteni de sprijin şi frânare; 4 – banca bobinelor;

Rc, R, Rx, Rf, H – elemente geometrice ale bobinei; T – tensiunea firului. Înfăşurarea firului răsucit se face sub formă de straturi, pe diverse tipuri de bobine sau

copsuri. La răsucirea cu inele, straturile pot fi: conice cu avans, cilindrice sau cilindroconice. La răsucirea cu furci, straturile pot fi cilindrice şi paralele, iar la răsucirea cu dublă torsiune şi la răsucirea crep, straturile sunt cele specifice pentru bobinare. În funcţie de forma straturilor şi ciclograma mişcării de distribuţie a spirelor şi straturilor, rezultă bobine cilindrice, cilindrice biconice, cops cu vârf conic, butelie cu con drept sau concav etc. (tabelul IV.2.6) [112].

Producţia maşinilor de răsucit este dependentă de turaţia fuselor şi torsiunea firelor, care vor determina viteza de debitare a firului la maşina de răsucit cu inele (fig. IV.2.6), sau viteza de înfăşurare la maşinile cu dublă torsiune sau a firelor crep. Unele performanţe tehnice ale maşinilor de răsucit şi de dublat-răsucit se pot urmări în tabelele IV.2.7 şi IV.2.8.

Fig. IV.2.6. Determinarea producţiei pentru maşini de răsucit.

Page 73: Manualul inginerului textilist

Tabelul IV.2.6

Tipuri de bobine şi caracteristicile înfăşurării la răsucirea firelor

Notaţii în tabel: H – cursa băncii inelelor; R – raza bobinei; r – raza tubului suport; Tkl – durata unui ciclu de ridicare-coborâre (depunerea a două straturi); Tkv – durata unui ciclu de variaţie a cursei băncii inelelor (a lungimii sau a poziţiei straturilor); Tkt – durata totală a formării unei bobine (durata tuturor ciclurilor); Nkl – numărul ciclurilor de ridicare-coborâre (straturi duble) dintr-un ciclu de variaţie a lungimii straturilor sau a poziţiei acestora; hl (hs) – pasul de lungire (scurtare) a cursei băncii inelelor (straturilor) la unul sau la ambele capete ale bobinei; hr (hc) – pasul de ridicare (coborâre) a cursei băncii inelelor (straturilor) la unul sau la ambele capete ale bobinei; hrl – pasul de ridicare şi de lungire a cursei băncii inelelor; Ntkv – numărul total al ciclurilor de variaţie a lungimii straturilor pe durata formării unei bobine; Ntkl – numărul total al ciclurilor de ridicare–coborâre (straturi duble) pe durata formării unei bobine; M – masa firului pe bobină; ∆R – grosimea tuturor straturilor înfăşurate; ρ – densitatea de înfăşurare; h – pasul spirelor; α – unghiul de înclinare al spirelor; β – conicitatea suprafeţei; δr – grosimea radială a unui strat; Ns – numărul de spire în strat; lkl(lklm) – lungimea (lungimea medie) a firului înfăşurat în două straturi succesive; st – salt tehnologic axial al straturilor.

Denumirea şi caracterizarea bobinei Forma şi ciclograma de realizare a bobinei Caracteristicile ciclogramei

0 1 2

Bobină cilindro-conică sau cilindrică biconică (cops), din straturi conice, cu lungime şi înălţime constante şi cu salt axial

H – constant; Tkl = constant dar reglabil;

;ktkltklkt TTNT ==

( ),10 223 rRTl

s tklt

−ρπ=

st = 0,05 – 2 mm;

,1000

tlkltkl Tl

MN =

lkl = 1,5 – 15 m/ciclu

St

Tk1

Page 74: Manualul inginerului textilist

Tabelul IV.2.6 (continuare)

0 1 2

Bobină cilindrică, cu margini drepte, din straturi cilindrice, de lungime constantă

H = constant, H = 250 – 300 mm Tkl = constant sau variabil;

tkltkl Tl

MN

1000= = straturi duble;

lkl = 40–500 m/ciclu; ' ,s f cn n n= − spire/min;

klss TnN '= spire/ciclu;

==H

Nh s

2constant sau variabil

Bobină cilindrică, cu margini rotunjite, din straturi cilindrice, de lungime ciclic variabilă

H = variabil ciclic, cu l = 1–4 mm; Tkl = constant sau variabil;

;

;2

kvtkvkt

kltklktklkv

TNT

TNTTT

=

==

;2

;1000 tkl

tkvtkl

tklN

NTlM

N ==

( ) ;klcfs TnnN −=

21 HHNh s

+=

Page 75: Manualul inginerului textilist

Tabelul IV.2.6 (continuare)

0 1 2

Bobină cilindrică biconică, din straturi cilindrice cu lungime descrescătoare la ambele capete

H – continuu descrescător la ambele capete; H1 = H2; β1 = β2 şi

;constant221 =−

===tkl

mMsss N

HHhhh

Tkl = descrescător; ; ;

1;kt kv kt tkl kl tkv kv

tkv

T T T N T N TN

= = ==

tklmtkl Tl

MN 1000= ,

ttkl T

hRN2

cos105 αρ∆=

Bobină cilindrică biconică concavă, din straturi cilindrice de lungime descrescătoare la ambele capete

Hf < H < H0 – scădere continuă la ambele capete cu hs variabil

;klklkv TNT =

kvkvtkvkt TTNT == şi

;;1 kltklkvkltklktkv NNTTNTN ====

ttklmtklkl T

RhTlMNN

2cos101000 5 α∆

===

Page 76: Manualul inginerului textilist

Tabelul IV.2.6 (continuare)

0 1 2

Bobină cilindrică biconică, din straturi cilindro-conice, de lungime ciclic-variabilă la ambele capete sau de lungime constantă, cu urcare şi coborâre ciclică (d)

a) Lungire ciclică la ambele capete.

b) Scurtare ciclică la ambele capete.

a, b, c) Hm < H < HM cu variaţie ciclică sau continuă; d) H = constant; Tkl – variabil ciclic;

;klklkv TNT =

;2

)a1hHHN mM

kl−

=

;2

)bs

mMkl h

HHN −=

( ) ;2)c1 s

mMkl hh

HHN+−

=

( ) ;2)dcr

mMkl hh

HHN+−

=

Hm

Page 77: Manualul inginerului textilist

Tabelul IV.2.6 (continuare)

0 1 2

c) Scurtare şi lungire ciclică la ambele capete.

d) Urcarea şi coborârea ciclică a straturilor cu H = constant.

kvtkvkt TNT = ,

kltklkt TNT = ;

kltkvtkl NNN = Ntkv > l – lungire sau scurtare ciclică, Ntkv = l – lungire sau scurtare continuă;

;2

101000 15

ttklmtkl T

hRTlMN ρ∆

==

( ) ;2

)a 1tkl

tkvmM

NNHHh −

=

( ) ;2

)btkl

tkvmMs N

NHHh −=

( )

tkl

tkvmMls N

NHHhh

−==)c

sau ( ) ;2

tkl

tkvmMls N

NHHhh −=+

( )tkl

tkvmMcr N

NHHhh −==)d

sau ( )

tkl

tkvmMcr N

NHHhh

−=+

2

Page 78: Manualul inginerului textilist

Tabelul IV.2.6 (continuare)

0 1 2

Bobină cilindrică biconică cu conuri inegale, din straturi cilindro-conice de lungime crescătoare, cu salt spre vârf

H0 < H < Hf – creşte continuă la vârf, plus ridicare;

;klklkv TNT =

kvkvtkvkt TTNT == şi

;;1 kvkltklkttkv TTNTN ===

;2

cos101000 5

ttklmtklkl T

hR

Tl

MNN

αρ∆===

tkl

br N

Hh = şi tkl

vrl N

Hh =

Bobină cilindro-conică din straturi cilindro-conice de lungime ciclic variabilă la vârful bobinei

a) Lungire ciclică la vârf. b) Scurtare ciclică la vârf. a') Lungire continuă la vârf. b') Scurtare continuă la vârf.

Hm < H < HM – variabil ciclic la vârf; Hm = 2/3 HM; Tkl = variabil ciclic;

;klklkv TNT =

a) ;1h

HHN mMkl

−=

b) ;s

mMkl h

HHN −=

c) ( )1

2h

HHN mMkl

−= sau

( )

s

mMkl hh

HHN

+

−=

1

4

;kvtkvkt TNT = ;kltklkt TNT =

tkvkltkl NNN =

h rl

Page 79: Manualul inginerului textilist

Tabelul IV.2.6 (continuare)

0 1 2

c) Lungire şi scurtare ciclică la vârf. d) Combinare ciclică la vârf între valori constante şi micşorate ale cursei H.

Ntkv = l – lungire sau scurtare continuă,Ntkv > l scurtare sau lungire ciclică;

rtkl

tklmtkl

RN

TlM

∆==

2;

1000

ttkl T

hRN2

cos105 αρ∆= ;

;2

coscos105

ttkv T

hrN βαρ∆=

a) ( ) ;1tkl

tkvmM

NNHHh −

=

b) ( ) ;

tkl

tkvmMs N

NHHh −=

c) ( ) ;21

tkl

tkvmMs N

NHHhh −==

sau ( )tkl

tkvmMs N

NHHhh −=+

41

Bobină cilindro-conică cu margini rotunjite la bază, din straturi cu lungime ciclic crescătoare şi descrescătoare la vârf şi cu perturbare ciclică la bază

Lungire şi scurtare ciclică la vârf cu perturbare ciclică la bază

Hm < H < HM – variabil ciclic la vârf şi perturbare ciclică la bază cu e = 1–4 mm

Page 80: Manualul inginerului textilist

1210 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.2.7

Principalele caracteristici ale maşinilor de răsucit

Firma şi tipul de maşină

Tipul răsucirii şi a firelor prelucrate

Număr de

fuse/ma-şină

Domeniul de

torsiune, t/m

Viteza de lucru Dotări speciale

1 2 3 4 5 6

1. UNIREA (România) – tip 3 R – tip 4 R

Fire filate, răsucire cu inel, 7,2 tex × 2–50 tex × 2 Fire filate, răsucire cu inel, 5 tex × 2 – 1000 tex × 2

160–400 288–456

80–1750 130–1280

– –

– –

2. MURATA (Japonia) – tip 363 – tip 373 – tip 383

Fire tip bumbac şi lână, 5 tex × 2–300 tex × 2 Fire tip bumbac şi lână, 5 tex × 2–300 tex × 2 Fire tip bumbac şi lână

120

108

84

170–2000

170–2000

60–1000

9000–12000 rot/min

7000–10000 rot/min

4000–8000 rot/min

– – –

3. SAVIO GEMINIS (Italia)

Răsucire cu dublă torsiune, pentru orice tip de fir

– – 100 m/min Levate semiautomate Calculator

4. RATTI (Italia) R 521DFT/120

Texturare şi răsucire cu dublă torsiune a firelor filamentare

120 99–3978 12000 rot/min Dispozitiv de termoreglare prin calculator

R522DFT/192 Texturare şi răsucire cu dublă torsiune a firelor filamentare

192 96–3971 170 m/min Dispozitiv de termoreglare prin calculator

R325DT/72 Răsucire cu dublă torsiune a firelor sintetice şi artificiale, 167–560 dtex

72 32–1519 170 m/min Calculator

R325DT/96 Răsucire cu dublă torsiune a firelor sintetice şi artificiale, 56–560 dtex

96 40–1869 170 m/min Calculator

R325 DT/120 Răsucire cu dublă torsiune a firelor sintetice şi artificiale, 33–560 dtex

120 49–2314 170 m/min Calculator

Page 81: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1211

Tabelul IV.2.7 (continuare)

1 2 3 4 5 6

R521 F/120 Răsucire cu dublă torsiune; fire sintetice şi artificiale, 33–334 dtex

120 99–3978 50 m/min Calculator

R522 DR/192 Răsucire cu dublă torsiune; fire sintetice şi artificiale, 33–334 dtex

192 96–3971 80 m/min Calculator

R522 F/192 Răsucire cu dublă torsiune; fire sintetice şi artificiale, 33–334 dtex

192 96–3971 80 m/min Calculator

R326 DT/240 Răsucire cu dublă torsiune; fire sintetice şi artificiale, 33 – 560 dtex

240 73–3471 170 m/min Calculator

R362J/256 DT –90

Răsucire crep, fire sintetice şi artificiale, 33–334 dtex

256 400–4780 80 m/min Calculator

R362 J/256DT – 11OY

Răsucire crep, fire sintetice şi artificiale, 33–334 dtex

256 400–4780 80 m/min Calculator

R541 DT/96 Răsucire fire tehnice din poliamidă, polipropilenă, aramidice, 880–1600 dtex

96 20–401 200 m/min Calculator

R541 DT/72 Răsucire fire tehnice din poliamidă, polipropilenă, aramidice, 880–3300 dtex

72 20–401 200 m/min Calculator

R441 STR/90 Poliamidă stretch, 44–334 dtex

90 126–931 120 m/min Calculator

R375/90 Răsucire de efect pentru fire filamentare şi naturale, Nm = 4–60000

90 – 12000 rot/min, 60 m/min

Calculator pentru efect

DG fF (Italia) Duplex – 200

Răsucire cu dublă torsiune, fire filamentare

72–144 – 10000–20000 rot/min

Calculator

Duplex 400 Răsucire cu dublă torsiune pentru file filamentare

72 40–650 1000 rot/min Calculator

6. SIMA (Italia) T2TR/99

Răsucire cu dublă torsiune pentru fire filamentare

99 20–130 3500 rot/min Calculator

T2TR/99G Răsucire cu dublă torsiune pentru fire filamentare

99×2 20–130 3300 rot/min Calculator

Page 82: Manualul inginerului textilist

1212 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.2.8

Principalele caracteristici ale maşinilor de dublat şi dublat–răsucit

Firma Tipul firelor prelucrate şi

fineţea

Nr. de fire ce se pot dubla

Nr. capete de

lucru

Viteza de lucru, m/min

Distenţa dintre

fuse, mm

Dimensiuni bobină,

mm × mm

Dotări speciale

1. MURATA (Japonia)

607

Orice tip de fir 2–3 6–48 200–800 350 –

Calculator Dispozitiv de alimentare

2. SAVIO (Italia) AES

Bumbac, lână, amestecuri

– – 1200 – 125×250 160×238

Calculator

3. RATTI (Italia) R522 CU I/216

Poliester, poliamidă, viscoză, 56–880 dtex

max 4 216 60 262 140×420 Calculator

R352 CU II/96

Poliester, poliamidă, viscoză, 112–3770 dtex

max 4 96 170 318 140×200 Calculator

R521 CU II/96 Poliester, poliamidă, viscoză

max 4 96 80 292 140×200 Calculator

R201 BIN/96 Mătase naturală max 4 96 600 – 116×165 Calculator

R362 JS/288 Mătase naturală max 4 288 80 – 165×116 Calculator

4. SHARER SCHWEITER

METTLER (SSM–Elveţia) tip FMX

Fire naturale şi sintetice, 1000–5 tex (Nm 1–200)

2–4 – 600–1200 – –

Dispozitiv antibalon Contor

IV.2.5. Fixarea firelor răsucite

Tratamentele termice pentru echilibrarea la torsiune a firelor răsucite produc anularea tensiunilor interne ale fibrelor şi firelor componente şi înlătură tendinţa de formare a cârceilor. Temperaturile recomandate pentru fixarea cu vapori a firelor sunt: 110...125oC, fire filamentare poliesterice; 120...130oC, fire filamentare poliamidice (relon); 130...134oC, fire filamentare poliamidice (naylon 6.6);

Page 83: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1213

125...130oC, fire filamentare polinitrilacrilice; 60...66oC, fire filate sau răsucite din lână 100%; 70...95oC, fire filate sau răsucite din lână în amestec cu fibre sintetice; 100...110oC, fire filate sau răsucite din in în amestec cu poliester; 79...90oC, fire filate OE sau răsucite din bumbac.

Timpul, succesiunea fazelor de vaporizare a firelor, presiunea şi temperatura vaporilor se corelează cu natura firelor (tabelul IV.2.9) şi tipul autoclavelor.

Tabelul IV.2.9

Succesiunea fazelor şi parametrii de lucru la fixarea firelor

Natura firelor

Preîncălzire Vidare I Vaporizare fixare Răcire Vidare II Egalizare

T, °C t, min p, Pa t, min T, °C t,

min T,°C t, min p, Pa t,

min t,

min

Fire tip lână 70 20 50000 3 90 20 10 20 60000 2 7

Fire OE tip bumbac 70 20 50662 2 78...90 40 10 20 60795 2 10

Poliester filamentar 70...90 – 40000 5 120 30 – – 4000 5 –

Notaţii: T – temperatură; t – timp; p – presiune. În timpul tratamentelor termice, firele filamentare se contractă astfel:

5–7%, fire filamentare poliesterice, în apă, la 100oC; 15–17%, fire filamentare poliesterice, în aer cald, la 190oC; 15–20%, fire filamentare poliesterice, în aer cald, la 220...230oC; 6–10%, fire filamentare poliamidice, în apă, la 100oC; 10–12%, fire filamentare poliamidice în vapori saturaţi; 8–10%, fire filamentare poliamidice în aer cald; 2–4%, fire filamentare polinitrilacrilice, în apă, la 100oC.

În urma tratamentelor termice de fixare a firelor filamentare texturate şi răsucite, contracţia reziduală are valori de: 0–2%, la fire poliamidice contractate; 6–8%, la fire poliamidice semicontractate; 12–15%, la fire poliamidice necontractate; 1,5–8%, la fire poliesterice; 1%, la fire polinitrilacrilice.

IV.2.6. Rotosetarea firelor polifilamentare

La firele polifilamentare cu torsiunea de răsucire de până la 300 torsiuni/metru, operaţia

de răsucire poate fi înlocuită cu operaţia de rotosetare, mult mai productivă. Rotosetarea este procesul de interînlănţuire punctual-zonală a filamentelor componente ale firelor chimice (fig. IV.2.7) prin acţiunea asupra firului a unui jet de aer sub presiune, suflat în duză, pe diferite direcţii. Rotosetarea se poate realiza după etirare, pe maşini specifice, sau asociat cu texturarea sau bobinarea.

Page 84: Manualul inginerului textilist

1214 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.2.7. Fir rotoset. Caracteristicile specifice ale firelor rotoset sunt: – desimea medie a nodurilor de rotosetare, Pn, în noduri/m; – lungimea medie a buclelor de rotosetare, lb, în mm; – desimea medie a buclelor, Pbm, în bucle/m; – desimea buclelor cu lungime de rotosetare de 1,5 ori mai mare faţă de valoarea medie,

b1, în bucle/m; – stabilitatea rotosetării (tenacitatea de rotosetare):

;[cN/dtex] lim,0 tTPtr

bσ=σ

→∆

unde: trσ este tensiunea specifică (tenacitatea) de solicitare cu tensiunea T de la care începe desfacerea nodurilor;

– variaţia efectului de rotosetare, 100 1

bn

ber P

Pv = ;

– gradul de rotosetare (interînlănţuire), 6,0

1000+

=b

i lG .

Parametrii tehnologici care influenţează aceste caracteristici sunt: – diametrul orificiului de insuflare a jetului de aer, do, în mm; – presiunea jetului de aer, pa; – debitul jetului de aer, Ga, în m3/h; – viteza jetului de aer, vo, în m/s; – viteza firului, vf, în m/s;

– viteza relativă a

fr v

vv = ;

– tensiunea firului. În tabelele IV.2.10 – IV.2.19 sunt prezentate unele corelaţii între parametrii tehnologici

şi caracteristicile firelor rotoset [21]. Tabelul IV.2.10

Influenţa vitezei firului asupra caracteristicilor specifice ale firului rotosetat cu pa = 3,6 at; va = 1105,2 m/s şi d0 = 0,8 mm

vf (m/min)

Caracteristici specifice lb (mm) Gr Pb (bucle/m) Pbl (bucle/m) Ver (%) Vr

Tt dtex 50 76 50 76 50 76 50 76 50 76 – 590 10,945 10,21 86,62 92,50 52 56 4 3 7,69 5,36 8,90 655 11,112 10,82 85,38 87,56 52 54 5 4 9,62 7,40 9,88 755 12,133 11,23 78,54 84,53 50 52 6 5 12,0 9,61 11,39 780 12,564 11,83 75,98 80,44 48 50 6 5 12,50 10,0 11,76 900 14,047 13,83 68,27 69,28 44 48 7 7 18,18 14,58 13,57 1000 15,121 14,25 63,61 67,33 44 48 8 8 22,72 16,67 15,08

Page 85: Manualul inginerului textilist

Răsucirea, fixarea şi rotosetarea 1215

Tabelul IV.2.11

Influenţa numărului de filamente şi a fineţii acestora asupra caracteristicilor specifice ale firului 76 dtex rotosetat cu vf = 590 m/min; pa = 3,6 at; d0 = 0,8 mm şi vr = 8,90

Caracteristici specifice Secţiune circulară şi număr de filamente

egal cu: Secţiune trilobală şi 32 de filamente

16 20 24 32 Tt filament (dtex) 4,75 3,8 3,167 2,37 2,375 Pb (bucle/m) 36 42 46 56 60 lb (mm) 22,4 15,6 11,4 10,21 9,8 Gr 43,48 61,73 83,33 92,5 96,15 Pbl (bucle/m) 12 8 5 3 3 Ver (%) 33,33 19,04 10,87 5,36 5

Tabelul IV.2.12

Influenţa presiunii aerului, pa, asupra principalelor caracteristici ale firului 76/32 dtex etirat-rotosetat cu Vf = 590 m/min

pa (atm) Caracteristici specifice

pb (bucle/m) lb (mm) Gr Pbl (bucle/m) Ver (%) 0,5 1,0 1,5 2,0 2,5 3,0 3,6 4,0 4,5

12 16 20 24 32 40 56 60 68

74,84 52,48 40,15 35,84 21,94 15,82 10,21 0,923 9,231

13,25 18,83 24,54 27,44 44,36 60,89 92,50 95,03 101,72

6 7 8 9 10 6 3 3 3

50,0 43,75 40,0 37,5 31,5 15

5,36 5,6 4,41

Tabelul IV.2.13

Influenţa presiunii aerului asupra debitului de aer consumat pe fiecare fus pentru firul de 76/32 dtex etirat-rotosetat cu vf = 490 m/min

pa (atm)

Qa (m3/f.h)

va (m/s) pentru diametrul orificiului d0 (mm) de:

vr × 103, pentru diametrul orificiului d0 (mm) de:

0,8 0,89 1,0 0,8 0,89 1,0 0,5 1,0 1,5 2,0 2,5 3,0 3,6 4,0 4,5

0,56 1,11 1,67 2,22 2,78 3,83 4,0 4,44 5,0

154,7 306,7 461,4 613,4 768,1 920,1 1105,2 1126,0 1381,5

125 247,8 372,8 495,6 620,6 743,4 893,0 991,2 1116,3

99,0 196,3 295,3 392,6 491,6 588,9 707,4 785,2 884,2

63,56 32,06 21,31 16,03 12,80 10,69 8,90 8,73 7,12

78,67 39,68 26,38 19,84 15,84 13,22 11,1 9,92 8,81

99,33 50,09 33,30 25,05 20,00 16,70 13,90 12,52 12,12

Page 86: Manualul inginerului textilist

Tabelul IV.2.14

Influenţa diametrului orificiului de insuflare a jetului de aer asupra caracteristicilor specifice ale firului 76/32 dtex torsetat cu pa = 3,6 at; Q = 4 m3/h; vd = 590 m/min

Diametrul orificiului d0 (mm)

Caracteristici specifice

va (m/s)

pb (bucle/m)

lb (mm)

Gr Pbl

(bucle/m) Ver (%)

ve × 103

0,8 0,89 1,0

1105,2 839,0 707,4

56 40 30

10,21 15,79 22,1

92,5 61,0 45,25

3 7 11

5,36 17,1 27,27

8,90 11,1 13,90

Tabelul IV.2.15

Influenţa presiunii aerului asupra tenacităţii rotosetării (stabilităţii rotosetării) firului 76/32 dtex rotosetat cu vf = 590 m/min şi d0 = 0,8 mm

Parametri şi caracteristici

Presiuni ale jetului de aer, pa (at) egale cu:

2,0 3,0 3,6 4,5

Tensiunea, T (cN) 0 76 100 350 0 85 100 350 0 100 152 200 340 0 100 152 200 250 335

Tensiunea specifică σtT (cN/dtex)

0 1,0 1,316 4,605 0 1,1 1,316 4,605 0 1,31 2,0 2,632 4,47 0 1,316 2,0 2,632 3,28 4,407

Pb (bucle/m) 24 24 16 8 40 40 32 16 56 56 56 48 32 68 68 68 68 56 42

Pb după tensionare (%) 0 0 33,33 66,67 0 0 30,0 60,0 0 0 0 14,29 42,8 0 0 0 0 11,76 38,2

σtr (cN/dtex) 1,0 1,118 2,0 2,623

vr × 103 16,03 10,69 8,90 7,12

va (m/s) 631,4 920,1 1105,2 1381,5

Page 87: Manualul inginerului textilist

Tabelul IV.2.16

Influenţa vitezei firului (de etirare) asupra stabilităţii rotosetării (tenacităţii rotosetării) la firul 76/32 dtex prelucrat cu ∆P = 3,6 at

Parametri şi caracteristici Parametri şi caracteristici la viteze ale firului de:

590 m/min 1000 m/min Tensiunea, T (cN) 0 50 100 152 200 250 300 340 0 50 100 152 200 250 300 340 Tensiunea specifică σtT (cN/dtex)

0 0,658 1,316 2,0 2,632 3,289 3,947 4,474 0 0,658 1,316 2,0 2,632 3,289 3,947 4,474

Pb (bucle/m) 56 56 56 56 48 40 36 32 56 56 56 48 44 40 32 24

Pb după tensionare (%) 0 0

0 0 + 14,29 + 28,5 +35,7 +42,8 0 0 0 + 14,2 +21,43 +28,57 +42,86 +57,14

σtr (cN/dtex) 2,0 1,316 a (m/s) 1105,2 1105,2 r × 1000 8,90 15,08

Tabelul IV.2.17

Influenţa numărului de filamente asupra stabilităţii rotosetării (tenacitatea rotosetării) la firul 76 dtex cu secţiune circulară, prelucrat cu vf = 590 m/min, d0 = 0,8 mm şi ∆P = 3,6 at

Parametri şi caracteristici

Parametri şi caracteristici la un număr de filamente de: 16 20 24 32

Tensiunea, T (cN) 0 50 100 360 0 100 152 355 0 100 115 152 350 0 100 152 200 340 Tensiunea specifică σtT (cN/dtex)

0 0,658 1,316 4,737 0 1,316 2,0 4,671 0 1,316 1,51 2,0 4,605 0 1,316 2,0 2,632 4,474

Pb (bucle/m) 36 36 24 16 42 42 30 20 46 46 46 36 24 56 56 56 48 32 Pb după tensionare (%) 0 0 +33,33 +55,55 0 0 +28,57 +52,38 0 0 0 +21,74 +47,83 0 0 0 +14,29 +42,86σtr (cN/dtex) 0,658 1,316 1,51 2,0

Page 88: Manualul inginerului textilist

1218 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.2.18

Influenţa formei secţiunii filamentului asupra stabilităţii rotosetării (tenacitatea rotosetării)

la firul 76/32 dtex prelucrat cu vf = 590 m/min şi ∆P = 3,6 at

Parametri şi caracteristici

Forma secţiunii filamentului

circulară trilobală

Tensiunea, T (cN) 0 100 152 200 340 0 100 165 180 200 335

Tensiunea specifică, σtT (cN/dtex)

0 1,316 2,0 2,632 4,476 0 1,316 2,17 2,368 2,632 4,407

Pb (bucle/m) 56 56 56 48 32 60 60 60 52 44 36

Pb după tensionare (%) 0 0 0 +14,29 +42,86 0 0 0 +13,33 +30,0 +40,0

σtr (cN/dtex) 2,0 2,17

Tabelul IV.2.19

Influenţa diametrului d0 al orificiului duzei asupra stabilităţii rotosetării (tenacitatea de rotosetare) la firul 76/32 dtex, prelucrat cu vd = 590 m/min şi ∆P = 3,6 at

Parametri şi caracteristici

Diametrul orificiului, d0

08, mm 0,89 mm 0,1 mm

Tensiunea T (cN) 0 152 200 340 0 100 152 350 0 85 152 355

Tensiunea specifică, σtT (cN/dtex)

0 2,0 2,632 4,474 0 1,316 2,0 4,605 0 1,118 2,0 4,671

Pb (bucle/m) 56 56 48 32 40 40 32 16 30 30 20 10 Pb după tensionare (%) 0 0 +14,29 +42,8 0 0 +30,0 +60,0 0 0 +33,33 +66,67

σtr (cN/dtex) 2,0 1,316 1,118

va (m/s) 1105,2 893,0 707,4

vr × 1000 8,90 11,1 13,90

Page 89: Manualul inginerului textilist

IV.3 URZIREA

IV.3.1. Sisteme tehnologice de urzire

Urzeala de ţesere constituie sistemul longitudinal de fire al ţesăturii, şi este constituită din mulţimea firelor paralele dispuse în acelaşi plan şi înfăşurate cu tensiune constantă pe sul. Pentru obţinerea urzelii de ţesere sunt folosite trei sisteme tehnologice de urzire: urzirea în lăţime, urzirea în benzi şi urzirea secţională (fig. IV.3.1, a, b şi c).

Fig. IV.3.1. Sisteme tehnologice de urzire.

Indiferent de sistemul tehnologic de urzire, maşinile de urzit au două zone funcţionale: rastelul de urzire pentru bobinele de alimentare şi maşina de urzit propriu-zisă.

IV.3.2. Tensiunea firelor la urzire Desfăşurarea firelor de pe bobinele din rastelul de urzire se face prin tragere axială.

Foarte rar se pot întâlni desfăşurări prin tragere tangenţială de pe bobine cu înfăşurare paralelă.

Page 90: Manualul inginerului textilist

1220 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

La desfăşurarea axială, tensiunea necesară tehnologic este asigurată prin frâne indivi-

duale de fir cu talere, discuri şi tuburi succesive de frânare (fig. IV.3.2). Tensiunea firului la ieşirea din asemenea frâne de fir mixte se poate determina cu relaţia:

( )( )

( )( )

( ).

1021

21e

e 6

2

2

2

1

1

231

µ

µ−+

δ+

+µ+

δ+

+∑

µ+

∑=

ϕµϕµϕµ

ϕµ varnTR

eRQR

eRQTT tqq

v

n

nin

i (IV.3.1)

Fig. IV.3.2. Frâne de fir la urzire.

Tensiunea firului la ieşirea din frâna mixtă , T, este dependentă de următorii parametrii: tensiunea din vârful balonului, Tv , coeficientul de frecare al firului pe tuburile de conducere, µ , şi unghiul de contact al firului cu aceste tuburi, iϕ , coeficientul de frecare, qµ , dintre fir şi talerele de presare cu forţele de greutate ale discurilor, Q1 şi Q2, raza R de frânare a firului pe discuri, dezaxialităţile 1δ şi 2δ ale traseului firului prin frâne, de numărul n al tuburilor de conducere a firului în interiorul frânei, acceleraţia a şi viteza v a firului.

Tensiunea firului în vârful balonului poate fi exprimată prin relaţia [ ]98 :

,)cos1(2

22

γ−ω

= Mv

rmT (IV.3.2)

unde: m = 610tT reprezintă masa unităţii de lungime a firului, în ;mkg 1−⋅

)cos cos1(sin

δβ±δ

=ωxR

v – viteza unghiulară a firului în balonul de desfăşurare;

rM – raza maximă a balonului de desfăşurare; γ – unghiul de înclinare al firului faţă de axa de rotaţie a balonului, măsurat în vârful

acestuia:

; sin arc

şi

)1( tg

MrR

KhKKir

xb

M π=

−π=γ

Page 91: Manualul inginerului textilist

Urzirea 1221

unde: hb este înălţimea balonului;

i – numărul de bucle în balon (la urzire i = 1). Tensiunea T la ieşirea din frână trebuie să asigure traiectoria normală a firului pe traseu,

fără săgeţi sau împerecheri de fire şi să susţină veghetorii de fir în poziţia de lucru pentru a nu da comenzi false de oprire. Tensiunea T se recomandă a avea următoarele valori: 15–30 cN/fir, la fire tip bumbac; 10–20 cN/fir, la fire tip mătase; 20–40 cN/fir, la fire tip lână.

Coeficienţii de frecare, µ, pot fi: 0,12–0,17, la fire tip bumbac; 0,09–0,12, la fire filamentare pe porţelan; 0,15–0,2, la fire tip lână pe porţelan; 0,17–0,24, la fire tip bumbac pe oţel; 0,18–0,27, la fire tip liberiene pe oţel; 0,1–0,17, la fire filamentare pe oţel; 0,17–0,26, la fire tip lână pe oţel.

Suma unghiurilor iϕ este reglabilă, π=ϕ∑ )5,2...5,0(i , iar Q1 + Q2 = Q reprezintă

forţa de reglare a tensiunii, care, după neglijarea componentei dinamice, poate fi determinată cu relaţia:

,e

e

∑µ

∑−=

ϕµ

ϕµ

q

viTT

Q (IV.3.3)

unde: ∑ϕ reprezintă suma unghiurilor de contact ale firului cu conducătorii de fir din faţa şi

din spatele dispozitivului de frânare ⎟⎠⎞

⎜⎝⎛ π−

π=ϕ∑ 2

2.

În tabelul IV.3.1 se dau valori recomandate pentru reglarea forţei Q, pe tipuri de fire, a tensiunii maxime a firului şi a densităţii de înfăşurare la urzire.

Tabelul IV.3.1

Parametrii tehnologici la urzirea firelor

Parametrii tehnologici

Categoriile de fire

Viteza de urzire, v (m/min)

Tensiune maxim admisă la urzire,

T(cN/fir)

Greutatea rondelelor de

frânare, Q (cN)

Densitatea de înfăşurare, ρ

(g/cm3)

0 1 2 3 4 A. Fire tip bumbac 14, 27 tex

400–500

(0,12–0,14) Sr

3–5

0,48–0,50

20–15,38 tex 400–600 (0,10–0,12) Sr 5–6 0,48–0,50 29,41–22,22 tex 500–700 (0,10–0,12) Sr 6–8 0,46–0,48 50–37,03 tex 500–650 (0,08–0,19) Sr 8–10 0,46–0,48 58, 82 tex şi peste 500–650 (0,08–0,10) Sr 9–11 0,45–0,47 5,88 tex × 2 400–700 (0,12–0,15) Sr 4–6 0,49–0,51 7,14 tex × 2 500–800 (0,12–0,15) Sr 5–7 0,50–0,51 10 tex × 2 600–1000 (0,12–0,16) Sr 6–8 0,51–0,53

Page 92: Manualul inginerului textilist

1222 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.3.1 (continuare)

0 1 2 3 4 B. Fire tip lână 22,22 tex şi mai fine 31,25–62,5 tex 71,42–83,33 tex 100–125 tex 50 tex × 2 62,5 tex × 2 83,33 tex × 2 11,11–142,85 tex 200 tex 250 tex şi peste

400–500 400–600 400–500 300–450 500–700 600–800 500–800 400–500 400–500 300–450

(0,08–0,10) Sr (0,08–0,11) Sr (0,07–0,09) Sr (0,05–0,07) Sr (0,08–0,10) Sr (0,09–0,11) Sr (0,08–0,10) Sr (0,06–0,08) Sr (0,05–0,07) Sr (0,04–0,06) Sr

5–6 7–9 8–10 9–11 8–10 9–11 10–12 9–11 10–12 12–14

0,29 0,28 0,27 0,25 0,26 0,25 0,24 0,26 0,25 0,24

C. Fire de mătase naturală 20–60 den

300–500

0,06–0,12 cN/den

3–4

0,56

C. Fire de mătase artificială 20–60 den 65–100 den 150–210 den Peste 240 den

400–600 450–700 500–800 600–900

0,09–0,12 cN/den 0,11–0,16 cN/den 0,14–0,18 cN/den 0,14–0,20 cN/den

5–6 6–7 7–9

10–11

0,56 0,55 0,53 0,53

D. Fire sintetice filamentare PA 15/1 den PA 20/1 den PA 30/6 den PA 40/12 den PA 60/20 den PA 100/20 den

400–600 400–600 450–600 450–650 500–700 600–800

0,04–0,06 cN/den 0,06–0,08 cN/den 0,08–0,09 cN/den 0,09–0,10 cN/den 0,10–0,12 cN/den 0,11–0,11 cN/den

3–4 3–4 4–5 4–6 5–6 6–7

0,57 0,57 0,56 0,55 0,54 0,53

E. Fire tip liberiene 100–50 tex, filat uscat Peste 100 tex, filat uscat 125–66,66 tex, filat umed 200–125 tex, filat umed 200–125 tex, filat uscat

400–500 400–500 500–650 450–650 400–500

(0,10–0,12) Sr (0,08–0,10) Sr (0,10–0,12) Sr (0,11–0,13) Sr (0,08–0,1) Sr

9–10 11–12 11–13 12–14 12–14

0,45 0,45 0,54 0,55 0,46

Sr – sarcina la rupere a firului, în cN.

Tensiunea firului desfăşurat tangenţial de pe bobine orizontale, frânate numai de frecarea de pe axul de rotaţie (fig. IV.3.3), la mers de regim cu viteză constantă, se poate calcula cu relaţia:

.cos

2200

αµ−ρµπ+ρµπ−µ

=rR

RrgHRrgHrGTx

x (IV.3.4)

Tensiunea este dependentă de elementele constructive ale bobinei (greutatea suportului Go, distanţa H dintre flanşele bobinei, raza r a axului suport de rotaţie, raza Ro a tubului suport al bobinei, coeficientul de frecare µ de pe axul de rotaţie), precum şi de densitatea ρ a bobinei şi raza Rx de des-făşurare (fig. IV.3.4). Unghiul α scoate în evidenţă impor-tanţa poziţiei bobinei în rastel, în cazul în care tensiunea T

Fig. IV.3.3. Bobine orizontale

în rastelul de urzire.

Page 93: Manualul inginerului textilist

Urzirea 1223

contribuie la forţa de frecare pentru frânarea bobinei. La o90=α tensiunea T nu contribuie la frânarea bobinei, iar valoarea este:

. 22200

x

x

x

x

RRBA

RRrgHRrgHrGT +

=ρµπ+ρµπ−µ

= (IV.3.5)

Pe măsura desfăşurării bobinei, tensiunea T a firului variază după curba din fig. IV.3.5, având un minim la o valoare Rl, calculată cu relaţia:

2

oo

l RgH

GBARR −

ρπ=== . (IV.3.6)

Fig. IV.3.4. Elemente geometrice ale bobinei. Fig. IV.3.5. Variaţia tensiunii T la golirea bobinelor.

La asemenea tipuri de desfăşurări nu sunt îndeplinite condiţiile unor tensiuni constante. În cazul aplicării unei forţe de frânare constantă, la o rază Rf de frânare a mosorului,

tensiunea firului se poate calcula cu relaţia:

, 22200

x

x

x

xff

RRBC

RRrgHRFRrgHrG

T +=

ρµπ++ρµπ−µ= (IV.3.7)

iar Rl, pentru valoarea minimă a tensiunii, va fi:

.

20

0 RgH

RF

gHG

R ffl −

ρµπ+

ρπ= (IV.3.8)

Asemenea frâne sunt rar folosite şi numai pentru viteze mici şi fire tehnice groase. La pornirea maşinilor, tensiunea firului, T, are valori mai mari. La frânarea numai prin

propria greutate, tensiunea la pornire, Tp, va fi:

( )

.2

2

2

2

2

400

2200

p

x

xp

x

xp

tvRH

RtvRHJ

RrRgHRrgHrG

T

ρπ+

ρµπ−+

+ρµπ+ρµπ−µ

=

(IV.3.9)

Relaţia scoate în evidenţă parametrii de influenţă asupra tensiunii Tp şi imposibilitatea folosirii unor viteze v de urzire mari şi a unor timpi de pornire tp mici. Are importanţă şi momentul de inerţie al tubului suport al bobinei, J0.

Page 94: Manualul inginerului textilist

1224 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.3.3. Corelarea producţiei maşinii de urzit cu încărcarea

rastelului, viteza şi lungimile bobinelor şi urzelilor a. Urzirea în lăţime. Producţia maximă, în suluri pe schimb, se obţine la o anumită

încărcare a rastelului de urzire şi o anumită viteză. Numărul de bobine din rastel care, la o anumită viteză, asigură producţia maximă, se calculează cu relaţia [ ]41 :

( ) , 4 10 4 6

ltlpu

lpfp VTCaRMv

VMN

+

⋅= (IV.3.10)

unde: Nfp reprezintă numărul de fire pe sulul preliminar (numărul de bobine din rastelul de urzire) care, în codiţiile date, asigură producţia maximă, în suluri pe schimb;

Mp – masa urzelii pe sulul preliminar, în kg; Vl – numărul de bobine pe un rând vertical din rastelul de urzire (Vl = 6–8 bobine); Rl – indicele de ruperi la urzire, în ruperi pe 106 m fir; (Rl = 2,5–4 ruperi/106 m, la fire

obişnuite şi R2 = 1,5–2,5 ruperi/106 m, la fire cu rezistenţă mare); vu – viteza de urzire, în m/s; a – coeficient de deservire legat de remedierea ruperilor (a = 4–7); C – constantă de deservire legată de timpul de schimbare a bobinelor din rastelul de

urzire. Se calculează cu relaţia:

lb

bp

nLtL

C

= , (IV.3.11)

unde: Lp este lungimea urzelii preliminare; Lb – lungimea firului pe bobina din rastel; tb – timpul necesar schimbării unei bobine (tb = 3–5 s); nl – numărul de lucrătoare ce participă la schimbarea bobinelor terminate din rastelul

de urzire; Relaţia (IV.3.10) se va folosi pentru alegerea unui rastel de urzire cu o capacitate

adecvată calităţii firelor urzite şi condiţiilor de exploatare. În timpul folosirii unei maşini instalate, numărul de bobine din rastel este stabilit în

funcţie de articolul prelucrat, ceea ce permite determinarea vitezei de urzire din relaţia [ ]60 :

.) 4(

10 42

11

16

fptp

pu NVTCaRM

VMv

+

⋅= (IV.3.12)

Relaţia lui vu permite alegerea vitezei adecvate firelor prelucrate din gama de viteze reglabile pe maşină.

Producţia practică a maşinii de urzit în lăţime depinde de coeficientul de utilizare a timpului de lucru, CTU, care, în condiţii date de exploatare, depinde atât de lungimea firului de pe bobine, cât şi de lungimea urzelii preliminare. Considerând variabilă numai lungimea firului de pe bobină, CTU se calculează cu relaţia [ ]60 :

b

b

LCBLACTU

+

= , (IV.3.13)

unde:

;

)(Tv

TTLA dp −= ;

1pp

ufpb Ltn

LNtB += s

r

fppufpo

p TL

NLKV

aNt

vL

C +⎟⎟⎠

⎞⎜⎜⎝

⎛++= 3

1 10

4.

Page 95: Manualul inginerului textilist

Urzirea 1225

Considerând valabilă numai lungimea urzelii preliminare, CTU se calculează cu relaţia:

,

FLELD

CTUp

p

+= (IV.3.14)

unde:

.;104

1; 311

sr

fpufpo

b

p

b

pbd T F L

NK

Va N

tLt

nL nT

v E

T vTTD =⎟⎟

⎞⎜⎜⎝

⎛++++=

−=

În relaţiile anterioare sunt incluşi toţi factorii de care depinde valoarea CTU (durata unui schimb T, timpul Td de oprire pentru intervenţii la maşină independente de urzeală, timpul tb de schimbare a unei bobine, timpul tp de pregătire a maşinii, timpul to de remediere a unei ruperi din rândul cel mai apropiat de maşina de urzit, coeficientul Ku a ruperilor la urzire (Ku = 0,05–0,15), lungimea de rupere a firelor Lr, timpul de schimbare a sulului Ts). Ambele curbe a lui CTU au o creştere asimptotică în raport cu Lb şi Lp (fig. IV.3.6).

a b

Fig. IV.3.6. CTU în funcţie de Lb şi Lp.

b. Urzirea în benzi. Producţia maximă rezultă atunci când timpul de urzire a benzilor este minim, deoarece timpul de pliere nu depinde de încărcarea rastelului de urzire. Încărcarea rastelului la care timpul de urzire este minim, în condiţii date de exploatare, se calculează cu relaţia [ ]43 :

,

) (1021

13

vRLavTLVN

u

uasufb

+⋅= (IV.3.15)

unde: Nfb este numărul de fire într-o bandă, adică încărcarea rastelului; Lu – lungimea urzelii (lungimea benzii); Tas – timpul de staţionare pentru aşezarea sforilor la rosturi (Tas = 40–60 s); R1 – indice de ruperi (R1= 1,5–5 ruperi/106 m/fire); a – constantă de timp privind remedierea ruperilor (a = 4–7); V1 – numărul de bobine pe un rând vertical (V1 = 6–10 bobine); Relaţia este utilă la comanda capacităţii unui rastel de urzire ce urmează a fi achi-

ziţionat, în funcţie de calitatea firelor şi condiţiile de exploatare. Pentru o maşină de urzit în benzi existentă în exploatare se poate determina viteza teoretică de urzire, la care timpul de urzire este minim, folosind relaţia [ ]60 :

. 104

104

162

1

16

asfbu

uu TVNRLa

LVv

⋅−

⋅= (IV.3.16)

Page 96: Manualul inginerului textilist

1226 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Relaţia va servi la alegerea, din gama vitezelor mecanice ale maşinii, a valorii vitezei

adecvate firelor prelucrate. Şi la urzirea în benzi coeficientul de utilizare a timpului de lucru CTU este dependent de

mulţi parametri, între care şi lungimea firului de pe bobina de alimentare, respectiv lungimea urzelii. Dacă se ia în considerare numai variaţia lungimii firului pe bobină Lb, CTU se calcu-lează cu relaţia [ ]60 :

b

b

LCBLACTU

11

1

+= (IV.3.17)

unde:

;

B;

)(

1

2111 n

NzLtzLt

TvTTzLA fbu

uau +=

−=

666

1

104

31 1010

4

2

100

tLRNL

V

Natzt

Ltv

zLC ufbufbuu ++⎟⎟

⎞⎜⎜⎝

⎛++++=

Dacă se ia în considerare numai variaţia lungimii Lu, CTU se calculează cu relaţia [ ]60 :

22

2

CLBLACTU

u

u

+= (IV.3.18)

unde:

;110

4

100

1 B;

)(6

1

1

3

1

2122

u

fbfbo

fb

b

d

vzRNL

VNa

tt

vz

nNzt

ztLTv

zTTA +⎟⎟

⎞⎜⎜⎝

⎛++++⎟⎟

⎞⎜⎜⎝

⎛+⋅=

−=

642 2C tzt += . În relaţiile anterioare s-au inclus parametrii de care depind coeficienţii CTU la maşina

de urzit în benzi: z – numărul de benzi; T – durata unui schimb; Td – durata staţionării maşinii pentru deserviri nelegate de urzeală; 654321 ,,,,, tttttt – timpi de staţionare ai maşinii de urzit pentru un singur caz de apariţie a operaţiei de pregătire a maşinii, de schimbare a bobinelor, de marcare a bucăţilor, de formare a rosturilor şi de legarea benzilor, de remediere a unei ruperi şi de montare a sulului la pliere; vp – viteza de pliere.

Curbele de creştere a coeficientului de utilizare a timpului de lucru al maşinii de urzit în benzi au o creştere asimptotică în raport cu lungimile Lb şi Lu (fig. IV.3.6).

Producţia practică a maşinilor de urzit este determinată şi de opririle pentru revizii tehnice, reparaţii, lubrifiere etc., exprimate prin coeficientul utilajului în funcţiune CUF. Coe-ficientul de utilizare al maşinii CUM, va fi:

CUM = CUF CTU. Producţia practică va fi calculată în funcţie de producţia teoretică cu relaţia:

CUMPP tp = .

IV.3.4. Măsurarea şi înregistrarea lungimii urzelilor preliminare

şi a benzilor La acţionarea contoarelor de la axul unui cilindru măsurător rotit prin fricţiune de

urzeală, lungimea înregistrată de contor pe minut se calculează cu relaţia:

100 2

)100(

m

lkmkukl R

liavlπ−

= , (IV.3.19)

Page 97: Manualul inginerului textilist

Urzirea 1227

unde: lkl reprezintă lungimea înregistrată pe minut de contor;

vu – viteza urzelii la trecerea peste cilindrul măsurător antrenat prin fricţiune; a – coeficientul de alunecare dintre urzeală şi cilindrul măsurător; Rm – raza exterioară a cilindrului măsurător; imk – raportul de transmisie dintre axul cilindrului măsurător şi axul de intrare în contor; llk – lungimea înregistrată pe contor, corespunzător unei rotaţii a axului de intrare în

contor. La contoarele acţionate direct de la arborele organului de înfăşurare (tamburul de urzire)

sunt eliminate erorile de contorizare a lungimilor cauzate de alunecări. Creşte însă lungimea înfăşurată la o rotaţie a tamburului de urzire, ca urmare a creşterii razei de înfăşurare, ceea ce necesită corecţia înregistrărilor. Lungimea Lx înfăşurată pe tamburul de urzire, până la atinge-rea unei raze oarecare Rx, se poate calcula cu una din relaţiile [60], [66]:

; 104

;4

25

2 ϕρπ⋅

+ϕ=ϕ

δ+ϕ= uttxrtx

PTR LRL (IV.3.20)

; 10

2 25 t

utttx N

PTNRL

ρ

π+π= (IV.3.21)

,

10

102 255

RPT

RPT

RLutut

tx ∆

ρπ+∆

ρπ⋅= (IV.3.22)

unde: Lx este lungimea depusă pe tamburul de urzire de la începutul înfăşurării (ϕ = 0 şi Rx = Rt) până la atingerea unei raze oarecare Rx;

Rt – raza tamburului gol, la ϕ = 0; ϕ – unghiul de rotire al tamburului de la începutul înfăşurării benzii până la momentul

atingerii razei Rx şi a înfăşurării lungimii Lx; rδ – grosimea unui strat înfăşurat pe tambur (creşterea razei de înfăşurare la o rotaţie

a tamburului); Nt – număr total de rotaţii ale tamburului de la începutul înfăşurării până atingerea razei

Rx (număr de rotaţii în timpul rotirii cu unghiulϕ ); R∆ – creşterea razei de înfăşurare prin depunerea lungimii Lx, în timpul rotaţiei tam-

burului cu unghiul ϕ , respectiv cu Nt rotaţii. Suplimentarea înregistrărilor pe contoarele de lungime acţionate direct de la arborele

organului de înfăşurare, ca urmare a creşterii razei de depunere, se va calcula cu una din relaţiile [ ]66 :

25

104

ϕρπ⋅

=∆ utx

PTL ; (IV.3.23)

25

10

tut

x NPTLρ

π=∆ ; (IV.3.24)

25

10 RPT

Lut

x ∆ρπ

=∆ ; (IV.3.25)

tx

txx RR

RRLL+−

=∆ , (IV.3.26)

unde: ∆Lx reprezintă suplimentarea tehnologică (corecţia tehnologică) a înregistrărilor pe contorul de lungime, faţă de lungimea înregistrată corespunzătoare razei iniţiale Rt, ca urmare a creşterii razei de înfăşurare.

Page 98: Manualul inginerului textilist

1228 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.3.5. Frânarea sulului preliminar, a tamburului de presare

şi a cilindrului conducător la ruperea firului pe maşina de urzit în lăţime

La ruperea unui fir pe maşina de urzit în lăţime, rotirea sulului preliminar, şi o dată cu

aceasta şi a celorlalte organe principale, este oprită prin frânare. Sulul preliminar (fig. IV.3.7) este un corp cilindric cu masă şi rază crescătoare, ca

urmare a înfăşurării urzelii. La frânele fără programare şi reglare automată a forţei de frânare Ffs, valoarea acesteia rămâne constantă indiferent de raza înfăşurării şi masa sulului, şi se calculează cu relaţia[60], [71]:

,2

2

) 2( 320

fs

xfp

fs

rs

sfs

x

sxfs

uofs R

RF

RM

tRRvH

tRRvRHJ

F ±−ρπ

+ρπ−

= (IV.3.27)

unde: 21 sss FFF += reprezintă forţa de frânare a sulului preliminar; Jo – momentul de inerţie al sulului gol;

xfso RRR şi , – raza corpului sulului, raza de frânare a sulului şi raza de înfăşurare pe sul la un moment dat;

H – distanţa dintre flanşele sulului preliminar; Mrs – momentul rezistent la rotirea sulului ca urmare a frecării din lagăre şi a tensiunii T

a urzelii; ts – timpul de oprire a sulului prin frânare; Ffp – forţa de frânare din partea tamburului de presare, în eventualitatea că oprirea aces-

tuia nu s-ar face concomitent cu cea a sulului.

Fig. IV.3.7. Forţe şi momente pentru frânarea sulului preliminar 1, a tamburului de presare 2 şi cilindrului măsurător (conducător) 3.

Page 99: Manualul inginerului textilist

Urzirea 1229

Momentul de frânare al sulului, Mfs = Ffs Rfs, rămâne constant, indiferent de raza Rx şi

poate fi reglat la valori cuprinse între 400 şi 6000 Nm. Valoarea reglată depinde de timpul de frânare maxim admis pentru oprirea sulului, tsM. Acest timp se calculează cu relaţia:

u

s vl

t MM

2= (IV.3.28)

unde: lM este lungimea maximă de urzeală admisă a se înfăşura pe sul în timpul frânării acestuia, în situaţia cea mai defavorabilă (de exemplu – sul plin); lM = 3,5–4,5 m;

vu – viteza de urzire (vu = 400–1000 m/min). La valori constante ale momentului forţei de frânare a sulului, şi la neglijarea valorii Mrs

şi Fps, curba de variaţie a timpului de frânare a sulului preliminar, în raport cu creşterea razei Rx a sulului, este reflectată de relaţia [60], [71]:

.2

2

) 2( 3400

fs

xu

fsx

us M

RvHMR

vRHJt

ρπ+

ρπ−= (IV.3.29)

Curba de variaţie a timpului de oprire a sulului prin frânare, în raport cu Rx (fig. IV.3.8), are un minim ce se atinge la o rază Rx = Rm a sulului, calculată cu relaţia:

Rx1= . 3

24400

ρπρπ−

HRHJ (IV.3.30)

Dacă ts0, calculat la Rx = Ro – raza sulului gol, şi tsm, calculat la Rx = Rx1 – raza sulului cu cea mai rapidă frânare, are loc relaţia ts0 > tsm, atunci timpul mediu de frânare al sulului tsmed poate fi calculat cu relaţia:

2

0 sfssmed

ttt

+= ,

unde: ts0 este timpul ts calculat pentru Rx = R0; tsf – timpul ts calculat pentru Rx = Rx final. Timpul de oprire a sulului poate varia între 0,4 şi 1,1 s, iar sulul poate face maximum

1–1,5 rotaţii în timpul frânării. La maşinile de urzit cu frâne cu reglare automată a forţei de frânare, la creşterea razei se

păstrează constant timpul ts, iar curba de reglare a forţei de frânare are forma din fig. IV.3.9, trasată conform relaţiei (IV.3.27).

Fig. IV.3.8. Timpul ts în funcţie de Rx.

Fig. IV.3.9. Forţa Ffs în funcţie de Rx. Oprirea tamburului de presare se face prin momentul de frânare Mft, dat de forţa de

frânare 21 ttft FFF ±= (fig.IV.3.7). La ruperea firului, tamburului i se aplică o forţă de frânare, ce se calculează cu relaţia [ ]60 :

Ffs

Fs mints min

Rx1Rx2

Page 100: Manualul inginerului textilist

1230 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

ft

tfp

ft

rt

ttft

utft R

RFRM

tRRvJF

±−= (IV.3.31)

sau un moment de frânare

tfprttt

utft RFM

tRvJM

±−= . (IV.3.32)

Forţa de frânare, Fft, şi momentul de frânare, Mft, depind de elemente constructive (momentul de inerţie al tamburului, Jt, raza de frânare a tamburului, Rft, raza exterioară a tamburului, Rt) şi de condiţiile de exploatare (viteza de urzire, vu, timpul impus pentru frânarea tamburului, tt = tsmed, momentul rezistent la rotirea tamburului, Mrt şi forţa de frecare, Ffp, de la suprafaţa tamburului, care pot fi neglijate).

Forţa de frânare a cilindrului conducător (măsurător) 21 mmfm FFF += (fig. IV.3.7), respectiv momentul de frânare al acestuia, Mft, se determină cu relaţiile:

fm

mfu

fm

rm

mmfm

umfm R

RFRM

tRRvJF

±−= ; (IV.3.33)

mfurmmm

mfm RFM

tRvJM

±−= , (IV.3.34)

unde: fmmm RRJ şi , reprezintă momentul de inerţie, raza exterioară şi raza de frânare ale cilindrului măsurător;

tm – timpul de frânare pentru oprirea cilindrului măsurător ( smedtm ttt == ); Mrm – momentul rezistent la rotirea cilindrului măsurător (conducător), în mod obişnuit

foarte mic prin construcţie; Ffu – forţa de frânare din partea urzelii în eventualitatea ca sulul preliminar s-ar opri mai

devreme (–) sau mai târziu (+) decât cilindrul conducător (măsurător). Influenţa ei este foarte scăzută.

IV.3.6. Frânarea tamburului de urzire la maşina de urzit în benzi a. Frânarea pentru oprire la ruperea firului. Factorii care determină momentul de

frânare, Mfo, respectiv forţa de frânare, Ffo (fig. IV.3.10), sunt prezentaţi în formula [ ]30 :

4 4 4

10 0 0 `

0

( 1)

2i xf x t i

f f ft t rtx t

H Z R R R Z vM F R J MR t

⎧ ⎫⎡ ⎤π ρ + − +⎪ ⎪⎣ ⎦= = + ⋅ −⎨ ⎬⎪ ⎪⎩ ⎭

(IV.3.35)

unde: Jt0 este momentul de inerţie al tamburului de urzire gol (Jto = 70–80 kg⋅m2, în funcţie de construcţie);

Rft – raza de frânare a tamburului de urzire; Zi – numărul de benzi înfăşurate complet pe tamburul de urzire; t0t – timpul de oprire al tamburului prin frânare. Se ia în funcţie de lungimea de bandă

acceptată să se înfăşoare pe tambur în timpul frânării acestuia (din considerente

tehnologice l = 2–4 m şi rezultă vl

t t2

0 = );

Page 101: Manualul inginerului textilist

Urzirea 1231

v – viteza de urzire a benzii; Mrt – momentul rezistent la rotirea tamburului ca urmare a frecării din lagăre şi a

tensiunii de tragere a benzii Tb (care are valori mici în raport cu alte momente ale forţelor dezvoltate în faza de oprire).

Fig. IV.3.10. Forţe şi momente la frânarea de oprire a tamburului de urzire.

Raza finală la terminarea înfăşurării benzii, Rxf, depinde de lungimea finală a acesteia, L, desimea urzelii din bandă, Pu, densitatea de lungime a firului, Tt, densitatea de înfăşurare a urzelii pe tambur, ρ , şi raza tamburului gol, Rt. Se poate folosi relaţia:

. 10

10 3

23

ρπ

ρπ+= ttu

xfRTPL

R (IV.3.36)

Timpul de oprire, t0t, are valoarea minimă la începutul urzirii benzilor, când z = 0 şi Rx = Rt, şi valoarea maximă (t0M), când z = zmaxim şi Rx = Rxf. Chiar şi la tamburul plin cu benzi, lungimea maximă a benzii acceptată a se înfăşura pe tambur pe durata frânării, lM, nu trebuie depăşită (lM = 4 m = 2 )0Mtv ⋅ . Această condiţie este îndeplinită prin reglarea forţei de frânare, Ffo.

b. Frânarea tamburului pentru tensionarea urzelii la pliere. La pliere, tamburul de urzire este frânat continuu, pentru asigurarea tensiunii de înfăşurare a urzelii pe sulul final (fig. IV.3.11). Se foloseşte mecanismul de frânare pentru oprire la urzire, la care se poate adăuga şi un mecanism de frânare special pentru pliere. Reglarea mecanismului de frânare la pliere se face în baza relaţiei:

ft

rp

ft

xp

ft

fpfp R

MR

RTR

MF −==

, (IV.3.37)

unde: Ffp este forţa de frânare a tamburului în timpul plierii, care produce momentul de frânare a tamburului Mfp;

Tp – tensiunea urzelii la pliere: tp NTT ⋅= 1 ; T1 – tensiunea unui singur fir la pliere; Nt – numărul total de fire din urzeală la pliere:

T1 = (0,07–0,1)Sr, la lână; T1 = (0,09–0,15)Td, la mătase;

Page 102: Manualul inginerului textilist

1232 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Td – densitatea liniară a firului în denieri; Mrp – momentul rezistent ce se opune rotirii tamburului ca urmare a frecărilor din

lagăre, care poate fi neglijat în raport cu Mfp.

Fig. IV.3.11. Forţe şi momente la frânarea de pliere a tamburului de urzire. La frânele cu reducere manuală şi în trepte a frânării tamburului, pe măsura scăderii

razei sale de desfăşurare, variaţia tensiunii urzelii poate fi menţinută între limitele Tp şi pp TT ∆+ (fig. IV.3.12). Razele de desfăşurare de pe tambur, Rxn, respectiv lungimea de

urzeală rămasă pe tambur la aceste raze, Lxn, la care trebuie redusă frânarea, se calculează cu relaţiile [60], [98]:

;n

pp

pxixn TT

TRR ⎟

⎟⎠

⎞⎜⎜⎝

∆+= (IV.3.38)

,

10 22

23

ut

t

n

pp

pxi

xn PT

RTT

TR

L⎥⎥

⎢⎢

⎡−⎟

⎟⎠

⎞⎜⎜⎝

∆+ρπ

= (IV.3.39)

unde: pT∆ este variaţia tensiunii admisă la pliere (de exemplu pT∆ = (0,05 – 0,1)Tp); n – numărul de ordine al intervenţiei de reducere a frânării de la începutul plierii, când

Rx = Rxi, până la o rază oarecare Rxn de desfăşurare (n = 0; 1; 2; 3 …).

Fig. IV.3.12. Variaţia tensiunii la reglarea în trepte a frânării.

Page 103: Manualul inginerului textilist

Urzirea 1233

Ultima valoare a lui n va fi cea mai mică valoare n care asigură condiţia txn RR ≤ .

Scăderea forţei de frânare la o intervenţie manuală trebuie să aibă valoarea:

n

pp

p

ft

xipfpn TT

TR

RTF ⎥

⎤⎢⎣

∆+

∆=∆

. (IV.3.40)

La frâne cu reducere automată a momentului de frânare la scăderea razei de desfăşurare, forţa de frânare, Ffp, scade liniar (fig. IV.3.13).Valoarea forţei de frânare la un moment dat, după rotirea tamburului de desfăşurare cu ϕ radiani, sau cu Nt rotaţii, se calculează cu relaţia:

ft

utp

ft

xip

ft

utxip

fp R

PTTR

RTR

PTRTF

102

2

10

5

5

ρπ⋅

ϕ−=

⎟⎟⎠

⎞⎜⎜⎝

⎛πϕ

ρ−

= , (IV.3.41)

unde:ϕ reprezintă unghiul de rotaţie al tamburului de la începutul desfăşurării până la un moment oarecare de calcul al forţei Ffp.

Fig. IV.3.13. Variaţia frânării tamburului la reglarea automată.

Reducerea forţei de frânare după Nt rotaţii (πϕ

=2tN ) este:

. 102

;

10

55

ft

utpfp

ft

tutpfp R

PTTF

R

NPTTF

ρπ⋅

ϕ=∆

ρ=∆ (IV.3.42)

Reducerea forţei de frânare la fiecare rotaţie a tamburului de desfăşurare, programată şi realizată de un automat de reglare continuu, se calculează cu relaţia:

ft

utpfp R

PTTF

10

51ρ

=∆ . (IV.3.43)

La mecanisme cu reglare automată, dar ciclică, reducerea forţei de frânare după Ntk rotaţii ale tamburului de desfăşurare, corespunzătoare unui ciclu de acţionare a mecanismului de reducere a frânării (Ntk = ikt),se calculează cu relaţia:

ft

ktutppk R

iPTTF

10

5 ρ

= , (IV.3.44)

unde: ikt reprezintă raportul dintre frecvenţa de execuţie ciclică a reducerii frânării şi frecvenţa de rotaţie a tamburului de desfăşurare (turaţia tamburului).

Page 104: Manualul inginerului textilist

1234 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.3.7. Avansul axial al straturilor şi conicitatea tamburului

la înfăşurarea benzilor

Avansul tehnologic al benzii la o rotaţie a tamburului (avansul axial al straturilor) se

poate calcula cu una din relaţiile [64], [65]:

β

π=

tgKPda

u

ut 4

2; (IV.3.45)

βρ

=tg

PTa utt 10

5 ; (IV.3.46)

β

−π=

tgLRRa

x

txt 10

)(2

22, (IV.3.47)

unde: at reprezintă avansul axial al straturilor, corespunzător unei rotaţii a tamburului, în cm; (fig. IV.3.14);

Pu – desimea urzelii (fire/cm); Ku – coeficientul de umplere de către fire a secţiunii axiale printr-o bandă urzită; β – conicitatea tamburului de urzire; Rx – raza de înfăşurare pe tambur, în cm, după înfăşurarea unei lungimi oarecare Lx, în m;

Fig. IV.3.14. Avansul axial al straturilor şi conicitatea tamburului. La maşinile de urzit în benzi cu conicitate reglabilă a tamburului, se poate regla atât

unghiul β , cât şi avansul cinematic. Pe lângă desimea urzelii şi densitatea de lungime a firelor, avansul şi conicitatea sunt influenţate de densitatea de înfăşurare pe tamburul de urzire, care poate avea valorile:

=ρ 0,65–0,82 g/cm3, la urzeli din fire tip mătase; =ρ 0,33–0,4 g/cm3, la urzeli din fire răsucite tip lână pieptănată; =ρ 0,25–0,3 g/cm3, la urzeli din fire simple tip lână cardată.

Adoptarea conicităţii tamburului β se recomandă a fi făcută în funcţie de „desimea relativă“ a urzelii (tabelul IV.3.2).

Densitatea reală la înfăşurarea benzilor pe tambur poate fi calculată cu relaţia:

( )3 2 2

.10

x u tr

x t

L P TR R

ρ =π −

(IV.3.48)

În funcţie de valoarea reală a densităţii ( rρ ) şi de avansul cinematic ales pentru urzirea benzilor (ac), se calculează valoarea finală de reglaj a unghiului β ( rβ ), respectiv înălţimea conului (hr), folosind relaţiile:

Rx

Page 105: Manualul inginerului textilist

Urzirea 1235

. 10

tg 5cr

utr a

PTρ

=β (IV.3.49)

22

tgrgt

rr

hL

h

−=β , (IV.3.50)

unde Lgt este lungimea totală a generatorului conului. Tabelul IV.3.2

Conicitatea adoptată, βa, în funcţie de natura firelor şi desimea relativă

Lungimea maximă a benzii, posibil de înfăşurat pe tambur, la valorile reglate (ac, rβ , hr) va fi:

( )

c

rgtrtM a

hLhRL 2

22

10

2 −⋅+π= . (IV.3.51)

Trebuie îndeplinită condiţia ca lungimea programată a benzii, Lp, să fie mai mică decât LM (Lp < LM). La tamburul cu =β=β c constant, lungimea maximă a benzii posibilă de înfăşurat pe tambur, corespunzător unui avans cinematic oarecare, ac, se calculează cu relaţia:

( )

c

cgttMM a

hLRRL 2

22

10

−+π= ; (IV.3.52)

( )

c

cgtctM a

hLhRL 2

22

10

2 ++π= , (IV.3.53)

unde: RM este raza maximă a înfăşurării, în m, ce s-ar atinge la acoperirea de către bandă a întregii lungimi Lgt a generatoarei conului;

tMc RRh −= – înălţimea de ridicare a conului cu valoare fixă, în m. În funcţie de mecanismele folosite pentru avansul axial straturilor şi de reglare a coni-

cităţii tamburului, firmele constructoare prezintă şi nomograme pentru alegerea parametrilor specific unei anumite maşini (fig. IV.3.15).

Măsurarea continuă a razei de înfăşurare şi a grosimii δ a straturilor asigură, prin calculatoarele instalate pe maşinile moderne, autoreglarea avansului cinematic ac şi realizarea unei înfăşurări perfect cilindrice pe tamburul de urzire.

În tabelele IV.3.3 şi IV.3.4 se prezintă principalele caracteristici ale maşinilor de urzit în

lăţime şi, respectiv, în benzi.

1000ut PT

β (grade)

1000ut PT

β (grade) Bumbac Lână Fire tip mătase Bumbac Lână

2,6 28 –

5–15

1,4 17 23 2,5 28 – 1,3 16 22 2,4 27 – 1,2 15 21 2,3 26 32 1,1 14 20 2,2 25 31 1,0 13 19 2,1 24 30 0,9 13 18 2,0 23 29 0,8 12 17 1,9 22 28 0,7 12 16 1,8 21 27 0,6 – 15 1,7 20 26 0,5 – 14 1,6 19 25 0,4 – 13 1,5 18 24

Page 106: Manualul inginerului textilist

1236 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig.

IV.3

.15.

Nom

ogra

pent

ru a

lege

rea

avan

sulu

i şi a

înălţim

ii co

nulu

i (Te

xtim

a).

Page 107: Manualul inginerului textilist

Tabelul IV.3.3

Principalele caracteristici ale maşinilor de urzit în lăţime

Firma Viteza, m/min

Diametrul sulului,mm

Tensiunea de înfăşurare, N Tipul firelor prelucrate Dotări speciale

0 1 2 3 4 5

BENNINGER (Elveţia)

Bendirect 1250 Bendirect 1000 Bendirect 800

1200 1000 800

1250 1000 800

1000–5500 150–6000 150–6000

– Calculator Dispozitiv de curăţire pneumatică a spetei Ecran de protecţie

ROSTONI (Italia) tip OLF tip ODT tip OLV

30–1000 30–1500 30–1000

1000–1450 1000–1250 1000–1250

6000 6000

Orice tip de fir

Calculator Dispozitiv de suflare Dispozitiv de curăţare a spetei Dispozitive auxiliare pentru fire sintetice

VTA (Belgia) HDW

1200 1000–1250 Reglabilă Orice tip de fir Calculator Dispozitiv pentru densitate de înfăşurare constantă

KARL MAYER tip ZN tip ZM–SP tip ZM–SP

1200 1200 1200

1400 1400 1400

1000–5000 1000–5000 1000–5000

Filamentare filate

Filamentare neîncleiate

Calculator Dispozitiv special pentru controlul vitezei Frânare magnetică Dispozitiv de suflare Dispozitiv de realizare a rostului

Page 108: Manualul inginerului textilist

Tabelul IV.3.3 (continuare)

0 1 2 3 4 5

HACOBA (Germania) tip WS12

Variabilă 1250 18000 Filate

Filamentare Dispozitiv de schimbare rapidă a sulului LOGOS–COMSIZE

ROTAL (Italia) tip RS 1000

250–1000 1000 150–5000 Orice tip de fir Calculator Frânare cu disc Dispozitiv de suflare

RIUS (Spania) tip UC–1–800 tip UC–1–1000 tip UC–1–1300

1000 1000 800

800 1000 1300

Reglabilă

Orice tip de fir

Dispozitiv antistatizare Dispozitiv de parafinare Acumulator de fir

Tip UC–600 100–800 600 Reglabilă Filamentare Variator electronic Dispozitiv compensator de tensiune

Tip A–2MV 100–600 450 Reglabilă Sensibile Dispozitiv de antistatizare Dispozitiv de parafinare

ELITEX (Cehia) tip 2253–B

max. 1000 590; 700; 830 Reglabilă Bumbac, viscoză –

Page 109: Manualul inginerului textilist

Tabelul IV.3.4

Principalele caracteristici ale maşinilor de urzit în benzi

Firma Lăţimea utilă, mm

Diametrul sulului, mm

Viteza de urzire, m/min

Viteza de pliere, m/min Accesorii şi dotări speciale

BENNINGER (Elveţia) tip Supertronic 2200–4300 1000–1250 800 300

Calculator Dispozitive speciale pentru depunerea primei benzi

tip Ben-ergotronic 2200–4300 1000–1250 800 300 Variante constructive de tambur Calculator

VTA–Belgia tip H 420 1400–4000 1000–.1250 800 230 Dispozitiv de ceruire

Comandă hudraulică pentru urzit şi pliat

tip HE 500 1400–5500 1000–1250 1000 300 Calculator Dispozitiv de oprire automată a sulului

TAIANA (Italia) tip 400/2,5–2000 tip 400/3–2000

2000–4000 1000–1250 0–800 0–6 ct 0–300 var.

Host Computer IBM PC

tip 300/2,5 tip 300/3 2000–4000 1000–1250 var. 0–180 Calculator

KARL MAYER (Germania) tip ROM (ROTOMATIC) 2250 1000 1000 30 Calculator

COMSA (Spania) Seria AUSA 1400–2200 800–1000 0–800 0–200 Calculator

Dispozitiv de ceruire, ionizare tip TECNOR 1400–2200 800–1000 0–400 0–100 Calculator tip EXPO 1400–2200 800–1250 600 120 Calculator HACOBA (Germania) Sensocaon 1000 – 1000 800 300 Calculator

SUZUKI WARPER (Japonia) tip SW–SKA

1500–2250 1000 50–40 10–50 Calculator

Page 110: Manualul inginerului textilist

IV.4 ÎNCLEIEREA URZELILOR

IV.4.1. Structura şi proprietăţile substanţelor chimice folosite

la încleiere Micşorarea uzurii prin scămoşare a urzelilor în procesul de ţesere se realizează prin

depunerea pe fire a unei pelicule de protecţie, constituită din diverse produse chimice din care se prepară flota de încleiere. Depunerea flotei de încleiere pe urzeli se face pe maşina de încleiat (fig. IV.4.1), care are patru zone principale: desfăşurarea urzelilor de pe sulurile de alimentare, încărcarea cu flotă a urzelilor, uscarea urzelilor pentru eliminarea solventului şi formarea peliculei şi înfăşurarea urzelilor încleiate. Modificarea unor proprietăţi ale firelor în urma încleierii sunt trecute în tabelul IV.4.1.

Fig. IV.4.1. Schema tehnologică a maşinii de încleiat: a – fără separarea urzelii la încleiere şi uscare; b – cu separarea urzelii la încleiere şi uscare:

1 – desfăşurarea urzelii neîncleiate; 2 – încărcarea cu flotă de încleiere; 3 – uscarea urzelilor; 4 – înfăşurarea urzelii încleiate.

Page 111: Manualul inginerului textilist

Încleierea urzelilor 1241

Tabelul IV.4.1

Modificări admisibile orientative al proprietăţilor fizico-mecanice ale firelor încleiate faţă de cele neîncleiate

Tipuri de fire

Creşterea sarcinii de

rupere,

%

Reduce-rea alun-girii la rupere,

%

Reduce-rea coefi-cientului

de frecare,

%

Reduce-rea pilo-zităţii,

%

Creşterea rezisten-ţei la scă-moşare,

%

Creşterea rezisten-ţei la

obosire,

%

Creşterea rigidităţii,

%

Creşterea rezisten-ţei la

frecare,

% Fire tip bumbac pieptănat 16–22 12–18 25–45 20–40 18–35 20–30 12–18 26–42

Fire tip bumbac cardat 18–32 16–22 20–40 26–38 20–38 28–48 16–32 32–50

Fire tip lână pieptănată 14–16 12–18 16–36 32–42 16–29 32–36 14–26 18–36

Fire tip lână cardată 18–28 16–28 14–28 36–50 18–32 26–30 18–29 26–40

Fire tip bumbac şi tip lână din celofibră 100%

10–14 12–24 12–26 22–38 25–40 20–40 15–26 20–36

Fire filate din fibre sintetice 100% 5–15 7–14 12–26 26–36 18–29 19–32 18–28 28–38

Fire din câlţi de in şi cânepă 4–8 3–10 10–24 19–38 30–40 5–14 12–22 21–36

Fire din fuior de in filat umed 12 4-6 12–24 20–36 25–40 20–40 15–26 20–36

Fire din fuior de in filat uscat 25 10 10–22 18–32 26–36 5–10 10–18 18–29

Fire filamentare tip mătase artificială 8–12 6–26 5–18 10–16 22–38 10–16 10–18 17–32

Fire filamentare sintetice 4–12 6–12 5–12 5–12 12–22 7–12 6–14 16–24

IV.4.1.1. Apa şi alţi solvenţi Pentru încleierea clasică, apa constituie mediul de solvire, de dispersare şi de omo-

genizare a substanţelor folosite la prepararea flotei. Apa trebuie să respecte următoarele cerinţe: – duritatea: 2–3 grade german (0,02–0,03 g oxid de calciu la 1 litru de apă); – pH = 7–7,5; – fără impurităţi; – apa cu peste 5 grade german se dedurizează prin fierbere cu sodă calcinată (0,5–1 g la

1 litru apă). Pentru încleierea neconvenţională cu solvenţi (puţin răspândită), în locul apei se pot

utiliza unele hidrocarburi clorurate. Ţinând seama de proprietăţile acestora de siguranţă în exploatare (tabelul IV.4.2), de cerinţele ecologice şi de protecţie ale personalului, cel mai recomandat solvent organic este tricloretanul [111]. Utilizarea tehnologiilor neconvenţionale cu solvenţi organici permite economii importante de energie termică şi recuperarea substanţelor folosite la încleiere.

Page 112: Manualul inginerului textilist

1242 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.2

Proprietăţi ale solvenţilor

Proprietăţi Tipul solventului

Apă Triclore-tilenă

Perclore-tilenă

Tricloreti-lenă

Clorme-tilenă

Temperatura de fierbere, °C 100 74 121 87 40

Căldura specifică 1,0 0,25 0,21 0,22 0,28

Căldura latentă de evaporare, cal/g 537 56 50 56 78

Densitatea la 25°C 1,0 1,32 1,619 1,46 1,32

Densitatea de vapori – 4,55 5,76 4,53 2,93

Tensiunea superficială, dyne/cm2 72,5 25,56 32,32 26,36 28,12

Pragul de siguranţă, părţi/milion – 350 100 100 250

Pragul de miros, părţi/milion – 100 50 100 310

IV.4.1.2. Ancolanţi pe bază de amidon şi derivaţi ai acestuia a. Amidonul natural. Amidonul natural, extras din seminţele cerealelor (porumb 60–

66%, grâu 64–70%, orez 70–80%) sau din bulbi de cartofi (14–25%), este o polizaharidă (C6H10O5)n, constituită din unităţi de anhidroglucoză (α –D–glucoză). Granulele de amidon conţin două componente de bază: amiloză şi amilopectină (fig. IV.4.2), în proporţie de 1: 4 (20–30% amiloză şi 80–70% amilopectină).

Amiloza (fig. IV.4.2, b), este constituită din macromolecule dispuse liniar, în formă de spirală neramificată, cu grad de polimerizare între 200 şi 600 şi masă moleculară între 52 400 şi 97 200.

Amilopectina (fig. IV.4.2, c), are o structură ramificată, cu circa 30 cicluri glucopira-nozice în fiecare ramificaţie. Gradul de polimerizare poate ajunge până la 6000, iar masa moleculară până la 106. Pe lângă polizaharidele principale, în structura amidonului mai pot fi şi alte elemente: fosfor (fosfaţi), siliciu (silicaţi) şi diverşi cationi (sodiu, potasiu, calciu etc.- fig. IV.4.2, d, c, f, g). Umiditatea normală a granulelor de amidon are valorile:

15–20%, la amidon de cartofi; 11–14%, la amidon de porumb; 15–17%, la amidon de grâu. Amidonul natural nu este solubil în apă, formând o dispersie care, prin încălzire, se

transformă într-o soluţie coloidală vâscoasă. Prin încălzire, granulele îşi măresc volumul de 25–50 de ori, determinând creşterea viscozităţii flotei (fig. IV.4.3), cu valori maxime atinse la 72,5°C, la amidonul de cartofi şi la 70°C, la amidonul de porumb. Prin continuarea încălzirii, granulele încep să se fragmenteze (începe scindarea), iar viscozitatea scade.

Concentraţia în amidon a flotei de încleiere depinde de tipul amidonului, caracteristicile firelor, a urzelilor şi ţesăturilor, de caracteristicile tehnice ale maşinilor de încleiat şi a celor de ţesut etc. Se pot da valori orientative ale concentraţiilor flotelor de încleiere (tabelul IV.4.3 şi IV.4.4). Concentraţia flotei de încleiere se corectează în funcţie de fineţea firelor şi natura amidonului pe baza relaţiilor:

, sau 21

212 ac

f

f CKKCC

KK ⋅== (IV.4.1)

Page 113: Manualul inginerului textilist

Încleierea urzelilor 1243

unde: K2 este concentraţia în amidon a unei noi flote de încleiere, în %;

K1 – concentraţia în amidon a unei flote utilizate, în %; Cf1 – coeficient de corecţie al concentraţiei corespunzătoare fineţii prelucrate (tabelul

IV.4.5); Cf2 – coeficient de corecţie al concentraţiei pentru o nouă fineţe; Ca – coeficient de corecţie al concentraţiei la înlocuirea amidonului de cartofi cu un alt

tip de amidon (tabelul IV.4.6); Kc – concentraţia în amidon de cartofi a unei flote utilizate.

Fig. IV.4.2. Structura amidonului şi a derivaţilor acestuia.

Page 114: Manualul inginerului textilist

1244 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.4.3. Variaţia viscozităţii flotei de încleiere din amidon în timpul preparării sale.

Tabelul IV.4.3

Concentraţii orientative în amidon ale flotelor de încleiere pentru fire din bumbac

100% sau în amestec cu până la 20% celofibră

Densitatea de lungime a firelor unice,

tex

Concentraţia flotei în amidon, în %, pentru desimi ale urzelii, în fire/10 cm, egale cu:

150 200 240 280 320 360 400 440 480 520 560 600 640

50 5,0 5,5 6,0 6,5 7,0 7,5 – – – – – – –

37 6,0 6,5 7,0 7,5 8,0 8,5 9,0 – – – – – –

29,41 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 – – – – –

25 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 10,5 – – – –

20 7,0 7,5 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5 – – –

14,28 – 7,5 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5 12,0 – –

11,76 – – 8,5 8,5 9,0 9,5 10,0 10,5 11,0 11,5 11,5 12,0 –

10 – – – 8,5 9,0 9,5 10,0 10,5 11,0 11,5 12,0 12,5 13,0

8,33 – – – – 9,5 10,0 10,5 11,0 11,5 12,0 12,5 13,0 13,5

7,14 – – – – – 10,5 11,0 11,5 12,0 12,5 13,0 13,5 14

6,25 – – – – – – 15,0 15,5 16,0 16,5 17,0 17,5 18,0

Page 115: Manualul inginerului textilist

Încleierea urzelilor 1245

Tabelul IV.4.4

Concentraţii orientative în amidon ale flotelor de încleiere pentru fire tip lână şi tip liberiene

Natura şi tipul firelor încleiate Concentraţia flotei, %

în amidon de cartofi

în ancolant colagenic

Fire din lână pieptănată 100%, cu Tt > 20 tex 5,0–5,5 4,0

Fire din lână pieptănată 100%, cu Tt < 20 tex 6,0–6,5 4,0

Fire din lână pieptănată şi celofibră, cu Tt > 20 tex 4,0 4,0

Fire din lână pieptănată şi celofibră, cu Tt < 20 tex 6,0 4,0

Fire unice din lână cardată 100% 7,5 3,5

Fire răsucite din lână cardată 100% 6,5 2,2

Fire unice din lână cardată în amestec cu celofibră 6,5 2,5

Fire din fuior de in, crude, filare umedă 3,0–4,0 –

Fire din fuior de in, albite 3,5–5,0 –

Fire din fuior de in, crude, filare uscată 6,0–8,0 –

Fire din cânepă, filate uscat, peste 100 tex 6,0 0,2%

Fire din cânepă, filate uscat, de 50–100 tex 6,5 0,3%

Fire din in şi cânepă, filate uscat, sub 50 tex 7,0 0,4%

Fire din iută, peste 100 tex 4,0 –

Fire din iută, sub 100 tex 5,0 –

Tabelul IV.4.5

Coeficienţi de corecţie ai concentraţiei în funcţie de fineţea firelor

Densitatea de lungime, tex 200 150 120 100 64 42 25 15

Coeficientul de corecţie, Cf

0,5 0,6 0,66 0,7 0,78 0,90 1,1 1,23

Tabelul IV.4.6

Coeficienţi de corecţie ai concentraţiei la înlocuirea amidonului de cartofi au alt tip de amidon

Tipul de amidon Cartofi Porumb Grâu Orez Făină de grâu

Făină de porumb

Coeficientul de corecţie, Ca

1,0 1,08 1,06 1,18 1,16 1,36

Page 116: Manualul inginerului textilist

1246 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

b. Derivaţi ai amidonului. Derivaţii amidonului sunt amidonuri modificate prin hidro-

liza acidă, oxidare, tratare termică, clorificare, esterificare etc. Dextrina este un derivat al amidonului obţinut prin tratarea amidonului cu acizi diluaţi

urmată de o neutralizare cu hidroxizi. Hidroliza acidă produce descompunerea amilopectinei, fără a fi hidrolizate legăturile glucozidice dintre inelele glucopiranozice. Dextrinele sunt solubile în apă, iar în prezenţa iodului se colorează roşu-brun, numai dacă macromoleculele sunt relativ mari. Dextrinele cu molecule mici nu se colorează în prezenţa iodului.

Aparatina este un alt derivat obţinut prin tratarea amidonului cu soluţii puternice de sodă caustică, urmată de neutralizare cu acid sulfuric.

Dacă se procedează la tratarea amidonului cu oxidanţi (hipocloritul de sodiu) rezultă oxiamidonul.

Metilamidonul, elilamidonul, acetilamidonul, carboximetilamidonul şi hidroxietilami-donul (fig. IV.4.2, h) sunt derivaţi ai amidonului obţinuţi prin eterificarea acestuia. Eterii amidonului sunt consideraţi solubili şi se gonflează în apă la temperaturi mai scăzute decât amidonul natural. Eterii amidonului, cu un anumit grad de substituţie al grupărilor hidroxilice OH din molecula de anhidroglucopiranoză, pot fi utilizaţi chiar şi la încleierea firelor chimice.

Esterii amidonului utilizaţi la încleiere sunt acetaţii de amidon. Acetilarea amidonului conferă acestuia proprietăţi similare celui tratat cu enzime. Toate tipurile de amidon modificat (amidon solubil) conduc la flote de încleiere cu viscozitate mai redusă, mai uniforme şi mai stabile, chiar la o răcire a acestora până la 10°C. La prepararea flotei de încleiere din amidon solubil nu mai este necesar procesul de scindare.

Ancolanţii pe bază de derivaţi ai amidonului sunt realizaţi sub diverse denumiri comer-ciale (tabelul IV.4.7), unele dintre acestea având în structura lor şi auxiliari chimici necesari flotelor de încleiere. Concentraţiile orientative ale flotelor de încleiere preparate din derivaţi ai amidonului şi amestecuri depind de natura şi fineţea firelor (tabelul IV.4.7), tipul maşinii de ţesut şi de încleiat, caracteristicile ţesăturii etc.

Tabelul IV.4.7

Ancolanţi pe bază de derivaţi ai amidonului şi amestecuri

Denumiri comerciale ale ancolanţilor

Structura chimică de bază şi proprietăţi principale

Domenii de utilizare şi concentraţii orientative

1 2 3

Ancolant P

Fosfat de amidon cu grad mic de substituţie, sub formă de pulbere galben-maronie, cu umiditatea de max. 4%. Viscozitatea soluţiei de 16% este 15000–17000 cP, la 3 dyne/cm2 şi 20 ± 2°C, cu un pH = 7–7,5. Temperatura de gonflare: 70...80°C

Fire tip bumbac şi concentraţia flotei de: 10–12% Ancolant P; 8% Ancolant P + 4% CMC; 4% Ancolant P + 7% amidon; 3% Ancolant P + 8% amidon P + 4% aracet APV.

Texflo 60

Pulbere albă, cu umiditate de 12%, din amestec de amidon modificat chimic şi amidon de grâu hibrid. Viscozitatea flotei de 10%, la 85°C, 70 cP şi pH = 6–7. Compatibil cu alcooli polivi-nilici sau CMC pentru urzeli din fire foarte fine

6–11% – fire simple din bumbac; 4–6% – fire răsucite

Emsize CMS–60

Pulbere galben-brună, având ca bază amidonul de cartofi carboximetilolat. Viscozitatea flotei de 10%, la 85°C, η = 60 cP şi pH = 10–11

Concentraţii, K (%) Tt (tex) Fire din bumbac 100% 4–6 58,82–35,71 5–8 35,71–25 6–10 25–20 7–12 20–14,28 8–14 sub 14,28

Page 117: Manualul inginerului textilist

Încleierea urzelilor 1247

Tabelul IV.4.7 (continuare)

1 2 3

Fire din celofibră 100% 3–5 50–25

4–6,5 25–14,28 5–7 14,28–11,76

Fire din poliester în amestec 11–13 29,41–20 13–15 20–14,28

14,5–16 14,28–10

Lamcol C/190

Pulbere granulară maro-gălbuie, cu umiditatea de 9–11%, din amestec de derivaţi naturali mo-dificaţi, grăsimi, agenţi de antistatizare, agenţi de antispumare etc. Viscozitatea soluţiei de 10%, la 85°C, η = 100 cP şi pH = 8

Concentraţia, K (%) Tt (tex) Fire din bumbac 100% 4–65–8 6–10 7–12 8–14

58,82–35,71 35,71–25

25–20 20–14,28 sub 14,28

Fire din lână 15–16 –

Viscoză 3–4

4–6,5 5–7

50–25 25–12,5 14,28–10

Poliester în amestec 1113 15

29,41–20 20–14,28 14,28–10

Aztex L.A.

Pulbere albă din polimeri filmogeni, cu adaus de agenţi de udare, lubrifiere, plastifiere, anti-spumanţi, antiseptici, antistatizare etc. Visco-zitatea flotei de 8%, la 85°C, η = 100 cP şi pH = 6. Temperatura de preparare a flotei T = 100°C, iar cea de utilizare T = 85°C

Concentraţii K (%) Tt (tex) Fire din bumbac 100%

910

11,5

50 33,33

25 Fire din poliester şi bumbac

1011

12,5

40 28,57 22,22

Plystran R Plystran SP Plystran CN Plystran AJT

Pulbere albă, din amestec în diverse proporţii de polimeri naturali modificaţi şi polimeri sintetici cu adaus de agenţi auxiliari de udare, antispu-mare, plastifiere, lubrifiere, antilipire, antista-tizare etc. Viscozitatea flotei de 10% este: 70–90 cP la Plystran CN, 100 ± 20 cP la Plystran SP, 120 cP la Plystran R, 50 ± 10 cP la Plystran AJT

Concentraţii K (%) Tt (tex) Plystran AJT pentru poliester + bum-bac, ţesere ultrarapidă (pneumatică)

11–1313–15

14,5–16

29,41–20 20–14,28 14,28–10

Plystran AJT–bumbac 100% 7–12 20–14,28 8–14 sub 14,28

4–11

Plystran R–bum-bac şi ameste-

curi; Plystram SP–

poliester 100%; Plystran CN – amestecuri de poliester cu

bumbac

Observaţie. Firme producătoare sau de comercializare: INCDTTP – Bucureşti, Cebotex Bucureşţti, Lamberti–Italia, Emsald Stärke CMBH– Austria etc.

Page 118: Manualul inginerului textilist

1248 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.4.1.3. Substanţe auxiliare pentru flotele de încleiere pe bază de amidon

Pe lângă amidon, la prepararea flotelor se folosesc diferite tipuri de produse auxiliare:

agenţi de scindare (hidroliză), agenţi de udare, agenţi de plastifiere (emolienţi), agenţi higro-scopici şi agenţi antiseptici.

Agenţi de scindare (hidroliză). Au rolul de a reduce de 10–17 ori dimensiunile macro-moleculei de amidon, pentru asigurarea fluidităţii şi omogenităţii flotelor şi a pătrunderii acestora în structura firelor filate. Treptele de scindare cu agenţi chimici sunt: amidon solubil, dextrină, maltoză şi glucoză. Cu ultrasunete, dimensiunile macromoleculei de amidon se pot reduce de 1000 de ori. Nu este indicată hidroliza totală, deoarece flota obţinută are viscozitate şi putere de încleiere reduse.

Ca scindanţi chimici se folosesc acizii (H2SO4 şi HCl), hidroxizii (NaOH) şi oxidanţii (cloramina B–C6H5SO2HNaCl⋅3H2O, cloramina T–CH3C6H4SO2HNaCl⋅3H2O şi clorura de var – CaCl2O). Ca scindanţi biochimici se folosesc enzime specifice pentru descompunerea amidonului, cum sunt diastazele, cu denumiri comerciale de biolază, diastafor etc. Dozarea agenţilor de scindare se face în raport cu cantitatea de amidon natural (tabelul IV.4.8).

Tabelul IV.4.8

Dozarea agenţilor de scindare (hidroliză)

Agenţi de hidroliză Concentraţia agentului de hidroliză

Procentul de utilizare a agenţilor faţă de masa amidonului pentru o scindare de 25–30%

Neutralizant

Acid sulfuric 17 Be' 0,5–0,6 Sodă caustică în proporţie de 1:1

Acid acetic 60% 0,5–0,6 Sodă caustică în proporţie de 1:1

Acid clorhidric 18–19 Be' 0,25 Sodă caustică – 1,2g NaOH la 1g HCl

Hidroxid de sodiu 100%

1 – la amidon de porumb

0,9 – la amidon de cartofi

Acid clorhidric 0,8g HCl la 1g NaOH

Cloramină

20–25% clor activ (cloramina T)

25–30% clor activ (cloramina B)

0,15–0,25 la amidon de cartofi;

0,4–0,7 la amidon de porumb;

0,5–0,9 la făina de grâu

Clorura de var 25–30% clor activ 0,24 clor activ – Enzime – 1 –

Agenţi de udare (umectanţi). Au rolul de a micşora tensiunea superficială la interfaţa

fir–lichid, de a mări tensiunea de adeziune şi de a accelera udarea şi preluarea flotei de încle-iere. Ca agenţi de udare la încleiere se pot folosi tenside anionice, ca: săpun industrial, ulei sulfonat, esteri anionici ai acidului sulfosuccinic (înmuiat rapid C) etc. Concentraţia flotei de încleiere în agenţi de udare depinde de tipul firelor şi a produselor de încleiere folosite. Se recomandă: 0,35–0,45% la flote pe bază de amidon pentru bumbac 100%; 0,2 – 0,3%, la flote din amidon şi produse sintetice.

Page 119: Manualul inginerului textilist

Încleierea urzelilor 1249

Agenţi de plastifiere (plastifianţi). Au rolul de a menţine flexibilitatea firului încleiat cât

mai aproape de cea a firului neîncleiat. În calitate de plastifianţi se pot folosi: seu, parafină, stearină tehnică, glicerină, ceară de albine, ulei de ricin, ulei de bumbac, ulei de in etc.

Concentraţia flotei de încleiere în agenţi de plastifiere poate fi: 0,25–0,35%, la flote din amidon pentru bumbac 100%; 0,2%, la flote din amidon şi produse sintetice.

Agenţi de lubrifiere (lubrifianţi). Au rolul de a micşora coeficientul de frecare al firului încleiat. Aproape toţi plastifianţii au şi proprietăţi de lubrifianţi.

Agenţi higroscopici. Au rolul de a ridica umiditatea urzelilor la valorile recomandate pentru ţesere, în cazul unor suprauscări ale acestora pe maşina de încleiat. Se asigură menţinerea elasticităţii şi flexibilităţii firelor şi a peliculelor de încleiere. Ca agenţi higroscopici se pot folosi: glicerina tehnică, glucoza, clorura de sodiu etc. Se recomandă folosirea glicerinei tehnice, cu rol şi de plastifiant, în următoarele concentraţii faţă de flotă: 0,2–0,3% vara şi 0,1–0,2% iarna.

Agenţi antiseptici. Au rolul de a evita degradarea flotelor din amidon sau din alte produse naturale şi de a preveni mucegăirea urzelilor încleiate. Drept agenţi antiseptici se pot folosi: formalină, acid salicilic, clorură de zinc, sulfat de cupru etc. Concentraţia flotei de încleiere în agenţi antiseptici poate fi: 0,25–0,35% formalină la flote din amidon 100%; 0,15–0,25% soluţie de clorură de zinc 50°Be'; 0,3–0,45%, formalină la flote din amidon şi derivaţi proteici (clei de oase); 0,1–0,2%, formalină la flote din amidon şi produse de încleiere sintetice.

Agenţi multifuncţionali. Pentru eliminarea unor dozări necorespunzătoare ale agenţilor auxiliari se pot utiliza amestecuri complexe de agenţi chimici, gata preparate, care îndeplinesc toate funcţiile substanţelor auxiliare necesare pentru flote de încleiere. Se exemplifică prin produsul Sunwax 100, care este un amestec sub formă de solzi albi, alcătuit din plastifianţi, lubrifianţi. antispumanţi, emolienţi etc. Concentraţia recomandată la utilizare are valori de: 0,5–0,6% la flote pentru fire din bumbac 100%; 0,7–0,8% la flote pentru fire din bumbac şi poliester; 0,9–1% la flote pentru fire din poliester (> 50%) şi bumbac cu fineţe mare.

Sunwax 100 se poate folosi la toate tipurile de fire şi de produse de încleiere, inclusiv în flotele de cerare după încleiere.

IV.4.1.4. Ancolanţi pe bază de derivaţi celulozici

La încleierea urzelilor se pot folosi eteri sau esteri celulozici hidrosolubili, obţinuţi prin diverse tehnologii chimice de tratare a alcalicelulozei. Eterii celulozici folosiţi la încleiere sunt carboximetilceluloza, metilceluloza şi hidroxietilceluloza, iar dintre esteri se poate folosi acetilceluloza.

Carboximetilceluloza este obţinută prin acţiunea acidului monocloracetic, sau a monocloracetatului de sodiu asupra celulozei, în prezenţa hidroxidului de sodiu [ ]3 :

OHONaRNaOHOHR 2celcel +−→+− NaClCOONaOCHRCOONaClCHONaR 2cel2cel +−→+−

Substituirea parţială a hidrogenului din grupele hidroxilice OH ale celulozei cu grupele eterice CH2COONa, de volum mult mai mare, conduce la distanţarea lanţurilor macromolecu-lare şi obţinerea unui produs solubil în apă, cu structura de mai jos:

unde R = CH2–COONa sau R = CH2–COOH.

Page 120: Manualul inginerului textilist

1250 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Reacţia secundară dintre hidroxidul de sodiu şi monocloracetatul de sodiu generează

săruri (glicolat de sodiu şi clorură de sodiu): NaClCOONaHOCHCOONaClCHNaOH 22 +→+

Aceste săruri se elimină parţial sau total, prin spălarea carbonmetilcelulozei, în procesul de fabricaţie al acesteia.

Indicii de calitate ai carboximetilcelulozei ce influenţează calitatea flotei de încleiere sunt: uniformitatea substituţiei, gradul mediu de polimerizare şi puritatea produsului. Cu cât sunt mai uniform repartizate grupele eterice în lanţul macromolecular al CMC-ului, cu atât produsul va fi mai solubil, la acelaşi grad de substituţie. Gradul de polimerizare al CMC-ului depinde de gradul de polimerizare al celulozei şi de procesul de fabricaţie şi influenţează hotărâtor viscozitatea flotei de încleiere. Puritatea CMC-ului depinde de intensitatea procesului de spălare şi influenţează reologia flotelor de încleiere. Produsele înalt purificate conţin un procent foarte redus de săruri (Tylose C şi CB din tabelul IV.4.9).

Rcel–ONa + ClCH3 ––Rcel–OCH3 + NaCl

unde R = CH3.

Tabelul IV.4.9

Caracteristicile produselor Tylose

Tylose tip Forma de prezentare

Conţinut în eter de celuloză, % Umiditate,

%

Conţinut total de

săruri, % absolut uscat

produs industrial

C şi CB Granule sau pudră 99,5 92 8 0,5 CR 20 n Granule 77 70 10 20 CR 1500; CR 1500 p Granule sau pudră (p) 68 65 5 30 CR 700 n Granule 58 55 5 40 CBR– toate tipurile Granule sau pudră (p) 53 50 5 45 CR 200 f Flacoane umede 62 40 35 25 CR 100 f Flacoane umede 50 35 30 35 CR 50 şi CR 50 n Granule 37 35 5 60

Metilcelulozele sunt obţinute prin acţiunea clorurei de metil asupra alcalicelulozei şi au următoarea structură:

unde R = CH3.

Page 121: Manualul inginerului textilist

Încleierea urzelilor 1251

Hidroxietilcelulozele sunt obţinute prin acţiunea oxidului de etilenă asupra alcalice-

lulozei, şi au următoarea structură: Rcel ONa CH2 CH2 Rcel O CH2 CH2 ONa

O

unde R = CH2–CH2–ONa sau R=CH2–CH2–OH.

Din grupa esterilor celulozici ca ancolanţi pentru urzeli, se poate folosi acetilceluloza, obţinută prin acţiunea acidului acetic asupra alcalicelulozei, conform reacţiei:

Rcel–ONa + HOOC–CH3→Rcel–O–CH3 + NaOH

unde R=CH3 C

O

. Denumirile comerciale şi caracteristicile ancolanţilor pe bază de derivaţi celulozici

depind de firma producătoare, dintre care se remarcă firma Hoechst (Germania) cu Tylose C şi CB, pentru carboximetilceluloză (tabelul IV.4.9), Tylose TWA şi MH, pentru metilceluloză şi Tylose H, pentru hidroximetilceluloză. Viscozitatea soluţiilor variază în limite largi, în funcţie de masa moleculară şi tipul produsului (tabelul IV.4.10). Concentraţiile orientative ale flotelor de încleiere depind de tipul firelor şi caracteristicile urzelilor (tabelele IV.4.10–IV.4.15).

Tabelul IV.4.10

Viscozitatea soluţiilor de Tylose la 2°C

Tylose tip: Viscozitatea soluţiei de 2%, în cP Tylose tip: Viscozitatea soluţiei

de 5%, în cP C 10 C 30 C 300 C 300 p C 600 C 1000 p C 6000 C 10000 C 10000 p CB 40 CB 40 p CB 200 CB 4000 CB 4000 p CB 30000

6–9 25–32

200–330 200–330 400–700 800–1300 5000–8000 9000–15000 9000–15000

30–50 180–260

2500–6000 2500–6000

24000–36000

CR 20 n CR 50

CR 50 n CR 100 f CR 200 f CR 700 n CR 1500

CR 1500 p CBR 30 CBR 70 CBR 200 CBR 4000

CBR 5000 n CBR np

17–32 40–70 40–70 35–150 150–400 250–750

1000–2000 1000–2000

20–50 50–100 120–300

3000–6000 4000–8000 4000–8000

Page 122: Manualul inginerului textilist

1252 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.11

Concentraţii orientative ale flotelor de încleiere pentru fire din bumbac şi ţesături cu desimi medii

Densitatea de lungime, Tt (tex) Tipul de Tylose Concentraţia flotei, K (%)

66,66–29,41 Tylose CR 700 n (Tylose C 30 L)

4–4,75 (3,5–4)

25–20 Tylose CR 700 n

(Tylose CR 700 n + Tylose C 30 L) 5–5,5

(3,5–4) + (0,75–1,25)

29,41, pentru ţesături cu desimi mari Tylose C 30 L 4,25–5

16,66–14,25 Tylose C 30 L 5,25–6,25

11,76–8,33 Tylose C 30 L 6,5–7,5

33,33 × 2–20 × 2 Tylose CR 50 n

(Tylose CR 700 n) 2–2,5

(1,2–1,8)

16,66 × 2–10 × 2 Tylose CR 700 n 2–2,75

8,33 × 2–5,55 × 2 Tylose CT 700 n 3–5,5

Tabelul IV.4.12

Concentraţia flotei de încleiere în amidon şi CMC pentru fire din 67% Pes şi 33% bumbac

Tipul ancolantului Concentraţia flotei, K (%) pentru fire cu Tt (tex) egal cu:

17 25 34 50

Amidon de porumb 5,0–6,0 4,0–6,0 3,0–3,5 2,50–4,0

Carboximetilceluloză 2,5–3,0 2,0–3,0 1,50–1,75 1,5–2,0

Tabelul IV.4.13

Concentraţia flotei de încleiere pentru urzeli din celofibră

Tipul ancolantului Concentraţia flotei, K (%) pentru fire cu Tt (tex) egal cu:

50–29,41 25 20 16,66 11,76

Tylose CR 50 n 3,5–4,0 4,25 5,0 5,5–6,5 7,5–8,0

Tylose CR 700 n 2,25–2,75 3,0 3,25 3,5–4,25 –

Tylose C 300/C 600 0,8–1,2 1,3 1,5 – –

Tylose C 300 – – – 1,6–2,0 –

Tylose C 30 L – – – – 4–4,25

Page 123: Manualul inginerului textilist

Încleierea urzelilor 1253

Tabelul IV.4.14

Concentraţii orientative ale flotelor de încleiere mixte pentru fire din bumbac

Densitatea de

lungime a firelor, tex

Desimea urzelii, fire/cm

Tipul produselor folosite în amestec

Concentraţia flotei, K, %

56,66–50 Până la 18–20 Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

4,0–5,0 1,0

(0,6)

41,66–29,41 Până la 20–28 Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

5,0 1,5

(0,9)

50–29,41 Peste 28 Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

6,0 1,5–2

(0,9–1,2)

25–41,66 Normală Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

6,0 1,5

(0,9)

20–16,66 Până la 30–45 Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

7,0–8,0 2,0

(1,2)

20–16,66 Peste 45 Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

8,0–9,0 2,0–2,5

(1,2–1,5)

14,28–25 Normală Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

8,0–9,0 2,0–2,5

(1,2–1,5)

11,76–20 Normală Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

9,0–10,0 2,5

(1,5)

10–8,33 Normală Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

12,0–13,0 2,5–3,0

(1,5–1,8)

7–69–5,55 Normală Amidon de cartofi Tylose CR 50 n

(Tylose CR 700 n)

15,0–16,0 4,0

(2,5)

Page 124: Manualul inginerului textilist

1254 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.15

Concentraţii orientative ale flotelor de încleiere pentru fire din lână sau tip lână

Tipul firelor Tipul Tylose Concentraţia flotei, K, %

Fire cardate groase şi medii Tylose TWA 1000 (Tylose C 600) (Tylose CR 700 n)

0,75–1,0 (0,75–1,0) (2,0–3,0)

Fire cardate fineţe mare

Tylose TWA 1000 (Tylose C 600) (Tylose C 300) (Tylose CR 700 n)

1,0–1,5 (1,0–1,5) (1,0–1,5) (3,0–4,5)

Fire pieptănate răsucite 35,71 tex × 2–27,77 tex × 2

Tylose TWA 1000 (Tylose C 600) (Tylose C 300)

1,8–2,5 (1,8–2,5) (1,8–2,5)

Fire pieptănate răsucite cu Tt < 25 tex × 2

Tylose TWA 1000 (Tylose C 300) (Tylose C 150)

2,6–3,5 (2,6–3,5) (2,6–3,5)

Fire Pes/lână (55/45%) răsucite, 20,83 tex × 2

Tylose C 30 L (Tylose C 300)

4,0–4,25 (1,75–2,5)

Fire Pes/celo (55/45%) răsucite; Tt = 20,83 tex × 2

Tylose C 30 L 3,5

Fire Pes/celo (70/30%), răsucite; Tt = 16,66 tex × 2

Tylose C 30 L Vinarol ST Hostapal CV, concentrat

2,5 1,75 0,025

Fire 100% Pna, Tt = 10 tex × 1

Tylose C 30 L Ceară pentru încleiere WL Hostopal CV, înalt concentrat

7,5 1,2

0,025

Fire 100% Pna, Tt = 29,41 tex × 1

Tylose C 30 L Ceară pentru încleiere WL Hostopal CV, înalt concentrat

4,75 0,75 0,025

Fire 100% Pna, răsucite, Tt = 10 tex × 2

Tylose C30 L 2,75

IV.4.1.5. Ancolanţi pe bază de colagen

Colagenul reprezintă proteina extrasă din ţesuturile pieilor, oaselor, tendoanelor,

solzilor de peşte etc. Proteinele au o structură macromoleculară, cu un mare număr de amino-acizi legaţi prin legături amidice (–CO–NH–), care formează lanţuri polipeptidice de tipul:

Page 125: Manualul inginerului textilist

Încleierea urzelilor 1255

Radicalii R, R', R'' etc., care corespund unor aminoacizi, sunt foarte diferiţi (peste 20 de

aminoacizi). Ordinea de aşezare şi tipul aminoacizilor depind de natura fiecărei proteine, ce poate fi vegetală sau animală. Proteinele, în soluţie, prezintă proprietăţi coloidale, dând, prin

hidroliză, aminoacizi ( R CHCOOH

NH2).

Ancolanţii pe bază de colagen constituie hidrolizaţi de colagen obţinuţi prin firberea îndelungată în apă a colagenului din piei, oase etc. Prin fierbere are loc ruperea legăturilor peptidice şi transformarea colagenului în produse cu masă moleculară mai mică şi solubile în apă caldă. Cu cât hidroliza este mai avansată, cu atât creşte solubilitatea şi scade viscozitatea soluţiei. Caracteristicile de încleiere sunt date atât de grupele polare ( )+−− 3NHCOO prezente la capetele lanţului polipeptidic, cât şi de grupele OH, care dau adezivitate la materiale ce conţin H în moleculă, capabile să formeze legături de hidrogen.

Gelatina este un hidrolizat parţial al colagenului din piei şi cartilaje, sub formă de foi subţiri, plăci sau granule. Foile subţiri, transparente, aproape incolore, sunt destinate produselor farmaceutice sau alimentare. Plăcile sau granulele de gelatină, colorate brun-roşcat, constituie hidrolizate de calogen de calitate mai scăzută, dar care se pot utiliza şi ca ancolant pentru urzeli. Granulele se dizolvă în apă în maximum 10 minute, formând o soluţie coloidală. Soluţia de 1% are pH = 5–7. Viscozitatea soluţiei scade în timp, iar după 24 de ore de păstrare la 40°C această scădere ajunge la 20% din valoarea iniţială.

Cleiul de oase este un hidrolizat de oseină, adică al proteinei din oase. Soluţia de clei de oase are reacţie acidă. Are putere de încleiere mare şi se foloseşte în amestec cu amidon pentru încleierea firelor din lână sau lână în amestec, cardată sau pieptănată, conform reţetelor orientative din tabelul IV.4.16. Prepararea flotei de încleiere se face după ce cleiul de oase a fost lăsat să se înmoaie timp de cel puţin 12 ore. Prin încălzirea flotei la 50°C granulele încep să se umfle şi se obţine o soluţie coloidală vâscoasă. Nu trebuie depăşită temperatura de 60°C, deoarece peste această valoare are loc degradarea cleiului, ceea ce conduce la scăderea viscozităţii şi a capacităţii de încleiere a flotei. O încălzire îndelungată reduce de asemenea puterea de încleiere. Diluarea soluţiei se face numai cu apă fierbinte, deoarece diluarea cu apă rece reduce puterea de încleiere. Flotele de încleiere se prepară numai în cantităţile strict nece-sare utilizării, fără reîncălziri sau păstrare îndelungată, deoarece are loc scăderea adezivităţii peliculelor de încleiere.

Tabelul IV.4.16

Reţete de încleiere cu amidon şi clei de oase

Substanţe folosite

Concentraţia flotei (%) pentru urzeli din fire de

Lână 100% cardată sau amestec Lână 100% pieptănată sau amestec cu celofibră

V1 V2 sub 50 tex peste 50 tex Amidon de cartofi 4–6 – 4–6 3–4 Clei de oase (clei tâmplărie, gelatină)

3–4 (2,5–3)

– (8)

3–4 (–)

5–5,5 (–)

Acid sulfuric, soluţie 20°Bé – – 0,375 – Sodă calcinată 0,28 – 0,25–0,55 – Cloramină – – – 0,009–0,012 Glicerină 0,4–1,5 4 0,25–1 0,25–1 Săpun 1–2 – 0,5 0,5 Ulei sulfonat 0,36 – 0,12–0,2 0,12–0,2 Sulfat de cupru 0,01 – 0,01 0,01

Page 126: Manualul inginerului textilist

1256 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Ancolanul este un produs de încleiere constituit din 95% clei de oase şi 5% ulei vegetal

sulfonat. Este un praf brun, lipicios, cu o umiditate de 20%. Se dizolvă în apă şi se obţine o flotă de încleiere opalescentă, fără sedimentare sau separare. Flota de încleiere cu concentraţia de 6–8% ancolan se recomandă pentru încleierea firelor polifilamentare torsionate din vâscoză. Flota de încleiere mai poate conţine: 0,5–1% glicerină; 1,0–1,5% ulei sulfonat; 0,5% romestat.

IV.4.1.6. Ancolanţi pe bază de alcool polivinilic Caracteristicile de ancolant ale alcoolului polivinilic sunt determinate de procesul de

fabricaţie a acestuia, care constă în hidroliza (saponificarea) parţială a poliacetatului de vinil în prezenţa uneia dintre următoarele substanţe: apă, alcool metilic, hidroxid de sodiu, amoniac etc. Rezultă alcool polivinilic şi unul dintre produsele: acid acetic, acetat de metil, acetat de sodiu, acetamidă etc. (fig. IV.4.4).

Fig. IV.4.4. Schema de obţinere şi structura de bază a ancolanţilor pe bază de alcool polivinilic.

În urma hidrolizei controlate şi parţiale, rămân în macromoleculă şi radicali acetat – COOCH3, în diferite proporţii, care influenţează proprietăţile alcoolului polivinilic şi în special solubilitatea. Proprietăţile flotei de încleiere depind de gradul de polimerizare, gradul de hidro-

liză şi indicele de saponificare. Gradul de polimerizare influenţează viscozitatea flotei de încleiere (fig. IV.4.5). Gradul de hidroliză şi indicele de saponificare influen-ţează solubilitatea alcoolului polivinilic (fig. IV.4.6). Se recomandă ca indicele de saponificare al alcoolului poli-vinilic să fie mai mic de 200. Unele caracteristici ale alcoolului polivinilic se prezintă în tabelul IV.4.17, iar unele caracteristici ale peliculei de încleiere în tabelul IV.4.18.

În raport cu tipul firelor, viscozitatea soluţiei de 4%, η, la 20°C şi indicii de saponificare recomandaţi sunt:

η = 4–10 cP şi indicele de saponificare este 70–125, pentru firele filamentare din viscoză, acetat, triacetat;

η = 25–30 cP şi indicele de saponificare este 70–140, pentru firele filate.

Fig. IV.4.5. Viscozitatea în funcţie de gradul de polimerizare.

Page 127: Manualul inginerului textilist

Încleierea urzelilor 1257

Fig. IV.4.6. Solubilitatea în funcţie de gradul de hidroliză şi temperatură.

Tabelul IV.4.17

Caracteristici ale ancolanţilor pe bază de alcool polivinilic

Nr. crt.

Denumiri comerciale Viscozitatea

soluţiei de 4% la 200° C (cP)

Grad mediu de polimerizare

Grad de hidroliză Indicele de saponificare % molare % masă

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

Aracet APV 5c–88 Aracet APV 90–98 Aracet APV 120–88 Rhodoviol 4/125 Rhodoviol 25/140 Rhodoviol 30/70 Siconol SC1 Polinol F 17 Polinol P 17 Polinol P 05 Sico Polymer 18–88

5 ± 1 10 ± 2 13 ± 2

4 25 30

15–17 25–31 20–25 4,5–5,5 25 ± 2

500 900 1200 500

1700–1800 1700–1800

– 1650–1750 1650–1750 500–600

88 98 88 89 88 94 – – – – –

– – – 91 79 89

98–99 98–99,3 86–89 86–89 87–89

140 ± 30 30

140 ± 30 125 140 70 – – – – –

Observaţie. Firme producătoare: Hoechst–Germania (Vinarol); Râşnov-România (Aracet APV); Rhone-Poulene-Franaţa (Rhodoviol); Seydel International S.U.A. (Siconol, Sico-Polymer); Prochema-Austria (Polinol); Revertex Anglia (Alcotex) etc.

Tabelul IV.4.18

Rezistenţa şi alungirea la rupere a peliculelor din Vinarol

Umiditatea, % Rezistenţa la rupere, în daN/cm3, la 20°C, pentru Vinarol tip:

DT FT ST DV FV SV NV 2 ≈ 400 550 700 550 950 1200 – 10 ≈ 200 250 300 250 300 400 500 25 ≈ 40 50 100 60 100 120 – Alungirea la rupere, în %, la 20° C, pentru Vinarol tip

Umiditatea, % DT FT ST DV FV SV NV 2 ≈ 2 10 15 2 5 10 – 10 ≈ 200 200 250 100 150 250 280 25 ≈ 300 350 400 200 350 550 –

Page 128: Manualul inginerului textilist

1258 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Concentraţia flotelor de încleiere în alcool polivinilic poate fi de 1–12%. În flotele de

încleiere mixte, cu utilizări mai largi, alcoolul polivinilic poate juca rol de ancolant principal sau de ancolant secundar, în următoarele proporţii:

90–70% alcool polivinilic + 10–30% ancolanţi acrilici; 25% alcool polivinilic + 75% acizi acrilici, pentru fire poliamidice; 20% alcool polivinilic + 80% copolimeri acrilici, pentru fire poliesterice; 10–30% alcool polivinilic + 90–70% CMC sau amidon, pentru fire filate tip bumbac. Ancolanţii pe bază de alcool polivinilic, fără amestec cu alţi ancolanţi, se folosesc

frecvent pentru încleierea firelor filamentare din viscoză şi acetat (tabelul IV.4.19). Pentru firele sintetice filamentare, sau filate, se recomandă concentraţii mai mari (tabelul IV.4.20). Pentru maşini de ţesut neconvenţionale, concentraţiile flotelor de încleiere sunt mai mari cu 20–35% faţă de ţeserea cu suveică. Încărcarea cu substanţe de încleiere a firelor variază între:

7 şi 12%, la firele filate; 1,5 şi 4%, la firele filamentare.

Tabelul IV.4.19

Concentraţii orientative ale flotelor de încleiere pentru viscoză şi acetat

Tipul firului şi densitatea de lungime, în den Tipul de alcool polivinilic

Concentraţia flotei, K, în %

Viscoză 120/24/100

Vinarol DT (Vinarol DST) (Vinarol DSV)

(Aracet APV–50–92)

1,5 (1,2) (1,2) (2,2)

Viscoză 100 den, desimea urzelii = 65 fire/cm Vinarol DST (Aracet APV 50–92)

2,0 (3,0)

Viscoză 75 den, desimea urzelii = 70 fire/cm, desimea bătăturii = 29 fire/cm, cu Td = 150 den

Vinarol DT (Vinarol DST)

(Aracet APV 50–92)

1,8 (1,2) (2,2)

Acetat 100/32/150 Vinarol DT (Vinarol DST)

4,0 (3,0)

Observaţie: Ca auxiliari pentru încleiere se foloseşte glicerina (0,5 % faţă de flotă).

Tabelul IV.4.20

Concentraţii orientative ale flotelor de încleiere pentru fire sintetice filamentare şi fire filate din fire sintetice sau amestecuri

Tipul firului, densitatea liniară

şi amestec de filare Tipul de alcool polivinilic şi de

alte produse Concentraţia flotei, K, în %

1 2 3

Poliamidă, filamentar, 100/20/330 S

Vinarol DT Hostapal CV, înalt concentrat

4,0 0,025

Poliamidă, filamentar, 60/72/20

Vinarol DT Ceară pentru încleiere WL

5,0 0,4

Fir filat, 100% Pa, 14,28 tex, cu 770 torsiuni Z

Vinarol ST Velustrol NE, concentrat Hostapal CV, înalt concentrat

6,0–6,5 0,30 0,05

Page 129: Manualul inginerului textilist

Încleierea urzelilor 1259

Tabelul IV.4.20 (continuare)

1 2 3

Fir filat, 100% Pes, 14, 28 tex Vinarol ST Velustrol NE, concentrat Hostapal CV, înalt concentrat

10,0 0,5 0,05

Fir filat, Pes/Bbc (67/33%) 14,28 tex, urzeli cu desimi până la 60 fire/cm

Vinarol ST Velustrol NE, concentrat Hostapal CV, înalt concentrat

9,0 0,5 0,05

Fir filat, Pes/Bbc (50/50%) 20 tex

Vinarol ST Tylose C 30 L Velustrol NE, concentrat Hostapal CV, înalt concentrat

5,0 3,5 0,3 0,05

Fir filat şi răsucit, Pes/Bbc (67/33%), 7,46 tex × 2

Vinarol ST Velustrol NE, concentrat

3,0–3,2 0,35

Fir filat şi răsucit, Pes/Celo (70/30%); 26,66 tex × 2

Vinarol ST Tylose C 30 L Hostapal C, înalt concentrat

1,75 2,5

0,025 Fire filate din fire şi fibre sintetice 100%

Rhodoviol Glicerină

8 0,1–0,2

Fire filate Pes/Bbc (67/33%)

Rhodoviol Amidon modificat Glicerină Antistatizant

6–7 1,5–2,5

0,6 0,3

Fire filate Pes/Bbc (33/67%)

Amidon cartofi (CMC) Aracet APV 120–88 Cloramină Glicerină Antistatizant Ulei sulfonat Seu

6–8(7) 2

0,02 0,3–0,7

0,3 0,2 0,3

IV.4.1.7. Ancolanţii pe bază de compuşi acrilici Ancolanţii pe bază de compuşi acrilici au o mare varietate de structuri moleculare

(fig. IV.4.7), (tabelul IV.4.21). Pentru fire filate din diverse tipuri de fibre se pot folosi ames-tecuri de produse acrilice şi amidon. Proporţia amestecului poate varia astfel:

33,3% poliacrilaţi + 66,6% amidon, la fire filate cu procent mic de poliester; 66,6% poliacrilaţi + 33,3% amidon, la fire filate cu procent mare de poliester. Concentraţia flotelor de încleiere mixte poate fi: 2% poliacrilaţi + 4% amidon, la fire din bumbac cu poliester groase, peste 20 tex; 12% poliacrilaţi + 6% amidon, la fire din bumbac cu poliester fine, sub 10 tex. Concentraţia flotelor de încleiere se reduce cu 20–30% la utilizarea CMC-ului în locul

amidonului. Substanţele auxiliare pot reduce adezivitatea peliculelor la fire. În doze mici se pot folosi agenţi tensioactivi (1: 50 faţă de poliacrilaţi), antispumanţi (0,5 g/l), agenţi higroscopici şi plastifianţi (glicerina: 0,3–0,7%).

Page 130: Manualul inginerului textilist

1260 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.4.7. Structura chimică de bază a ancolanţilor acrilici.

Page 131: Manualul inginerului textilist

Tabelul IV.4.21

Ancolanţi pe bază de poliacrilaţi şi concentraţii orientative ale flotelor de încleiere

Nr. crt.

Denumiri comerciale Structură chimică şi proprietăţi Domenii de utilizare

Concentraţia orientativă în

substanţă activă a flotei, K, %

Încărcarea urzelii cu flotă, If, %

Încărcarea urzelii cu

substanţe active, Is, %

0 1 2 3 4 5 6 1. Schlichte C Soluţie apoasă de 25% poliacrilat. Lichid

vâscos, slab acid Fire filate din: – bumbac 100%; – bumbac + poliester şi polinozice

3,5–11 4–120

114–136 62,5–75

4–15

2,5–7,5

2. Schlichte P şi PE

Soluţie apoasă de 25% poliacrilat. Lichid vâscos, neutru. Precipită în mediu acid

Fire poliester filamentare 2–7 100–128 2–9 Fire filate din poliester şi poliacrilnitrilice

4–7 75–150 3,5–11

3. Schlichte S Acid poliacrilic. Pudră albă ce dă soluţie acidă, cu pH = 2–2,5 Fire filamentare poliamidice 2–6 75–85 1,5–5

4. Schlichte T 8 Soluţie apoasă de 50% poliacrilat, ce con-ţine şi alcool etilic. Lichid vâscos, neutru

Fire filamentare de: acetat, triacetat şi viscoză lucioasă 2,5–6 80–100 2–6

5. Schlichte SF Soluţie apoasă de 25% poliacrilat. Lichid gălbui, uşor vâscos, cu pH = 7–8 în soluţie de 10%

PES filamentar nerăsucit PES filamentar nerăsucit PES filamentar texturat răsucit, de:

50 dtex 76 dtex 167 dtex

PES filamentar texturat nerăsucit, de:

50 dtex 76 dtex 167 dtex

12–13 9–11,5

60–7,5 5,5–7,0 4,0–5,5

11–12 10–11 9–10

50–54 55–60

116–113 118–114

112,5–118

109–108 110–109 111–110

6–7 5–7

7–8,5 6,5–8

4,5–6,5

12–13 11–12 10–11

Page 132: Manualul inginerului textilist

Tabelul IV.4.21 (continuare)

0 1 2 3 4 5 6 Acetat filamentar răsucit, de:

222 dtex 133 dtex 111 dtex 83 dtex

Acetat filamentar nerăsucit, de: 222 dtex 133 dtex 111 dtex 83 dtex

2,75 4,0 5,0

5,75

5,5 9,0

10,5 10,5

54,5–72,7 62,5–75 60–70

60,8–69,6

45,5–54,5 44,4–55,5

42,8–57,14 42,8–57,14

1,5–2,0 2,5–3,0 3,0–3,5 3,5–4,0

2,5–3,0 4,0–5,0 4,5–6,0 4,5–6,0

6. Schlichte V Soluţie apoasă de 30% poliacrilat. Lichid vâscos neutru

Fire filamentare din viscoză lucioasă 1,5–4 66–125 1–5Fire filate 2,5–6,5 80–95 2–6

7. Romancolit C–120

Soluţie vâscoasă de 35% copolimer acrilic, cu pH = 2,5. Viscozitatea soluţiei de 10% substanţă uscată, η = 6 ± 2 cP

Fire filamentare poliamidice 2,5–4 – –

8. Medacril ST 8 (Gerol ACR)

Soluţie de poliacrilat de etil + alcool etilic + trietanolamină + acid tereftalic. Lichid vâscos, transparent, slab gălbui, miscibil cu apă. Viscozitatea, η = 5–7 cP, la soluţia de 10%, pH = 6–7

ViscozăAcetat Triacetat Acrilice Fire de sticlă Pliester Poliester texturat

2,5–3,59–12

11–14 6–8 6–9

12–15 14–18

–– – – – – –

–– – – – – –

9. Wisacril R.V. Extra

Soluţie de 25 ± 0,5% copolimer acrilic sali-fiat. Lichid anionic, cafeniu, cu pH = 7,9 ± 0,3 la soluţia de 10% şi cu viscozitatea η = 68 ± 5 cP, la soluţia de 2% şi la 20°C

Fire filamentare şi ţesere cu suveică sau graifere

1,6–2,0 85–95 1,4–1,8

Fire filamentare şi ţesere cu proiectilsau jet de aer

2,3–3,0 85–95 2,2–2,7

10. Wisacril PNS/C (Wisacril PNS)

Soluţie de 25 + 0,5% copolimer acrilic– sare de amoniu. Lichid anionic tulbure şi galben, cu pH = 8 ± 0,3 la soluţia de 8% (tipul PNS/C) şi de 10% substanţă activă (tipul PNS). Viscozitatea η = 2,4 ± 0,4 cP, la soluţia de 10% şi la 55°C

Ţesere hidraulică sau cu suveică a firelor filamentare tip: PES texturat netorsionat

12,5–13,5

(10–11,5 PNS)

80–90

(100–110 PNS)

10–12,2

(10–12,37 PNS)

Page 133: Manualul inginerului textilist

Tabelul IV.4.21 (continuare)

0 1 2 3 4 5 6 PES texturat rotoset 9,5–10,5 80–90 7,6–9,5

PES texturat torsionat

8,0–9,06,25–7,5 (PNS)

80–90100–110

6,4–8,16–8

11. Wisacril NL 66 Soluţie de 45 ± 1% polimer acrilic. Lichid incolor, anionic, cu pH = 2,1 ± 0,2 la soluţie de 10% şi cu viscozitatea de 6,5 cP, la concentraţia de 20% şi la 20°C

Ţesere cu suveică:Pa 6 – torsionat 2,2 45 1Pa 6 – netorsionat 4,5 45 2Pa 6,6 – torsionat 2,7 45 1,2Pa 6,6 – netorsionat 5,4 45 2,4

12. Wisal CT/40 Pulbere albă din polizaharide, polimeri acrilici, esteri şi agenţi antistatici. Este compatibil cu amidon şi derivaţi, CMC, alcool polivinilic, substanţe grase şi ceruri anionice şi neionice

Natura firelor Concentraţia K(%) a flotei la o încărcare cu flotă a urzelii If = 100% şi fire de:

58–37 tex 29–17 tex 14–12 texBumbac 100% 6–7,5 9–10,5 10,5–12Polinozice 3–4,5 4,5–6 6–7,5Poliester 100% 7,5–10,5 12–13,5 15–16,5Poliester + bumbac 6–9 10,5–12 13,5–15Lână 7,5–9 10,5–12 13,5–15Poliester + lână 7,5–10,5 12–13,5 15–16,5

13. Lamcol RS Soluţie de 20% săruri de amoniu ale polimerului acrilic. Lichid gălbui, cu pH = 8 la soluţia de 10%

Ţesere hidraulică pentru fire de: K, % If , % Is , %Acetat 6 60 3,6Triacetat 8 50–60 4,4–8Nylon–acetat 7 50–60 3,5–4,2Poliester texturat 6 90–100 4,5–6

14. Lamcol VR/2 Soluţie de 40% polimer acrilic. Lichid vâscos, anionic, cu pH = 5,5–6,5

Viscoză 4–8 100 4–8

15. Sicosize WP–26 Soluţie de 25 ± 1% copolimer de ester acrilic. Lichid anionic, gălbui, cu pH = 8–9 în soluţie de 1%

Pes filamentar şi texturat, ţesere cu jet de apă

– – –

16. Sicosize WP–40 Soluţie de 22 ± 1% copolimer de ester acrilic. Lichid anionic, cu pH = 8–9

Pa filamentar, ţesere cu jet de apă

– – –

Observaţie. Firme producătoare: BASF-Germania (Schlichte); ICPAD-Meidaş-România (Medacril); Bozzetto S.p.A–Italia (Wisacril, Wisal); Lamberti S.p.A-Italia (Lamcol); Seydel International-S.U.A. (Sicosize)etc.

Page 134: Manualul inginerului textilist

1264 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.4.1.8. Ancolanţi pe bază de copolimeri de poliacetat de vinil Copolimerizarea poliacetatului de vinil cu acidul crotonic nesaturat sau cu sarea de

sodiu a acestuia conduce la ancolanţi solubili în apă, iar copolimerizarea cu sarea de amoniu a acidului crotonic conduce la ancolanţi insolubili în apă, destinaţi ţeserii hidraulice a urzelilor. Structura chimică de bază are forma:

ancolant solubil

ancolant insolubil

Unele proprietăţi ale acestor ancolanţi şi concentraţiile de utilizare se pot urmări în

tabelul IV.4.22. Tabelul IV.4.22

Ancolanţi pe bază de copolimeri de poliacetat de vinil

Denumiri comerciale Proprietăţi principale Concentraţia flotei de încleiere pe tipuri de fire

Bevaloid 440 Praf solubil în apă. Viscozitatea 6 cP, la soluţia de 5% şi temperatura de 49°C

1,5–3% viscoză; 4–5% acetat 5,5–7% triacetat; 5–6% acrilice; 5–7% poliester

Bevaloid 180

Praf insolubil ce necesită amoniac, cu densitatea de 0,89, în proporţie de 12%. Viscozitatea 7 cP, la soluţia de 5% şi temperatura de 49°C; pH = 8,5–9, prin adăugare de amoniac

2,5–3% viscoză; 3,5–4% acetat; 4–5% triacetat

Bevaloid 80 T Viscozitatea 30 cP, la soluţia de 50% şi temperatura de 49°C

6–8% poliester filamentar sau filat

Bevaloid 175 Viscozitatea 7 cP. Compatibil cu amidon modificat

4,5% Bevaloid 175 + 5,5% amidon modificat pentru fire filate din bumbac + poliester

La prepararea flotelor de încleiere din ancolanţi insolubili (Bevaloid 180), pentru

solvirea lor în apă se adaugă amoniac cu densitatea de 0,89, în preparaţie de 12% faţă de ancolant. În timpul uscării urzelii, amoniacul se elimină, iar pelicula formată pe fire rămâne stabilă chiar şi la ţeserea pe maşini hidraulice. Descleierea ţesăturilor se face în mediu alcalin.

La prepararea flotelor de încleiere din copolimeri solubili sau insolubili se pot folosi următoarele produse auxiliare: 0,1 antispumant, 0,5% glicerină, 1,5% romestat PE 26, iar la fire puternic uleiate la filare (circa 3%) se adaugă emulgatori de tipul sulfaţilor de alchil (R – OSO3Na; R – CH3).

Page 135: Manualul inginerului textilist

Încleierea urzelilor 1265

IV.4.1.9. Ancolanţi pe bază de răşini poliesterice Pentru încleierea firelor din poliester, cei mai recomandaţi ancolanţi sunt cei pe bază de

poliesteri modificaţi cu grupe sulfurice solubile în apă. Un exemplu de ancolant din această grupă este copolicondensatul din acid izoftalic, acid sulfoizoftalic şi etilen glicol.

Structura chimică şi proprietăţile ancolanţilor pe bază de poliesteri modificaţi au o

anumită diversitate în funcţie de firma producătoare şi destinaţie (tabelul IV.4.23). IV.4.1.10. Criterii de alegere a ancolantului şi caracteristici ale flotelor

şi peliculelor de încleiere Formarea unei pelicule elastice, flexibile, rezistente la frecare şi bine fixată pe fir

depinde de compatibilitatea dintre firele urzelii şi ancolanţii folosiţi la prepararea flotelor de încleiere. În tabelul IV.4.24 se dau orientările necesare pentru alegerea ancolanţilor în funcţie de tipul firelor supuse încleierii. Alegerea tipului de ancolant trebuie făcută şi în funcţie de posibilităţile de descleiere a ţesăturilor (tabelul IV.4.25).

Caracteristica principală a flotelor de încleiere o constituie viscozitatea acestora. Viscozitatea este proprietatea fluidelor de a opune rezistenţă la curgere, ca rezultat al interac-ţiunii mecanice dintre particulele constituiente. În funcţie de structura chimică, flotele de încleiere se comportă la curgere, fie ca fluide newtoniene, fie ca fluide nenewtoniene. În funcţie de comportarea la curgere au loc relaţiile:

.

. sau

γ

τ=ηγη=τ , la fluide newtoniene,

1a sau −γ⋅=ηγ=τ nn KK , la fluide nenewtoniene,

unde: τ reprezintă tensiunea tangenţială, în direcţia vitezei de curgere, ce apare între două straturi situate la o distanţă elementară dx;

xv

dd

=γ& – gradientul vitezei de curgere (modulul gradientului):

η– viscozitatea (viscozitatea dinamică);

aη – viscozitatea aparentă, specifică fluidelor nenewtoniene; n – indice de curgere (n = 1, comportare newtoniană, n > 1, comportare dilatantă sau

n < 1, comportare pseudoplastică; K – indice de consistenţă. La fluidele newtoniene, viscozitatea dinamică, η , este dependentă numai de temperatură

şi presiune. La fluidele nenewtoniene, viscozitatea, η , este dependentă şi de timp, în sensul că pot fi fluide tixotrope (η scade în timp) sau fluide reopectice (η creşte în timp).

Viscozitatea cinematică ν a unui fluid este raportul dintre viscozitatea dinamică η şi

densitatea sa ρ (ρη

=ν ).

Page 136: Manualul inginerului textilist

Tabelul IV.4.23

Ancolanţi pe bază de răşini poliesterice

Nr. crt.

Denumiri comerciale Structură chimică şi proprietăţi

Domenii de utilizare, concentraţia flotei în substanţe active, K, încărcarea urzelii cu flotă, If şi cu substanţe active, Is

Tipul firului şi al ţeserii K, % If, % Is, %

0 1 2 3 4 5 6

1. Wisester N 530 Dispersie aproape de 30 ± 1% răşină poliesterică hidrosolubilă, cu viscozitatea de 12 mPas la 20°C, pH = 6,5 ± 1 la soluţia de 10 g/l

Pes filamentar torsionat Pes filamentar rotoset, ţesere în mediu uscat Pes filamentar rotoset, ţesere în mediu umed Pes texturat torsionat Pes texturat rotoset

7,2 10,2

7,5

9,0 11,0

40–45 40–45

40–45

80–90 80–90

2,9–3,2 4,1–4,6

3,0–3,4

7,2–8,1 8,9–9,9

2. Wisester N 4 Dispersie apoasă de 25 ± 1% răşină poliesterică hidrosolubilă. Lichid gălbui, anionic, cu pH = 6,5 ± 1, în soluţia de 10%. Viscozitatea produsului, la 20°C, 10 ± 2 cP, iar a soluţiei de 30%, la 20°C, 1,3 ± 0,1 cP

Pes filamentar torsionat Pes filamentar rotoset, ţesere în mediu uscat Pes filamentar rotoset, ţesere hidraulică Pes filamentar texturat torsionat Pes filamentar texturat netorsionat

6 10

75

8,75 11,25

45–50 40–45

45–50

80–90 80–90

2,7–3 4,5

3–3,4

7–7,8 9–10

3. Seycofilm PE 200 Pudră albă din polimeri de poliester solubil. Viscozitate redusă a soluţiei şi pH = 5–6

Pes filamentar 50 den Pes filamentar 150 den Pes texturat netorsionat

5–7 4–5 6–7

30–40 30–40 65–75

1,5–2,8 1,2–2,0 3,9–5,25

Observaţie. Firme producătoare: Seydel International – S.U.A. (Seycofilm PE 200); Giovanni Bozzetto S.B.A. – Filago Italia (Wisester).

Page 137: Manualul inginerului textilist

Tabelul IV.4.24

Orientări pentru alegerea ancolanţilor în funcţie de natura firelor

Tipul ancolantului

Natura firelor

Naturali Sintetici

Amidon Derivaţi

celulozici (CMC)

Galactomanan (polizaharide)

Derivaţi colagenici

Acizi poliacrilici

Esteri poliacrilici

Alcooli poli-

vinilici

Răşini poli-

esterice

Copoli-meri

vinilici

a. Fire filate din fibre Celulozice Celulozice/Pes Celulozice/Pa Lână Lână/Pes Pes/Pa

+ 0 0 0 0 0

+ 0 0 0 0 0

+ 0 0

+

+ + +

+ + + + + +

+ + + + + +

+

+ + +

b. Fibre filamentare Viscoză Acetat Triacetat Poliamidă Poliester

+

+

+

+ + + . +

+ . +

+

+ + +

+

+) – singur sau în amestec; 0) – numai împreună cu ancolanţi sintetici; .) – singur.

Page 138: Manualul inginerului textilist

1268 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.25

Orientări pentru descleierea ţesăturilor

Tipul ancolantului Caracteristici pentru descleiere Tehnica descleierii

Amidon, amidon modificat

Descompunere în compuşi solubili în apă

Enzimatic

Oxidativ

Poliacrilaţi, alcooli polivinilici, carboximetilceluloză (CMC) amidon modificat special

Solubili în apă Înmuiere

Poliacrilaţi speciali, „PES“ Insolubili în apă Neutralizare +

dispersare Unităţile de măsură pentru viscozitate (viscozitatea dinamică) sunt: – newton secundă pe metru pătrat (N⋅s/m2), în sistemul SI; – poise (P), cu submultiplul uzual centipoise (cP), în sistemul CGS (1 cP = 10–2 P); – pascal secundă (Pa⋅s) ca unitate derivată a sistemului SI (Pa⋅s = m–1⋅kg⋅s–1); Unităţile de măsură ale viscozităţii cinematice, ν , sunt: – metru pătrat pe secundă (m2/s), în sistemul SI; – stokes (St), cu submultiplul uzual centistokes (cSt), în sistemul CGS (1 cSt = 10–2 St). Pentru anumite fluide (în special petroliere), în funcţie şi de aparatura folosită se pot

folosi următoarele unităţi de măsură convenţionale: – gradul Engler (°E), determinat cu viscozimetrul Engler; – secunda (Saybalt Furol), s (S.Furol), determinată cu viscozimetrul Saybalt; – secunda (Redwood Nr.1), s (R.Nr.1.), respectiv secunda secunda (Redwood Nr.2),

s (R.Nr.2.), determinate cu viscozimetrul Redwood cu orificiu de tip I sau tip II. La toate unităţile convenţionale trebuie precizată şi temperatura fluidului în timpul

probelor, în °C. Determinări rapide ale viscozităţii flotelor de încleiere se pot face prin determinarea

timpului de curgere din pahare speciale, cu dimensiuni şi orificii de curgere prestabilite (fig. IV.4.8). La utilizarea paharului din fig. IV.4.8, a, corespondenţa dintre timpul de scurgere şi viscozitate se prezintă în tabelul IV.4.26. Paharul DIN Becher 4 (fig. IV.4.8, b), cu un volum de 3cm 1100± , se poate folosi la determinarea timpului de curgere pentru valori ce se încadrează între 25 şi 500 s (90–900 mm2/s, respectiv cSt). La flotele cu timp de curgere mai mic se va folosi paharul ISO, conform DIN 53224. Paharele sunt prevăzute cu mânere de deservire (fig. IV.4.8, d – pahar Ford Becher). Legătura dintre timpul de curgere şi viscozitatea cinematică trebuie să satisfacă relaţiile:

22

14,99,98

9,14 t;45257,4

⎟⎠⎞

⎜⎝⎛ ν

++ν

=−

=νt

t ,

unde: ν este viscozitatea cinematică, în mm2/s (cSt); t – timp de curgere, în s. La curgere (transvazări, stoarceri), flotele de încleiare din ancolanţi pe bază de amidon

şi derivaţi celulozici (CMC) au comportări nenewtoniene tixotrope (fig. IV.4.9), care necesită reoviscozimetru cu cilindri coaxali [3], [90]. Bucla de tixotropie depinde de structura chimică şi de modul de preparare a flotei, putându-se anula la flotele pseudoplastice (fig. IV.4.10 –CMC înalt purificat şi distribuţie uniformă a substituienţilor) [ ]3 . Scăderea viscozităţii este în funcţie de gradientul vitezei şi depinde de tipul ancolantului (fig. IV.4.11).

Page 139: Manualul inginerului textilist

Încleierea urzelilor 1269

Fig. IV.4.8. Pahare cu orificiu de scurgere pentru viscozitate.

În timpul staţionării ( ,0=γ& fig. IV.4.12), flotele din CMC şi amidon îşi măresc viscozitatea, putând ajunge la viscozitatea de gel. Gelifierea, este accelerată de scăderea temperaturii la toate tipurile de flote de încleiere. Flotele de încleiere din ancolanţi sintetici solubili în apă au comportări newtoniene, viscozitatea fiind contantă în timp, indiferent de viteza de curgere.

La toate flotele de încleiere, viscozitatea creşte cu mărirea concentraţiei în ancolant şi scade o dată cu creşterea temperaturii flotei, cele mai mari variaţii întâlnindu-se la flotele din CMC (fig. IV.4.13 şi IV.4.14). La aceeaşi natură a ancolantului, viscozitatea este puternic influenţată de gradul de polimerizare şi tipul acestuia (fig. IV.4.5 – aracet APV).

După uscarea urzelii încleiate, pe fire rămâne o peliculă discontinuă, cu distribuţie neuniformă şi relativ bine fixată pe fire. Rezistenţa specifică şi mai ales alungirea la rupere se corelează cu cea a firului. Alungirea la rupere a peliculelor trebuie să fie cu câteva procente mai mare decât alungirea la rupere a firelor. Rezistenţa şi alungirea la rupere a peliculelor este determinată de tipul ancolantului, umiditatea peliculei (fig. IV.4.15), de gradul de polimerizare a ancolantului (fig. IV.4.16) etc. Umiditatea peliculei este influenţată de umiditatea relativă a aerului (fig. IV.4.17). Agenţii auxiliari folosiţi la încleiere au o influenţă importantă asupra proprietăţilor mecanice ale peliculei.

φ 45

Page 140: Manualul inginerului textilist

1270 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.26

Viscozitatea în raport cu timpul de scurgere

t (s)

η (cP)

t (s)

η (cP)

t (s)

η (cP)

3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15

1 5 8 12 15 18 23 26 29 33 37 40 43 47 50 54 57 61 65 68 71 75 78 83

15,5 16,0 16,5 17,0 17,5 18,0 18,5 19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5 23,0 23,5 24,0 24,5 25,0 25,5 26,0 26,5 27,0

86 90 93 97 100 103 107 110 113 117 120 124 127 131 135 138 142 146 149 152 156 160 163 167

27,5 28,0 28,5 29,0 29,5 30,0 30,5 31,0 31,5 32,0 32,5 33,0 33,5 34,0 34,5 35,0 35,5 36,0 36,5 37,0 37,5 38,0 38,5

171 174 178 181 185 188 192 195 199 203 207 210 213 217 220 224 227 231 235 238 242 245 248

Fig. IV.4.9. Curbe de tixotropie (η2 < η1).

Fig. IV.4.10. Viscozitatea în funcţie de gradul

vitezei de forfecare: a – newtonian; b – nenewtonian..

Page 141: Manualul inginerului textilist

Încleierea urzelilor 1271

Fig. IV.4.11. Viscozitatea în funcţie de gradientul vitezei de Tylose C.

Fig. IV.4.12. Viscozitatea în funcţie de timp.

Fig. IV.4.13. Viscozitatea în funcţie de concentraţia la Tylose C (indicele lui C arată viscozitatea medie a unei soluţii de 2% CMC, la temperatura de 20°C).

Page 142: Manualul inginerului textilist

1272 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.4.14. Viscozitatea în funcţie de temperatură la Tylose C.

Fig. IV.4.15. Alungirea şi rezistenţa la rupere în funcţie de umiditatea la pelicule din Vinarol.

Page 143: Manualul inginerului textilist

Încleierea urzelilor 1273

a b

Fig. IV.4.16. Rezistenţa şi alungirea la rupere în funcţie de umiditatea relativă la pelicule din aracet APV:

a – grad de hidroliză 99%; b – grad de hidroliză 88%.

Fig. IV.4.17. Absorbţia apei în funcţie de umiditatea atmosferică relativă.

Page 144: Manualul inginerului textilist

1274 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.4.2. Parametrii tehnologici la încleierea urzelilor

IV.4.2.1. Tensiunea urzelilor la desfăşurarea de pe suluri frânate a. Tensiunea urzelii. La desfăşurarea cu viteză liniară constantă şi reglare ciclică a

frânelor (fig. IV.4.18), pentru calculul tensiunii, T şi a forţei de întindere a benzii de frânare, P, se folosesc relaţiile:

,)1(

e;

e

)1e(; α µ

α µ1

α µ

α µ

−=

−==

eR

R NTP

R

RPT

R

RFT

x

xf

x

f

x

ff (IV.4.2)

unde: Ff este forţa de frânare a sulului; µ – coeficientul de frecare dintre bandă şi roata de frânare; Nf – numărul de fire desfăşurate de pe sulul de alimentare; T1 – tensiunea unui fir din urzeala desfăşurată:

T1 = K Sr, la fire filate; T1 = Ts Td, la fire filamentare,

unde: K este coeficient de proporţionalitate între tensiunea unui fir şi sarcina sa de rupere, (K = 0,015–0,03);

Ts – tensiunea specifică admisă la fire filamentare; Ts = 0,15–0,2 cN, la fire filamentare netede; Ts = 0,1–0,15 cN, la fire texturate.

Razele de desfăşurare, Rxn (fig. IV.4.19), pentru intervenţiile de reglare ciclică a frânelor, se calculează cu relaţia [60]:

n

xixn TTTRR ⎟

⎠⎞

⎜⎝⎛

∆+= , (IV.4.3)

unde: Rxi este raza iniţială de desfăşurare pentru care s-a calculat şi reglat valoarea P1,i de întindere a benzii de frânare;

∆T – variaţia admisă a tensiunii urzelii la scăderea razei; ∆T = (0,15–0,25) T, n = 1; 2; 3 ..., până ce xcxn RR ≤ = raza corpului sulului gol.

Valoarea cu care trebuie redusă forţa de apăsare a benzii de frânare se calculează cu relaţia:

e (e 1)

nxi

lnT RP

T T R

µα

µα⎛ ⎞∆ = ⎜ ⎟+ ∆ −⎝ ⎠

(IV.4.4)

Fig. IV.4.18. Schema de frânare.

Fig. IV.4.19. Variaţia tensiunii urzelii la reglarea în trepte a frânării sulului.

Page 145: Manualul inginerului textilist

Încleierea urzelilor 1275

b. Frânarea sulurilor. La viteză şi tensiune constante a firelor, pe măsura scăderii razei

Rx a sulului, frânarea sulurilor trebuie să varieze conform relaţiilor [60]:

xf

xfr

f

xf RA

RRNSK

RRTF

1=== ; (IV.4.5)

f

sxxifrf R

NRNSKF

) ( δ−= ; (IV.4.6)

⎟⎟⎠

⎞⎜⎜⎝

ρ−=

10

5sxut

xif

frf

NPTRR

NSKF , (IV.4.7)

unde: Al este panta dreptelor de variaţie a forţei de frânare, Ff , în raport cu raza, Rx (fig. IV.4.20), care depinde de caracteristicile urzelii;

Nsx – numărul de rotaţii ale sulului de la începutul desfăşurării (Rx = Rxi) până la momentul t, când raza a devenit Rx.

c. Frânarea sulurilor de desfăşurare în fazele de oprire ale maşinii. Pentru a men-ţine tensiunea urzelii constantă şi în fazele de oprire ale maşinii, forţa de frânare a sulului de desfăşurare trebuie să varieze conform curbelor din fig. IV.4.21, care reprezintă relaţia [70]:

;2

2

2

0

3

0

400

0f

x

xff

xfrf Rt

RvHRRt

vRHvJR

RNSKF

ρπ+

ρπ−+= (IV.4.8)

, 33

210 x

xxf RB

RB

RBF ++= (IV.4.9)

unde: B1, B2 şi B3 reprezintă constante tehnologice specifice unei anumite urzeli (fig. IV.4.21); Jo – momentul de inerţie al sulului gol; v – viteza de încleiere; to – timpul de oprire a maşinii de încleiat în vederea remedierii ruperilor sau a defectelor.

Fig. IV.4.20. Forţa de frânare a sulului în funcţie de raza de desfăşurare la mersul de regim cu

tensionare constantă a urzelii.

Fig. IV.4.21. Forţa de frânare a sulului, în funcţie de raza de desfăşurare, la oprirea maşinii cu

tensionare constantă a urzelii.

Page 146: Manualul inginerului textilist

1276 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

d. Frânarea sulurilor de desfăşurare în fazele de pornire ale maşinii. Pentru a men-

ţine tensiunea urzelii constantă şi în fazele de pornire ale maşinii, forţa de frânare a sulului de desfăşurare trebuie să varieze conform curbelor din fig. IV.4.22, care reprezintă relaţia [70]:

; 2

2

2 3400

fp

x

xpff

xfrfp Rt

RvHRtR

vRHvJR

RNSKF

ρπ−

ρπ−−= (IV.4.10)

, 33

21 x

xxfp RC

RCRCF −−= (IV.4.11)

unde: C1, C2 şi C3 reprezintă constante tehnologice specifice unei anumite urzeli şi condiţii de lucru (fig. IV.4.22);

tp – timpul de pornire a maşinii de încleiat.

Fig. IV.4.22. Forţa de frânare a sulului în funcţie de raza de desfăşurare la pornirea maşinii cu tensionare constantă a urzelii.

IV.4.2.2. Încărcarea urzelilor cu flotă şi substanţe de încleiere

Depunerea flotei de încleiere se realizează prin imersarea urzelii în flotă şi îndepărtarea

excesului prin stoarcere (fig. IV.4.23). La ieşirea din baia de încleiere, urzeala are o anumită încărcare cu flotă, If (%), care, după uscare, determină încărcarea cu substanţe active de încleiere, Is (%).

Încărcarea urzelilor, necesară tehnologic, trebuie corelată cu caracteristicile urzelilor, firelor şi ţesăturilor şi cu tipul şi parametrii procesului de ţesere. Se consideră încărcare optimă

Page 147: Manualul inginerului textilist

Încleierea urzelilor 1277

a urzelilor acea încărcare ce asigură numărul minim de ruperi la ţesere (fig. IV.4.24) [108].Se pot folosi anumite relaţii pentru calculul teoretic şi orientativ al încărcării tehnologice a urzelilor cu substanţe de încleiere [6], [10]: ; srtcsts CCCII = (IV.4.12)

tc

tt

T

TC1000

1000

= ; (IV.4.13)

rcicb

ricbr NNP

NNPC

= ; (IV.4.14)

tkscusc

teksus

s

TCP

TCP

C1000

1000 = , (IV.4.15)

unde: Its este încărcarea tehnologică cu substanţe de încleiere recomandată pentru o urzeală oarecare;

Fig. IV.4.23. Cuva şi baia de încleiere: 1 – cilindrul de alimentare; 2 – cilindrul de conducere; 3 – cilindrii de imersare;

4, 5 – cilindrii de stoarcere; 6 – placa de preaplin; 7 – flotor; 8 – pompă de recirculare.

Fig. IV.4.24. Ruperi la ţesere în funcţie de încărcarea urzelii

cu substanţe de încleiere.

Page 148: Manualul inginerului textilist

1278 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Ics – încărcarea convenţională (etalon) cu substanţa de încleiere considerată optimă

pentru o urzeală cu anumite caracteristici (urzeală etalon); (Pentru fire din bumbac 100%, încărcarea convenţională cu substanţe active poate fi:

Ics = 6–7%, fire cardate, ţesere cu suveică, legătură pânză; Ics = 8–10%, fire cardate, ţesere neconvenţională, legătură pânză; Ics = 5–6%, fire cardate, ţesere cu suveică, legătură diagonal, atlas; Ics = 7–9%, fire cardate, ţesere neconvenţională, legătură diagonal, atlas; Ics = 7–8%, fire pieptănate, ţesere cu suveică, legătură pânză; Ics = 8–11%, fire pieptănate, ţesere neconvenţională, legătură pânză; Ics = 5–6%, fire pieptănate, ţesere cu suveică, legătură diagonal, atlas; Ics = 7–9%, fire pieptănate, ţesere neconvenţională, legătură diagonal.)

Ct – coeficient de corecţie în funcţie de densitatea de lungime a firelor din urzeală; Tt, Ttc – densitatea liniară a firelor (tex) din urzeala reală şi densitatea liniară (tex) a

firelor din urzeală convenţională (de exemplu: Ttc= 18,5); Cr – coeficient de corecţie în funcţie de numărul de rosturi/10 cm la ţesere; Pb, Pbc – desimea în bătătură la o anumită ţesătură şi desimea bătăturii în ţesătură

convenţională, în fire/10 cm, (Pbc = 268 fire/10 cm); Ni, Nic – numărul de iţe pentru obţinerea ţesăturii date şi numărul de iţe pentru ţesătura

convenţională (de exemplu: Nic=4); Cs – coeficient de corecţie în funcţie de desimea urzelii şi tragerea în spată; Pus, Pusc – desimea urzelii în spată la o anumită ţesătură, respectiv la ţesătura conven-

ţională (de exemplu: Pusc= 255 fire/10 cm); Cks, Cksc – coeficient de corecţie în funcţie de numărul de fire trase într-o căsuţă a spetei

la ţesătura dată, respectiv la ţesătura convenţională. (Se indică valorile:

Cks = 1, pentru ncc = 2 fire/1 dinte al spetei; Cks = 1,25, pentru nc = 1 fir/1 dinte al spetei; Cks = 1, pentru nc = 2 fire/1 dinte al spetei; Cks = 0,75, pentru nc = 3 fire/1 dinte al spetei; Cks = 0,5, pentru nc = 4 fire/1 dinte al spetei.)

În practica industrială, încărcarea tehnologică recomandată a urzelilor cu substanţe active de încleiere se corelează direct cu natura firelor (tabelul IV.4.27), cu fineţea firelor şi desimea urzelii, acoperirea cu fire a urzelii Au (%) – (fig. IV.4.25), desimea bătăturii, tipul legăturii (tabelul IV.4.28), precum şi cu tipul ancolantului (tabelul IV.4.29).

Tabelul IV.4.27

Încărcări cu substanţe de încleiere a urzelilor în funcţie de natura firelor (valori orientative)

Natura şi tipul firelor Încărcarea, Its (%) Natura şi tipul firelor Încărcarea, Its

(%)

Fire unice de bumbac 6–16 Triacetat filamentar 10–12 Fire răsucite de bumbac 3–6 Viscoză, filamentar lucios 2–5 Fire unice de celofibră 5–8 Pa, filamentar torsionat 1–3 Fire unice de in 6–12 Pes, filamentar netorsionat 5–7 Fire de in răsucite 3–5 Pes, filamentar torsionat 3–3,5 Fire unice din lână pieptănată 7–11 – – Fire unice de lână cardată 6–13 Pes, filamentar rotoset 4–5 Fire răsucite de lână pieptănată 2–5 Pes, texturat torsionat 5–9 Fire de mătase naturală 3–5 Pes, texturat netorsionat 10–13 Acetat, filamentar torsionat 3–5 Pes, texturat rotosetat 8–9 Acetat, filamentar 8–12 Fire de sticlă 2,5–4

Page 149: Manualul inginerului textilist

Încleierea urzelilor 1279

Fig. IV.4.25. Încărcarea recomandată a urzelii cu substanţe de încleiere în funcţie de fineţea şi desimea firelor.

Tabelul IV.4.28

Încărcări tehnologice recomandate ale urzelilor din fire de bumbac, în funcţie de fineţe, desime şi legătură

Tt, tex

Desimea pe 10 cm Încărcarea urzelilor, Its,

% Urzeală Bătătură pentru legături

pânză diagonal

Peste 100 tex 100–62,5 50–35 30–22 21–18,5 15,5–13 f.p.*

12–7,5 f.p.*

– 200 250 250 280 320 400

– 180 200 270 270 320 400

– 250 275 470 470 550 600

2–4 6–8 7–9 9–12 10–14 9–10 10–11

* f.p. – fire pieptănate.

Încărcarea practică cu flotă şi substanţe active de încleiere, realizată pe maşina de încleiat, este dependentă de traseul tehnologic al urzelii prin baia de încleiere (fig. IV.4.26 şi IV.4.27) [27], [28], de concentraţia şi viscozitatea flotei (fig. IV.4.28 şi IV.4.29) [118], de forţa de stoarcere (tabelele IV.4.30 şi IV.4.31 şi fig. IV.4.30) etc. Forţa de stoarcere se corelează cu viteza de încleiere (fig. IV.4.31) [90], cu natura şi fineţea firelor (fig. IV.4.32) etc. În cazul unei variaţii liniare, forţa de stoarcere, P (kN), în raport cu viteza, v (m/min), poate fi exprimată prin relaţia [90]:

vP 04,05,1 −= .

Page 150: Manualul inginerului textilist

1280 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.29

Încărcări tehnologice recomandate cu substanţe active de încleiere a urzelilor din fire de bumbac pe tipuri de ancolanţi şi desimi [25]

Caracteristici ale urzelii Încărcarea urzelii, Its (%) pe tipuri de ancolanţi

Tt, tex Desimea, cm–1 Amidon natural Amidon + ancolanţi sintetici

Ancolanţi sintetici

37 25 18 18 15 15 12 12 10 10 7,5

32 40 32 44 16 48 24 56 28 56 64

10 12 12 14 10 14 12 15 13 16

17–18

8,7 9,3 8,0 9,3 6,7 9,3 8,0 10,7 8,7 12,0 14,7

5,2 5,6 4,8 5,6 4,0 5,6 4,8 6,4 5,2 7,2 8,8

Fig. IV.4.26. Încărcarea urzelii cu substanţe de încleiere în funcţie de viteza de încleiere.

Page 151: Manualul inginerului textilist

Încleierea urzelilor 1281

Fig. IV.4.27. Încărcarea urzelii cu substanţe de încleiere în funcţie de viscozitatea flotei şi traseul de încleiere.

Fig. IV.4.28. Încărcarea urzelii cu flotă de încleiere în funcţie de concentraţia.

Fig. IV.4.29. Încărcarea urzelii cu flotă de încleiere în funcţie de viscozitatea acesteia.

Fig. IV.4.30. Încărcarea urzelii cu flotă în funcţie de forţa de stoarcere.

Fig. IV.4.31. Forţa de stoarcere în funcţie de viteză: 1; 2; 3; – variante posibile de reglare; 4 – valoarea

limită de reglare.

Page 152: Manualul inginerului textilist

1282 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.4.32. Forţa de stoarcere pe lăţimea de 1800–2000 mm, în funcţie de natura şi fineţea firelor (recomandare zell).

Tabelul IV.4.30

Forţa de stoarcere şi încărcarea urzelilor din bumbac [90]

Denumirea parametrilor

Valori ale parametrilor

Joasă presiune Medie presiune

Viteză redusă Viteză de regim Viteză redusă Viteză de

regim

Forţa liniară de stoarcere, daN/m 100 400 250 1300

Concentraţia flotei, % 10 10 13 13

Viscozitatea, mPa.s 110 110 110 110

Încărcarea cu flotă, % 160 160 115 115

Încărcarea cu substanţe active de încleiere, % 16 16 15 15

Observaţie. Orice schimbare a reţetei şi firelor schimbă încărcarea urzelilor.

Page 153: Manualul inginerului textilist

Încleierea urzelilor 1283

Tabelul IV.4.31

Încărcarea cu flotă a urzelilor la diferite tipuri de fire şi presiuni de stroarcere [11]

Natura materiei prime Tipul de filare

Încărcarea cu flotă a urzelii, % Presiunea de stoarcere:

3 daN/cm (600 daN/2 m)

Presiunea înaltă de stoarcere: 12,5 daN/cm

(2500 daN/2 m)

Celofibră O.E.

Clasică 225 200

175 150

Bumbac O.E.

Clasică 170 150

125 100

Pes/Bumbac O.E.

Clasică 130 120

120 110

Poliester Diolen Tergal

115 100

– 80

Încărcarea practică a urzelilor cu substanţe active de încleiere se calculează cu relaţia:

100

fpps

IKI = . (IV.4.16)

Concentraţia în ancolant uscat tehnologic recomandată, Kt, şi practic realizată la prepa-rare, Kp, se calculează cu relaţiile:

,)100(

10 100 şi 100

4

fra

ac

f

ap

f

tst MUU

MMM

KII

K+−

=== (IV.4.17)

unde: Ma este masa ancolantului complet uscat, în kg; Mf – masa flotei preparate, în kg (l); Mac – masa ancolantului în starea sa de comercializare, în kg; Ua – umiditatea ancolantului comercializat (conţinutul procentual de apă); Ur – umiditatea recomandată a urzelii încleiate după uscare (tabelul IV.4.32). La valori constante ale concentraţiei, Ips variază liniar cu If (fig. IV.4.33), iar pentru

asigurarea unor valori Ip – constant, If variază în funcţie de K, conform fig. IV.4.34. În tabelul IV.4.33 sunt date valori posibile ale concentraţiei flotei şi ale încărcării urzelilor cu flotă şi substanţe active la încleiarea pe maşina Sucker Müller [132].

Un alt parametru de influenţă al încărcării practice a urzelii este desimea acesteia în baia de încleiere, respectiv acoperirea lăţimii urzelii de către fire, Au, în % (acoperirea generatoarei cilindrului storcător de către fire) (tabelul IV.4.34). Acoperirea urzelii de către fire se calcu-lează cu relaţia:

, 100100 dDH

dNA uf

uf

tfu == (IV.4.18)

unde: Au reprezintă acoperirea procentuală a lăţimii urzelii de către fire, în %; Ntf – numărul total al firelor de urzeală ce intră în baia de încleiere; d – diametrul firului de urzeală; Huf – lăţimea urzelii în flota de încleiere (pe cilindrul storcător); Duf – desimea urzelii în flota de încleiere din cadă.

Page 154: Manualul inginerului textilist

1284 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.32

Umiditatea recomandată a firelor încleiate după uscare

Tipul şi natura firelor Umiditatea, % Tipul şi natura firelor Umiditatea, %

Fire de bumbac 8,5–9,5 Fire de mătase naturală 11,5–12

Fire mercerizate de bumbac 9–10 Fire crep de mătase naturală 13–13,5

Fire de lână pieptănată 18,5–19 Fire filamentare de viscoză 11,5–12

Fire de lână cardată 17,5–18 Fire tip celofibră de viscoză 12–13

Fire de lanital 17,5–18 Fire filamentare de acetat 9–10

Fire de in 12–13 Fire filamentare tip bemberg 13–13,5

Fire de iută 13,5–14 Fire filamentare poliamidice 4,5–5

Fire de ramie 12,5–13 Fire filamentare sintetice vinion 1,5–2

Fire de kenaf 13,5–14 Fire filamentare poliesterice 1,5–2

Fire de kendir 12,5–13 Fire filamentare poliacrilnitrilice 1–1,5

Fig. IV.4.33. Încărcarea practică a urzelii cu substanţe de încleiere în funcţie de încărcarea cu flotă.

Fig. IV.4.34. Încărcarea urzelii cu flotă la diferite valori ale încărcării cu substanţe

în funcţie de concentraţia flotei.

Page 155: Manualul inginerului textilist

Încleierea urzelilor 1285

Tabelul IV.4.33

Încărcarea cu flotă la diferite concentraţii pentru asigurarea încărcării urzelii cu substanţe active de încleiere [132]

Încărcarea urzelilor cu substanţe active,

Is, %

Încărcarea urzelilor cu flotă, If (%), la concentraţii K (%) ale acesteia egale cu:

2 4 6 8 10 12 14 16 18 20 22

1 50 – – – – – – – – – – 2 100 50 – – – – – – – – – 3 150 75 50 – – – – – – – – 4 200 100 66 50 – – – – – – – 5 250 125 83 62 50 – – – – – – 6 – 150 100 75 60 50 – – – – – 7 – 175 116 87 70 58 50 – – – – 8 – 200 133 100 80 66 57 50 – – – 9 – 225 150 112 90 75 64 56 50 – – 10 – 250 166 125 100 83 71 62 55 50 – 11 – – 183 137 110 91 78 68 61 55 50 12 – – 200 150 120 100 85 75 66 60 54 13 – – 216 162 130 108 92 81 72 65 58 14 – – 233 175 140 116 100 87 77 70 63 15 – – 250 187 150 125 107 93 83 75 68 16 – – – 200 160 133 114 100 88 80 72 17 – – – 212 170 141 121 106 94 85 77 18 – – – 225 180 150 128 112 100 90 81 19 – – – 237 190 158 135 118 105 95 86 20 – – – 250 200 166 142 125 111 100 90 21 – – – – 210 175 150 131 116 105 95 22 – – – – 220 183 157 137 122 110 100 23 – – – – 230 191 164 143 127 115 104 24 – – – – 240 200 171 150 133 120 109 25 – – – – 250 208 178 156 138 125 113

Tabelul IV.4.34

Încărcarea practică a urzelilor din bumbac 100% la diferite desimi [12], [13]

Desimea urzelii în baia de încleiere, Duf, fire/cm

Acoperirea urzelii cu fire Au, %

Încărcarea urzelii cu substanţe active, Ips, %

16 20 24 28 32

41 52 62 72 82

8,8 8,2 7,3 7,2 6,4

Page 156: Manualul inginerului textilist

1286 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Desimea urzelii din baia de încleiere, pentru un grad de acoperire a lăţimii urzelii

Au = 100%, se poate calcula cu relaţia:

, 10005

sau 51 100100

t

fuffuf T

DNmd

Dρπ

=ρπ== (IV.4.19)

unde: 100ufD reprezintă desimea urzelii în baia de încleiere la care gradul de acoperire a lăţimii

urzelii de către fire este Au = 100%, în fire/cm (tabelul IV.4.35); fρ – densitatea firului neîncleiat, în g/cm3.

Tabelul IV.4.35 Fineţea firelor, desimea şi masa urzelii pentru o acoperire limită Au = 100% [131]

Fineţea firelor Desimea urzelii la o acoperire Masa urzelii, g/m2

Nm Ttex Fir filat clasic

(ρf = 0,80) Fir OE

(ρf = 0,66)

Urzeală neîncleiată cu

Au = 100%

10 12 17 20 24 27 28 30 34 40 42 48 50 60 64 68 70 75 80 85 90 95 100 135

100 83 59 50 42 37 36 33 29 25 24 21 20 17

15,5 15 14 13

12,5 12 11

10,5 10 7,4

25,0 27,4 32,4 35,4 38,8 41,1 41,9 43,3 46,2 50,1 51,3 54,8 56,0 61,3 63,3 65,3 66,2 68,2 70,8 72,9 75,1 77,1 79,2 96,4

22,7 24,9 29,5 32,0 35,1 37,4 37,9 39,3 41,8 45,4 46,5 48,1 50,8 55,6 57,4 59,1 60,0 62,2 64,1 66,1 68,0 69,9 71,7 83,3

250,0 228,3 190,6 177,5 161,5 152,3 149,6 144,3 135,7 125,2 122,1 114,2 112,0 102,2 98,9 96,0 94,6 90,9 88,5 85,7 83,4 81,1 79,2 71,4

Page 157: Manualul inginerului textilist

Încleierea urzelilor 1287

Pentru o desime oarecare din baia de încleiere, Duf, gradul de acoperire real, Au, se

calculează cu relaţia:

100100uf

ufu D

DA = . (IV.4.20)

În funcţie de caracteristicile urzelii şi fineţea firelor la care fρ = 0,8 g/cm3, gradul de acoperire al lăţimii urzelii de către fire se poate determina conform nomogramei din fig. IV.4.35 [132]. La urzeli din bumbac 100%, un grad de acoperire al lăţimii Au > 80% conduce la subîncleierea urzelilor, iar un grad de acoperire Au < 40% poate conduce la alte defecte ale firelor. Dacă Au > 80%, se va trece la separarea urzelii totale în două sau mai multe urzeli mai rare, ce se vor încleia separat, în băile maşinilor moderne de încleiat. Dacă Au < 80%, urzeala din bumbac 100% se poate încleia într-o singură baie de încleiere, fără a o mai separa. Gradul de acoperire al lăţimii urzelii de către fire, de la care trebuie separată urzeala în două sau mai multe straturi, depinde de tipul firelor şi natura materiei prime (tabelul IV.4.36). Separarea urzelii în straturi se menţine şi la uscarea preliminară.

Fig. IV.4.35. Nomogramă pentru gradul de acoperire a urzelii de către fire, Au, în %.

Page 158: Manualul inginerului textilist

1288 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.36

Separarea pe straturi a urzelii în baia de încleiere şi la uscare [131]

Acoperirea urzelii, Au, %

Număr de straturi separate pe variante de filare şi tipuri de fire

Filare clasică cu inel Filare cu rotor BD

Pes Pes–amestec Celo Bbc. Pes Pes –

amestec Celo Bbc.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

1 1 1

1;2*

2 2

2;4/2*

4/2 4/2 4/2

4/2;4*

4 4 4 4

1 1 1 1

1;2*

2 2

2;4/2*

4/2 4/2 4/2

4;4/2*

4 4 4

1 1 1 1 1

1;2*

1;2*

2 2;4/2*

4/2 4/2 4/2

4;4/2*

4 4

1 1 1 1 1 1 2 2 2

2;4/2*

4/2 4/2 4/2

4;4/2*

4

1 1 1 1

1;2*

2 2 2 2

2;4/2*

4/2 4/2 4/2 4/2 4/2

1 1 1 1 1

1;2*

1;2*

2 2 2

2;4/2*

4/2 4/2 4/2 4/2

1 1 1 1 1 1 1 2 2 2 2

2;4/2*

4/2 4/2 4/2

1 1 1 1 1 1 1

1;2*

2 2 2 2

2;4/2*

4/2 4/2

Observaţie. * – se adoptă în funcţie de pilozitate şi torsiuni; 4/2 – prezintă o deviaţie după baia de încleiere.

Încărcarea cu flotă este dependentă şi de temperatura băii de încleiere, care influenţează viscozitatea flotei de încleiere. Pentru temperatura flotei în baia de încleiere se recomandă următoarele valori:

80...85°C, la flota de încleiere din amidon de cartofi; 85...90°C, la flota de încleiere din amidon de porumb; 60...70°C, la flota de încleiere din amidon de grâu; 40...50°C, la flota de încleiere din clei de oase; 65°C, flota de încleiere din CMC; 50...65°C, flotă de încleiere din ancolanţi sintetici. Schimbarea reţetelor de încleiere şi a caracteristicilor urzelilor, chiar la menţinerea

constantă a unor parametri ai maşinilor, conduce la încărcări practice diferite. Datele din tabelul IV.4.37 scot în evidenţă importanţa reţetelor de încleiere, în ansamblul lor, asupra încărcării practice a urzelilor.

Încărcarea practică a urzelilor cu substanţe de încleiere se poate determina în laborator prin metode chimice sau, mai operativ, folosind relaţiile:

1

12

tc

tctcps T

TTI −= ; (IV.4.21)

r

cttc U

UTT++

=100100 ; (IV.4.22)

Page 159: Manualul inginerului textilist

Încleierea urzelilor 1289

Tabelul IV.4.37

Încărcări practice ale urzelilor încleiate cu diferite reţete şi ţesere neconvenţională

Tt, tex Desimea în baie, fire/cm

Concentraţia flotei în ancolant, K

Concentraţia flotei în agenţi auxiliari

Încărcarea, Ips, %

a) Urzeli din bumbac 100% 10 22 8% am + 3% syc 1% sun 18,6 10 22 3% syc + 12% ems 1% sun 15 16,66 42 8% am + 3% syc 1% sun 15,2 16,66 42 3% syc + 12% ems 1% sun 13,7 16,66 44 8% am + 3% syc 1% sun 13 16,66 22 8% am + 3% syc 1% sun 20 20 24 8% am + 4% ar 0,2% us + 0,2% s 17,7 20 25 8% am + 2 % syc 0,7% sey 14,5 20 25 10% am 0,2% us + 0,2% s + 2% lg 10 20 25 10% am 0 2% syc 0,2% us +0,2% s 11,7 20 25 8% am + 4% ar 0,2 us + 0,2% eg 18,3 29,41 22 8% am 0,2% s + 0,2% gl + 0,2% eg

+ 0,02% cl 9,3

29,41 23 6% am 0,2% s + 0,2% gl + 0,2% eg + 0,02% cl

8,8

41,66 20 6% am 0,2% s + 0,2% gl + 0,2% eg 7,1 b) Urzeli din poliester + bumbac 7,14 × 2 49 10% am + 2% ar 0,2% us + 0,2% s +0,2% gl 13,6 11,76 × 2 47 6% am + 1% syc 0,2% rs + 0,2% eg 6,8 20 30 6% am +2% syc 0,2% rs + 0,2% eg 7,2 25 28 8% am + 2% ar 0,2% rs + 0,2% eg 12,8 25 28 10% am + 3% pl 0,2% rs + 0,2% eg 12,8 25 28 2% syc + 6% ems 0,2% rs + 0,2% eg 8,1 25 24 12% am + 6% syc 0,2% rs + 0,2% eg 13,3 25 24 12% am + 6% ar 0,2% rs + 0,2% eg 17,8 29,41 33 6% am + 4% syc 0,2% rs + 0,2% eg 9,6

Notaţii în tabel: am – amidon; syc – syconol; ems – Emsyze CM–60; ar – aracet; pl – plystran; sun – Sunwax 100; us – ulei sulfonat; su – seu; gl – glicerină; sey – Seycolub; cl – cloramină; eg – emulgator SO6; rs – romestat PE 26.

110⋅−

=u

uir M

MMU ; (IV.4.23)

100

... 2211 nnc

PRPRPRU +++= , (IV.4.24)

unde: Ttc2 şi Ttc1 reprezintă densitatea de lungime a firelor încleiate şi neîncleiate, climatizate, în tex;

Page 160: Manualul inginerului textilist

1290 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tt – densitatea de lungime a firului la umiditatea reală, în tex; Uc şi Ur – umiditatea convenţională a firului, respectiv umiditatea reală, în %; Mi şi Mu – masa iniţială a probei de fir înaintea primei uscări în etuvă, respectiv masa

aceleiaşi probe de fir uscate până la masa constantă, în g; R1, R2 ... Rn – reprizele fibrelor componente din structura firelor, în %; P1, P2 ... Pn – procentul de participare ale componenţilor în reţeta de amestec la filare. Masa flotei, Mf, consumate pentru încleierea unei mase oarecare de urzeală, Mu, se

calculează cu relaţia:

.

sau 100

p

psupfuf K

IMIMM = (IV.4.25)

Masa ancolantului, în forma sa de comercializare, Mac, pentru încleierea masei Mu de urzeală este:

.10

)100( 4

rapsuac

UUIMM

+−= (IV.4.26)

IV.4.2.3. Viteza de încleiere şi temperatura de uscare

Viteza de încleiere v este dependentă de caracteristicile urzelii şi ale maşinii de încleiat,

şi în primul rând de capacitatea de uscare. Se poate folosi una din relaţiile:

)100)(100( 60

101

4

asui

n

iei

IIM

Cv

++⎥⎥⎦

⎢⎢⎣

=∑= sau (IV.4.27)

)100)(100( 60

101

10

astt

n

iei

IITN

Cv

++⎥⎥⎦

⎢⎢⎣

=∑= ; (IV.4.28)

)100)(100( 60

101

10

KIITN

Cv

fstt

n

iei

−++⎥⎥⎦

⎢⎢⎣

=∑= sau

) 100)(100( 60

10

21

10

KIITN

CKv

sstt

n

iei

−+⎥⎥⎦

⎢⎢⎣

=∑= , (IV.4.29)

unde: Cei este capacitatea de evaporare a apei în zona cilindrului de uscare i, în kg/h; Mui – masa urzelii în zona uscătorului, în kg/m; Nt – numărul total de fire în urzeală. Capacitatea de evaporare depinde de caracteristicile cilindrilor de uscare, ale vaporilor

de încălzire şi de gradul de acoperire al cilindrilor de către urzeală (fig. IV.4.36) [26]. În fig. IV.4.37 şi IV.4.38 sunt prezentate nomograme pentru determinarea capacităţii de evaporare pentru un cilindru de uscare cu diametru de 800 mm, presiunea vaporilor de încălzire de 3,5 daN/cm2 (şi pentru o acoperire de către urzeală a cilindrului de 60% [26]. Legătura dintre

Page 161: Manualul inginerului textilist

Încleierea urzelilor 1291

presiunea absolută a vaporilor şi temperatura acestora este reprezentată în fig. IV.4.39. Pentru calcule se poate folosi şi relaţia [26]:

4

100 ⎟⎠⎞

⎜⎝⎛=

Tp ,

unde: p este presiunea absolută, în daN/cm2 (bari). Presiunea absolută este presiunea efectivă pe manometru +1 daN/cm2;

T – temperatura, în °C.

Fig. IV.4.36. Nomogramă pentru gradul de acoperire a cilindrilor de uscare pentru fire din bumbac.

Fig. IV.4.37. Capacitatea de evaporare la presiunea vaporilor de 3,5 daN/cm2, în funcţie de caracteristicile urzelii, fără dispozitiv de separare a urzelii.

Page 162: Manualul inginerului textilist

1292 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.4.38. Capacitatea de evaporare, la presiunea vaporilor de 3,5 daN/cm2, în funcţie de caracteristicile urzelii cu dispozitiv de separare a urzelii.

Fig. IV.4.39. Temperatura vaporilor în funcţie de presiune.

Capacitatea de uscare în funcţie de presiunea şi temperatura vaporilor se poate urmări în

tabelul IV.4.38 şi în fig. IV.4.40 [131]. Temparatura maximă admisă depinde de natura firelor (tabelul IV.4.39), iar valorile recomandate sunt adaptate vitezelor de lucru şi caracteristicilor urzelii (tabelul IV.4.40).

Temperatura efectivă a suprafeţei cilindrilor de uscare la contactul cu urzeala este mai mică decât cea a vaporilor din interior (tabelul IV.4.41). În funcţie de temperatura vaporilor din cilindrii de uscare(tabelele IV.4.38, IV.4.39 şi IV.4.40), recalculată la nivelul temperaturii suprafeţelor de uscare, se corectează capacitatea de evaporare a fiecărui cilindru, preluată din fig. IV.4.36 sau IV.4.37, cu indicii de corecţie din tabelul IV.4.42 [26].

Page 163: Manualul inginerului textilist

Încleierea urzelilor 1293

Fig.

IV.4

.40.

Cap

acita

tea

de e

vapo

rare

în c

orel

are

cu n

umăr

ul d

e ci

lindr

i, te

mpe

ratu

ră şi

lăţim

e de

lucr

u.

Page 164: Manualul inginerului textilist

1294 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.38

Capacitatea de uscare pe un metru lăţime la un cilindru cu diametrul de 800 mm [131]

Presiune abur, bari

Temperatura suprafeţei, °C

Masa apei evaporate pe un metru lăţime, în: kg/m⋅h g/m⋅min

6 5,5 5

4,5 5

3,5

164 161 158 155 151 147

68 65 62 59 55 51

1135 1085 1035 985 915 850

3 143 46,5 775 2,5 2

1,5 1

0,5 0

138 132 126 120 110 100 90 80

42 37,5 33 29 24 19

13,5 8

700 625 550 485 400 315 225 135

Tabelul IV.4.39

Temperatura maximă admisă pe cilindrii de uscare [131]

Tipul firelor şi natura materiei

prime

Temperatura suprafeţei cilindrilor, în °C, în funcţie de poziţia acestora în uscător

Temperatu-ra maximă,

°C 1 2 3 4 5 6 7 Fire filate Bumbac Fire relativ stabile la încălzire 150 Iută Fire relativ stabile la încălzire 150 In 130 130 130 125 125 125 125 130 Lână 120 120 120 115 115 115 115 120 Celofibră 140 140 140 135 135 135 135 140 Acrilice 125 125 125 120 120 120 120 125 Poliester 125 125 125 120 120 120 120 125 Poliamidă 125 125 125 120 120 120 120 125 Fire în amestec Poliester/bumbac 135 135 135 130 130 130 130 135 Bumbac/celofibră 145 145 145 140 140 140 140 145 Poliester/celofibră 135 135 135 130 130 130 130 135 Poliester/lână 125 125 125 120 120 120 120 125 Fire filamentare Viscoză 90 95 110 110 110 105 90 115 Acetat 80 85 95 95 95 90 80 100 Poliamidă 85 95 100 100 100 95 85 100 Poliester 85 90 100 100 100 95 85 100 Fire de sticlă 120 120 130 130 130 120 120 130 Fire texturate Poliamidă 90 100 110 110 110 100 90 110 Poliester 90 100 110 110 110 100 90 110

Page 165: Manualul inginerului textilist

Încleierea urzelilor 1295

Tabelul IV.4.40

Temperaturi de uscare la maşina de încleiat de mare viteză (Sucker-Müler) [132]

Natura şi tipul firelor Temperatura camerei de

uscare

Temperatura vaporilor în cilindrii de uscare nr.:

1 + 2 3 + 4 5 + 6 7 + 8 9 + 10 11 + 12

A. Fire filate din: bumbac iută in lână celofibră tip lână acrilice poliesterice poliamidice poliester/bumbac bumbac/celofibră poliester/celofibră poliester/lână

150 150 130 120 140 110 140 140 140 140 140 130

145 145 130 120 140 125 125 125 135 145 135 125

145 145 130 120 140 125 125 125 135 145 135 125

150 150 130 120 140 125 125 125 135 134 135 125

150 150 125 115 135 120 120 120 130 140 130 120

140 140 125 115 135 120 120 120 130 140 130 120

140 140 125 115 135 120 120 120 130 140 130 120

B. Fire filamentare din: acetat viscoză poliamidice poliesterice fibre de sticlă

125 130 140 140 150

80 90 130 120 120

85 95 130 120 120

95 110 130 120 130

95 110 120 110 130

90 105 100 100 120

80 90 90 90 120

C. Fire texturate: poliamidice poliesterice

140 140

120 120

120 120

120 120

120 120

110 100

90 90

Observaţie. Temperaturile se vor adapta şi la cerinţele de uscare ale peliculelor de încleiere şi la particularităţile urzelilor.

Tabelul IV.4.41

Scăderea temperaturii suprafeţei de uscare faţă de cea a vaporilor din cilindrii de uscare [90]

Tipul stratului de transmisie

Grosimea stratului, mm

Scăderea temperaturii, °C, faţă de abur la 121°C

Aer Condensat Oţel Depuneri Apă

0,254 0,254 6,35 0,254 0,254

22,4 1,3 0,4 2,3 1,3

Total 7,366 27,7

Page 166: Manualul inginerului textilist

1296 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.42

Indicii de corecţie ai capacităţii de evaporare în funcţie de temperatura reală a cilindrilor de uscare [26]

Temperatura cilindrului, °C 80 85 90 95 100 105 110 120 130 135 140 150 160

Indice de corecţie 0,4 0,44 0,46 0,48 0,50 0,56 0,62 0,7 0,86 0,94 1 1,15 1,22

IV.4.2.4. Tensiunea şi alungirea urzelilor pe zonele principale ale maşinii de încleiat

Zonele principale ale maşinii de încleiat, în care urzeala are tensiuni şi alungiri diferite

ale firelor, sunt reprezentate în fig. IV.4.41.

Fig. IV.4.41. Zonele principale de tensionare a urzelii pe maşina de încleiat. Tensiunea urzelii pe fiecare zonă i se poate calcula cu relaţia:

tfiui NTT = (IV.4.30)

unde: Tui reprezintă tensiunea urzelii într-o zonă oarecare i; Tfi – tensiunea firului într-o zonă oarecare i; Nt – numărul total de fire din urzeala încleiată. Pentru firele filate, tensiunea firului Tfi pe zonele maşinii de încleiat se calculează prin

procente faţă de sarcina de rupere a firului, Sr (tabelul IV.4.43) cu relaţia:

,100

rsrfi

SpT = (IV.4.31)

unde: psr este procentul din sarcina de rupere, admis la tensionare, în %.

Page 167: Manualul inginerului textilist

Încleierea urzelilor 1297

Tabelul IV.4.43

Procentul admis din sarcina de rupere a firului, pentru tensionarea sa pe maşina de încleiat [132]

Zonele principale de tensionare

Masa urzelii pe unitate de lungime, g/m

Procente psr din sarcina de rupere a firului admis la tensionare, %

Bumbac Celofibră

media limite media limite

Desfăşurarea urzelii – 3,75 2.5–5,0 3,75 2,5–5,0

Baia de încleiere a urzelii – 2,25 1,5–3,0 1,75 1,0–2,5

Urzeală umedă încleiată – 2,75 2,0–3,5 2,5 2,0–3,0

Urzeală uscată încleiată

30–100 9,5 8,0–11,0 8,0 7,0–9,0

100–150 7,5 6,5–8,5 6,5 5,0–7,0

150–300 7,0 6,0–8,0 5,0 4,0–6,0

Înfăşurarea urzelii încleiate

30–100 12,0 10,0–14,0 10,5 9,0–12,0

100–150 10,5 9,0–12,0 6,5 5,0–8,0

150–300 9,0 8,0–10,0 6,0 5,0–7,0

Notă: Tensiunea practică a urzelii poate varia cu ± 15% faţă de valorile calculate, în funcţie de calitatea firelor.

Pentru firele chimice filamentare, tensiunea firului, Tfi, se calculează în funcţie de

tensiunea specifică admisă, Ts, cu relaţia:

, dtsfi TTT = (IV.4.32)

unde: Ts este tensiunea specifică admisă, în cN/dtex; Tdt – densitatea de lungime a firului, în dtex. Tensiunea specifică admisă depinde de natura firelor (tabelul IV.4.44). Tensiunea

urzelii pe o zonă oarecare i mai poate fi calculată şi cu relaţia:

,1 Tiuui KMT = (IV.4.33)

unde: Mu1 reprezintă masa urzelii pe unitatea de lungime, în g/m; KTi – coeficient (factor) de tensionare specifică a urzelii pe o zonă oarecare i, sau tensi-

unea specifică a urzelii corespunzătoare masei de 1 g/m, în g/mdaN (tabelul IV.4.45).

Valori ale tensiunii urzelii pe zone, corelate cu masa urzelii şi natura firelor sunt prezentate şi în tabelele IV.4.46–IV.4.50 [131].

Ca urmare a tensionării urzelilor pe maşina de încleiat, firele se alungesc şi pierd un anumit procent din alungirea iniţială (tabelul IV.4.51), iar alungiri mici ale firelor încleiate conduc la creşteri importante ale ruperilor la ţesere (fig. IV.4.42).

În funcţie de forţa de presare pe sulul final şi tensiunea urzelii la înfăşurare rezultă densitatea sulurilor de ţesere, pentru care se recomandă valorile din tabelul IV.4.52.

Page 168: Manualul inginerului textilist

1298 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.44

Tensiunea specifică admisă pentru torsionarea firelor filamentare la maşina de încleiat [132]

Zonele principale

Tensiunea specifică admisă la tensionarea firelor pe maşina de încleiat, Ts, cN/dtex

Viscoză Acetat Poliamidă şi poliester

Desfăşurarea urzelii 0,15–0,2 0,15–0,25 0,2–0,4 Baia de încleiere a urzelii 0,1–0,15 0,1–0,15 0,15–0,25 Urzeala umedă încleiată 0,15–0,3 0,15–0,3 0,2–0,35 Urzeală uscată încleiată 0,15–0,2 0,15–0,2 0,2–0,35 Înfăşurarea urzelii 0,2–0,25 0,2–0,3 0,3–0,4

Observaţie. Firele fine sunt lucrate cu tensiuni specifice mai mari.

Tabelul IV.4.45

Coeficienţi de tensionare a urzelii pe zonele principale ale maşinii de încleiat

Zonele de tensionare a urzelii pe maşină

Coeficient de tensionare specifică, ,g/mdaN,TlK pentru

Bumbac Celo Pes Bbc/Pes Bbc/Celo Celo/Pes Rastelul de desfăşurare 0,5–1,0 0,5–1,0 0,6–1,2 0,60–1,13 0,6–1,12 0,60–1,13

Cada de încleiere 0,39–0,63 0,25–0,63 0,39–0,76 0,33–0,75 0,33–0,75 0,33–0,75

Zona umedă cu separarea urzelii 0,18–0,5 0,18–0,5 0,22–0,6 0,19–0,5 0,18–0,5 0,19–0,5

Zona umedă fără separarea urzelii 0,38–1,0 0,37–1,0 0,46–1,2 0,38–1,0 0,38–1,0 0,38–1,0

Separarea urzelii uscate 0,65–1,25 0,68–1,25 0,78–1,50 0,70–1,38 0,70–1,37 0,70–1,38

Înfăşurarea pe sulul de ţesere 1,1–1,5 1,16–1,5 1,32–1,80 1,25–1,63 1,16–1,63 1,17–1,63

Fig. IV.4.42. Ruperi în urzeală la ţesere în funcţie de alungirea la rupere a firelor încleiate: a – bumbac; b – Pes + bumbac.

Page 169: Manualul inginerului textilist

Tabelul IV.4.46 Tensiunea urzelii pentru fire din bumbac 100%

[131]

Page 170: Manualul inginerului textilist

Tabelul IV.4.47 Tensiunea urzelii pentru fire din bumbac celofibră 100%

[131]

Page 171: Manualul inginerului textilist

Tabelul IV.4.48 Tensiunea urzelii pentru fire din bumbac/celo

[131]

Page 172: Manualul inginerului textilist

Tabelul IV.4.49 Tensiunea urzelii pentru fire din bumbac/pes

[131]

Page 173: Manualul inginerului textilist

Tabelul IV.4.50 Tensiunea urzelii pentru fire celo/pes

[131]

Page 174: Manualul inginerului textilist

1304 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.51

Alungirea admisă şi scăderea alungirii la rupere a firelor în urma încleierii

Tipul şi natura firelor Alungirea admisă la încleiere, %

Scăderea alungirii la rupere în urma încleierii, %

Fire de bumbac 100% de fineţe mică şi medie 0,8–1,5 16–22

Fire de bumbac 100% de fineţe mare 0,8–1,0 12–18

Fire de bumbac 100% mercerizat 0,8–1,2 10–14

Fire de bumbac 100% răsucite 0,8–1,5 14–20

Fire de bumbac cardat 1,0–2,0 14–22

Fire de lână 100% pieptănată 1,5–2,5 12–18

Fire de lână 100% cardată 1,5–3,0 16–28

Fire filate 100% sintetice 0,4–1,1 7–14

Fire de in 100% 0,6–1,2 5–11

Fire din fuior de in filate umed 0,4–1,0 4–6

Fire de cânepă 100% 0,5–1,0 3–10

Fire den iută 100% 0,8–1,3 3–10

Fire de ramie 100% 1,2–1,5 3–12

Fire de celofibră tip bumbac 100% 2,5–3,5 12–24

Fire de celofibră tip lână 100% 2,5–3,5 12–24

Fire de celofibră tip polinozice 100% 2,0–3,0 14–25

Fire de celofibră tip sintetice 100% 1,0–1,5 8–15

Fire de mătase naturală răsucite normal 1,0–2,0 –

Fire de mătase naturală răsucite crep 2,0–2,5 –

Fire filamentare de viscoză răsucite normal 3,5–4,5 6–26

Fire filamentare de viscoză răsucite crep 4,5–5,0 8–28

Fire filamentare de acetat răsucite normal 3,5–4,5 6–26

Fire filamentare cuproamoniacale răsucite normal 2,5–3,5 5–20

Fire filamentare poliamidice 0,2–1,0 6–12

Fire filamentare poliesterice 0,2–1,0 6–12

Page 175: Manualul inginerului textilist

Încleierea urzelilor 1305

Tabelul IV.4.52

Densitate de înfăşurare pe sulurile de ţesere

Fire tip bumbac Fire tip lână Fire tip liberiene Fire filamentare

Tt, tex

ρ, g/cm3

Tt, tex

ρ, g/cm3

Tt, tex

ρ, g/cm3 Tip fir

ρ, g/cm3

5,98–7,57 0,48 200 0,24 Filat uscat 0,42 Mătase naturală 0,48–0,50

8,33–10,99 0,46 142,86–116,66 0,25 250 0,48 Mătase naturală

crep 0,45–0,48

11,90–13,88 0,45 125 0,26 200 0,5 Viscoză 0,45–0,46

14,92–16,95 0,43 83,33–100 0,27 66,66 0,55 Viscoză crep 0,44–0,45

18,86–22,72 0,42 71,42 0,28 Filat umed 0,52 Acetat 0,48–0,49

25–224 0,41 66,66 0,29 142,85–125 câlţi 0,62 Cuproamoniacală 0,45–0,48

33,33–41,66 0,4 34,48 0,33 111,11 câlţi 0,63 Filamentare sintetice 0,5–0,52

50–83,33 0,39 25 0,42 66,66 fuior 0,63

La fire răsucite,

densitatea creşte cu 25–40%, La suluri

late, densitatea scade cu 5–10%

20 0,44 55,55 fuior 0,65

16,95 0,46 33,33 fuior 0,66

25 × 2 0,48 29,41 0,67

20 × 2 0,49 25 fuior 0,68

16,66 × 2 0,5

Valţurile de presare ale urzelii pe sulul final contribuie la uniformizarea razei de

înfăşurare de-a lungul generatoarei şi la reglarea densităţii sulului. Forţa de presare se poate regla în baza relaţiei:

, ulpp MKF = unde: Fp este forţa de presare asupra sulului, în N;

Mul – masa urzelii înfăşurate, în g/m; Kp – coeficient de presare, adoptat în funcţie de masa urzelii (tabelul IV.4.53). Parametrii tehnologici principali, caracteristicile ancolanţilor, ale flotelor şi firelor

încleiate se controlează periodic de personal calificat şi cu mijloace tehnice adecvate (tabelul IV.4.54).

În tabelul IV.4.55 se prezintă principalele caracteriastici ale maşinilor de încleiat.

Page 176: Manualul inginerului textilist

1306 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.53

Coeficientul forţei de presare

Tipul şi natura firelor

Coeficientul forţei de presare, Kp ⎥⎦

⎤⎢⎣

g/mN

pentru diverse prese şi urzeli cu masa pe

metru liniar [g/m] de: Presare puternică Presare medie–mică

sub 100 g/m 100–150 g/m 150–300 g/m sub 100 g/m 100–150 g/m 150–300 g/m Fire din bumbac 100% 20–25 15–20 10–15 5–11 5–10 5–9

Fire din celo-fibră 100% 13–15 9–13 7–9 5–10 6–9 6–8

Fire din poliester 100% 20–28 15–24 10–18 6–13 6–12 6–11

Fire din bumbac/celo 15–17 10–15 9–13 7–10 7–8 6–8

Fire din bumbac/pes 19–26 14–22 11–16 7–10 6,5–9 6–8,5

Fire din celo/pes 18–20 13–19 10–15 7–9,5 6,5–8,5 6–8

Tabelul IV.4.54

Controlul caracteristicilor ancolanţilor, flotelor, firelor şi a parametrilor tehnologici

Nr. crt.

Caracteristici şi parametri tehnologici

Mod de lucru, materiale şi mijloace necesare Efecte privind încleierea

0 1 2 3 1. Culoarea

ancolantului Vizual, prin comparaţie cu mostra etalon Caracteristicile flotei de

încleiere 2. pH–ul soluţiei de

ancoalnt Măsurări colorimetrice, cu hârtie indica-

toare sau electrometrice, cu electrod de sticlă legat la aparatul pentru măsu-rarea pH-ului soluţiei de 1 g/l

Viscozitatea flotei, caracteristicile de încleiere, degradarea firelor, corodarea organelor de maşină

3. Viscozitatea soluţiei apoase a ancolantului

Selectiv, cu instrucţiuni specifice pentru: – viscozimetru Höppler, cu unitatea de

măsură centipoise (cP); – viscozimetru de rotaţie Rheotest, cu

unitatea de măsură centipoise (cP); – pahar specific scurgerii flotelor, cu

unitatea de măsură secunda (s)

Încărcarea urzelilor la încleiere

4. Umiditatea ancolantului (conţinut de apă)

Uscare la 105°C şi măsurători gravime-trice. Uscarea ancolanţilor din alcool polivinilic se face deasupra pentoxi-dului de fosfor, sub vacuum, la tempe-ratura camerei, sau cu pistol de uscare vacuum

Viscozitatea şi concentraţia flotei. Gradul de încleiere

Page 177: Manualul inginerului textilist

Încleierea urzelilor 1307

Tabelul IV.4.54 (continuare)

0 1 2 3 5. Peliculogenitatea

ancolantului Turnarea soluţiei apoase cu concentraţie

prestabilită într-un recipient de uscare specific, care să permită reproducerea şi analiza peliculei rezultate după uscare

Gradul de încleiere. Stabilitatea peliculei. Caracteristicile firelor încleiate

6. Conţinutul de cenuşă al ancolantului

Formarea cenuşii la 800°C, determinări gravimetrice şi calculul procentual al conţinutului de cenuşă, C, cu relaţia:

,100a

c

MMC =

unde: Mc şi Ma = masa cenuşei, respectiv masa ancolantului din care a rezultat cenuşa cântărită

Viscozitatea flotei. Gradul de încleiere

7. Duritatea şi pH-ul apei Analiza chimică a apei, determinând numărul de grade germane privind duritatea (°dH).

Colorimetric, prin proba fierului cu tiocianat de potasiu, sau alte metode

Flexibilitatea peliculei. Gradul de încleiere

8. Temperatura de preparare şi de depozitare a flotei

Verificare periodică sau continuă cu termometru sau cu termostat

Viscozitatea flotei. Gradul de încleiere

9. Timpul de preparare a flotei

Sonerie de alarmă şi de oprire a procesului Viscozitatea flotei

10. Concentraţia flotei de încleiere

Refactometric, cu precizia de ± 1–2 g/l, cu refractemetre pentru picături depuse, sau refractometre cu imersare.

Concentraţi în ancolant se determină aplicând concentraţiei refractometrice următorii coeficienţi de corecţie:

0,9–1,0 la amidon; 0,96–1,9 la carboximetilceluloză; 0,88–0,97 la alcool polivinilic; 0,75–0,85 la poliacrilaţi. O diferenţă de 10°C schimbă concentraţia

refractometrică cu 0,5–1,2%

Viscozitatea flotei

11. Gradul de scindare a amidonului

Microscopic, cu grad de mărire de 100–500 ori

Viscozitatea flotei

12. Viscozitatea flotei de încleiere

Aceleaşi metode ca la viscozitatea soluţiei de ancolant

Încărcarea urzelilor prin încleiere

13. Hidrofilia urzelii (capa-citatea de umezire)

Determinarea timpului de umezire, conform standardelor în vigoare

Încărcarea cu flotă a urzelilor

14. Conţinutul de substanţe grase pe firele urzelii

Metoda extracţiei Soxhlet cu dizolvanţi adecvaţi materialului fibros. Conţinutul procentual de grăsimi, Pg, este:

,100i

gg M

MP =

unde: Mi şi Mg reprezintă masa grăsimilor extrase (g), respectiv masa probei de urzeală neîncleiată climatizată (g)

Încărcarea cu flotă a urzelilor

Page 178: Manualul inginerului textilist

1308 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.4.54 (continuare)

0 1 2 3 15. Temperatura flotei la

încleiere şi temperatura de uscare

Instalaţii de control şi de autoreglare cu termometre şi termoregulatoare de automatizare

Viscozitatea flotei şi încărcarea urzelii

16. Nivelul flotei în baia de încleiere

Reglarea nivelului cu închizător de preaplin, traducător de optic, pneumatic etc.

Pentracţia flotei în fire şi încărcarea urzelii

17. Forţa de stoarcere Manometru sau alte aparate de afişare a forţei de stoarcere

Încărcarea urzelilor prin încleiere

18. Umiditatea urzelii încleiate

Se controlează şi se reglează automat cu instalaţiile şi dispozitivele din dotarea maşinii. Pentru controlul şi etalonarea aparatelor se determină, gravimetric, umiditatea U, prin uscare la 105°C, la masă constantă, şi se aplică relaţia:

,100u

ui

MMMU −

=

unde: Mi şi Mu reprezintă masa probei iniţiale şi masa probei complet uscată

Caracteristicile firelor încleiate şi ale peliculei de încleiere

19. Viteza de încleiere Se controlează şi se afişează pe tahometru Umiditatea urzelii şi gradul de încleiere

20. Alungirea urzelii Prin diferenţă tahometrică sau diferenţa lungimilor de pe contoarele de la intrarea şi ieşirea urzelii din maşina de încleiat

Caracteristicile firelor încleiate

21. Încărcarea urzelilor cu substanţe de încleiere

Îndepărtarea enzimatică, concentraţie de 15 g/l, timp de 3 ore, cu raport de flotă l : 50, la ancolant pe bază de amidon.

Îndepărtare prin decocţie apoasă şi fierbere cu un raport al flotei de l: 50, timp de 30 minute, la ceilalţi ancolanţi.

Încărcarea Is se calculează cu relaţia: ,0Ssfs III −=

unde: Isf şi IS0 reprezintă încărcarea urzelii finale încleiate şi a celei neîncleiate (pierderi de masă). Încărcările Isf şi ISO se calculează cu relaţiile:

( ) ,1000s

siSsf M

MMII

−=

unde: Mi şi MS reprezintă masa climatizată a firelor înainte şi după descleiere, pentru îndepărtarea substanţelor, atât la fire încleiate, cât şi la fire neîncleiate.

Determinarea densităţii de lungime a firelor încleiate (Tt2) şi a celor încleiate (Tt1), climatizate, şi calculul încărcării IS cu relaţia:

1002

12

t

ttS T

TTI −=

Caracteristicile firelor

Page 179: Manualul inginerului textilist

Încleierea urzelilor 1309

Tabelul IV.4.54 (continuare)

0 1 2 3

22. Rezistenţa şi alungirea la rupere a firelor încleiate şi neîncleiate

Dinamometric Prelucrabilitatea la ţesere

23. Rezistenţa la frecare a firelor încleiate şi neîncleiate

Aparate specifice pentru frecare Prelucrabilitatea la ţesere

24. Frecvenţa ruperilor la ţesere

Înregistrarea ruperilor în urzeală şi raportarea lor la 1000 fire de urzeală şi 10000 fire de bătătură

Prelucreabilitatea la ţesere

Tabelul IV.4.55

Caracteristici principale al maşinilor de încleiate

Nr.

crt.

Tipul maşinii

Date tehnice Fiamaro Sucker Müler Benninger Zell

1. Tipul firelor prelucrate Tip bumbac şi tip liberiene cu Nm 2–70

Toate tipurile de fir

Toate tipurile de fir

2. Lăţimea de lucru (mm): – alimentare (L1)

– debitare (L2)

1400–2600, din 200 în 200 mm; 1400–4000

– 2000

– 1600–2600, din 200 în 200 mm

3. Viteza de lucru (m/min) 0–100 12,5–150 4–130

4. Numărul tamburelor de uscare 3; 5; 7; 9; 11 5–7 6; 8; 10; 12

5. Temperatura tamburelor (°C) 50–138 80–138 60–130

6. Dimensiunile sulului final (mm): – diametrul flanşelor – distanţa maximă între flanşe – diametrul corpului sulului

max. 800 4000 80

max. 800 4000 –

max. 800 4000 –

Page 180: Manualul inginerului textilist

IV.5 CERAREA URZELILOR

Cerarea este operaţia de depunere a unei flote de cerare pe firele urzelii, cu scopul

micşorării coeficientului de frecare a firelor, a încărcării electrostatice a acestora şi îmbună-tăţirii comportamentului tribologic la ţesere. Cerarea poate înlocui în totalitate încleierea, la urzeli din fire răsucite tip lână şi la unele fire din poliester, sau poate completa şi îmbunătăţi încleierea la fire filate în amestec cu poliester, fire filamentare din poliester etc. La cerarea pe maşina de urzit în benzi depunerea flotei se poate face pe bandă (fig. IV.5.1) sau, mai recomandat, la pliere pe lăţimea întregii urzeli (fig. IV.5.2), iar la cerarea pe maşina de încleiat, depunerea flotei se face la ieşirea urzelii din uscător (fig. IV.5.3). Temperatura flotei la depunere poate fi temperatura camerei sau cea de dizolvare şi topire a cerurilor şi parafinelor utilizate.

Fig. IV.5.1. Cerarea pe banda de urzire: 1 – banda de urzire; 2 – vergele colectoare; 3 – spata de rost; 4 – cuva de cerare; 5 – cilindru de cerare; 6 – spata de lăţime.

Fig. IV.5.2. Cerarea în lăţime a urzelilor neîncleiate;

1 – urzeală; 2 – tambur de urzire; 3; 5 – cilindri conducători; 4 – cilindru de cerare; 6 – sul de urzeală; 7 – flota de cerare; 8 – rezervor de flotă; 9 – pompa de recirculare.

Page 181: Manualul inginerului textilist

Cerarea urzelilor 1311

Fig. IV.5.3. Cerarea urzelilor încleiate: 1 – cilindru de uscare; 2 – cilindru de cerare; 3 – câmp de separare; 4 – flota de cerare; 5 – cuvă; 6 – rezervor de flotă; 7 – serpentină de

încălzire; 9 – termoregulator; 10 – sondă termoregulatoare.

IV.5.1. Substanţe şi reţete pentru cerarea urzelilor La prepararea flotelor de cerare se pot folosi agenţi chimici de suprafaţă cu efect de

lubrifiere-antistatizare. În structura produselor industriale de cerare (tabelul IV.5.1) pot intra: – agenţi de lubrefiere, cum ar fi derivaţi ai acizilor graşi, derivaţi glicolici (esteri, eteri),

emulsii de parafină sau de polietilenă şi combinaţii ale acestora; – agenţi activi de antistatizare conferită prin hidrofilie, disociere (săruri cuaternare de

amoniu), heteroatomi de fosfor (alchilfosfaţi), substanţe neionice antistatizante (esteri glicolici, compuşi etoxilaţi);

– agenţi activi de suprafaţă anionici şi neionici polietoxilaţi (Romestat-PE.26) în con-centraţie de 30% produs emulsionabil;

– agenţi activi de suprafaţă neionici polietoxilaţi (Romopal LN); – agenţi activi de suprafaţă anionici (ulei de ricin sulfatat 5%, sau alcool gras sulfatat

30%). Pe lângă substanţele de cerare propriu-zise, flotele de cerare mai pot conţine: – substanţe higroscopice, ca glicerina, în proporţie de 2–3%, în funcţie de anotimp,

pentru a completa prin sinergism efectul antistatic; – agenţi de suprafaţă cu rol principal de antistatizare, specifici naturii fibrelor utilizate

(tabelul IV.5.2) şi agenţi de udare (tabelul IV.5.3); – apă pentru reglarea viscozităţii flotei şi a încărcării urzelilor cu flotă şi substanţe active.

Page 182: Manualul inginerului textilist

1312 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.5.1

Produse de cerare şi condiţii de utilizare

Denumirea comercială Structura chimică de bază şi proprietăţi Domenii şi condiţii de utilizare

0 1 2

Cerat 946 şi 946 granulat; Cerat 7723 (Böhme)

Lichid vâscos, neionic, de alcool gras etoxilat (20% substanţă uscată), alb-gălbui, sau granule albe. Lichid neionic din amestec de glicol-eter

Cerarea urzelilor neîncleiate din lână, fibre sintetice, celofibră şi amestecuri. Cerarea urzelilor încleiate din bumbac/poliester şi alte amestecuri. Cerarea umedă a urzelilor din lână, bumbac, viscoză

Ceară textilă tip BC

Produs de cerare solid, cu emulgatori neionici. Emulsionabil în apă caldă, cu pH = 8–10, la emulsia de 1%

Cerarea urzelilor încleiate din bumbac sau bumbac în amestec cu celofibră sau cu fire sintetice

Ceară textilă L2 Amestec lichid, incolor spre slab gălbui, pe bază de agenţi de suprafaţă neionici, cu un conţinut în oxid de etilenă de 85 ± 5% din substanţă uscată a produ-sului, care este de 30 ± 2% faţă de pro-dus. Miscibil cu apa în orice proporţie, pH = 5,5–7,5 la o soluţie de 1%. Compatibil cu agenţii de suprafaţă anionici, neionici sau cationici

Cerarea urzelilor neîncleiate din lână sau lână în amestec. Cerarea urzelilor încleiate din fir de lână sau lână în amestec. Concentraţia flotei de cerare K = 10–15 g/l

Glicowax 400 (Bozzetto)

Lichid de eter-oxid, incolor, neionic, diluabil în apă rece sau caldă, compatibil cu amidon şi derivaţi celulozici, emulsii de răşini acrilice, agenţi anionici şi cationici

Cerarea urzelilor încleiate din lână şi amestecuri. Concentraţia flotei de cerare K = 0,5–0,7% substanţă uscată, la un raport între viteza cilindrului de depunere şi cea de încleiere de:

1501

1001

Glicowax FAS (Bozzetto)

Solzi ceroşi din esteri graşi modificaţi, emulsionabili în apă, agent neionic

Lubrifiant pentru cerarea urzelilor din fire filamentare, cu depunere tangenţială tip Kiss–roll

Vip Oil (Bozzetto)

Agent neionic din poliglicol ester, cu viscozitate controlată

Cerarea urzelilor din fire de polipro-pilenă şi alte tipuri de fibre cu efect de lubrifiere, antistatizare, netezire

Persoftal NPF Persoftal PW persoftal CNP (Bayer)

Agent cationic de parafină şi amidă de acid gras (NPF). Agent cationic de amidă de acid gras cu parafină (PW). Agent uşor cationic de polietilenă cu parafină (CNP)

Cerare umedă, performantă, a urze-lilor din fire de lână, fibre sintetice şi amestecuri (Persoftal NPF). Cerare umedă a urzelilor din fibre sintetice, celulozice, lână şi ames-tecurile acestora (Persoftal PW). Cerare umedă şi asuplare pentru fire celulozice şi amestecurile acestora (Persoftal CNP)

Page 183: Manualul inginerului textilist

Cerarea urzelilor 1313

Tabelul IV.5.1 (continuare)

0 1 2

Ceraplast AM Lichid gălbui anionic de eter-ester şi copolimer salifiat, cu pH = 8,3 ± 1 şi viscozitate de 50 ± 10 cP, diluabil în apă în orice proporţie

Cerarea-antistatizarea urzelilor din fire filamentare sintetice sau din fire filate din fibre sintetice şi în amestec cu fibre naturale. Concentraţia flotei K = 3–5% produs comercializat faţă de flota de cerare

Sico 52 D Solzi albi, cu 99,75% substanţă activă din atispumanţi, plastifianţi, lubrifianţi etc. Temperatura de topire de 47...51°C şi cea de solvire de 97...100°C. Compatibil cu produsele de încleiere

Cerarea urzelilor încleiate din fibre naturale şi sintetice cu o încărcare de cerare a urzelii Is = 0,5% faţă de masa urzelii

Perrustol FPF (Rudolf)

Dispersie de parafină Cerare umedă pentru toate tipurile de fire, în special pentru cele pieptănate din fibre acrilice şi lână

Trefix PW (Höechst)

Agent neionic din soluţie de polietilenglicoli, cu masă moleculară ridicată

Cerarea urzelilor încleiate şi a urzelilor neîncleiate din fire filamentare torsionate

Lamefin L (Gränau)

Lichid cationic din amină de acid gras, poliglicol eter, cu conţinut de parafină

Cerare umedă a urzelilor, cu efect de netezire, pentru toate tipurile de fire

Overwax G (Lamberti)

Amestec de grăsimi naturale şi sintetice cu agenţi de antistatizare

Cerarea urzelilor din fire sintetice şi celulozice

Poliglim R 10 (Lamberti)

Agent neionic din eter de poliglicol sub formă de solzi

Cerarea urzelilor încleiate sau neîncleiate cu efect de lubrifiere şi asuplare din toate categoriile de fire

Introducerea unor ancolanţi sintetici în structura produselor de cerare (tabelul IV.5.4)

oferă posibilitatea aplicării unei tehnologii de cerare-încleiere la rece pentru anumite tipuri de urzeli.

Reţetele de cerare sau cele de cerare-încleiere la rece sunt relativ simple. Pentru cerarea urzelilor neîncleiate din fire tip lână, reţeta de cerare poate conţine:

• 20–85% produs industrial de cerare, în funcţie de conţinutul de substanţă din produsul de cerare;

• 80–15% produs industrial de cerare, în funcţie de conţinutul de substanţă uscată al acestuia;

• 0,4–1% emulgatori. Concentraţia flotelor de cerare în substanţă uscată poate fi:

K = 28–32%, pe timp de vară; K = 25–27%, pe timp de iarnă.

Structura reţetelor de cerare se alege în funcţie de produse, fire şi tehnologie, iar pentru cerarea în lăţime a urzelilor neîncleiate se pot recomanda reţete de tipul celor din tabelul IV.5.5.

Încărcarea urzelilor cu flotă de cerare poate avea valori de If = 5–10% în funcţie de caracteristicile flotei, ale firelor şi de parametrii tehnologici de depunere. Încărcarea urzelilor cu substanţe active de cerare Is, poate avea valori:

2%, pentru fire de 19,23 tex x 2, din 60% poliester+ 40% celofibră; 2,5%, pentru fire de 25 tex x 2, din 30% lână + 70% poliester; 2%, pentru fire de 45,4–19,23 tex, din lână merinos 100%; 2–3%, din fire de 83,33 tex, din lână cardată 100%;

Page 184: Manualul inginerului textilist

1314 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

2%, pentru fire de 22,72–16,66 tex, din 45% lână şi 55% poliester; 1–2%, pentru fire de 25 tex, din 90% lână + 10% fibre p.a.; 1–2,5%, pentru fire de 142,85-100 tex, din 90% lână + 10% poliester; 1%, pentru fir de 29,41 tex, din 67% poliester + 33% bumbac; 1–2%, pentru fire de viscoză, de 120 den; 1–2%, pentru fir de 25 tex, din 67% poliester şi 33% viscoză.

Tabelul IV.5.2

Produse de lubrifiere, avivare şi antistatizare

Denumirea comercială Structură şi proprietăţi Utilizare

Prepatim Agent de preparaţie sub formă de lichid, galben brun, pe bază de substanţe neionice. Conţinut de substanţă uscată 70%. Soluţia de 1% are pH = 6–8

Avivarea fibrelor din poliester tip lână. În flota de cerare conferă o bună antistatizare urzelilor

Prepatim LSP Agent de preparaţie din componenţi alifatici, emulgatori anionici şi neionici, sub formă de lichid galben-brun, cu conţinut de 60% substanţă uscată, şi pH-ul soluţiei de 1% de 6,5–8,5

Lubrifiant şi antistatizant pentru fibre de lână în amestec cu poliacrilnitril, poliester şi celofibră

Torsital NFO Agent de uleiere pe bază de ulei mineral şi emulgator neionic, sub formă de emulsie, stabilă timp de 30 minute la 10% produs, şi cu un pH = 6–8 la emulsia de 1%

Lubrifiant şi antistatizant pentru fibre şi fire. Concentraţia emulsiilor la utilizare este de 20–40%, la temperatura de 20...25°C

Romestat C 50 Romestat PE 26 Romestat PNA

Auxiliari chimici de antistatizare şi avivare pe bază de agenţi de suprafaţă neionici şi anionici (C 50), agenţi anionici şi neionici polietoxilaţi (PE 26), alchilfosfaţi şi agenţi neionici polietoxilaţi (PNA). Prezentare: pastă alb-gălbuie, cu substanţă uscată de 84% (C 50), 70–75% (PE 26), 75 ± 3% la (PNA) şi cu substanţă anion activă de 14,3% (C 50), de 12 ± 2% (PE 26) şi 34% oxid de etilenă (PNA). Soluţiile de 1% au pH = 7–8,5 (C 50), pH = 6,5–8 (PE 26) şi pH = 6,0–7,5 la soluţia de 3% (PNA)

Avizare antistatizare pentru: – fibre celulozice şi amestecuri cu

sintetice (C 50) cu concentraţia flotei de 1,0–1,5%;

– fibre poliesterice şi amestecurile acestora (Pe 26) cu concentraţia flotei de 1–3%;

– fibre policrilonitrilice şi amestecurile acestora (PNA) cu concentraţia flotei de 0,7–1%

Avivan GFL Avivan KP Avivan OC1 Avivan OC2

Agent de suprafaţă cationic de avivare şi antistatizare, în amestec cu derivaţi de acizi graşi (GFLSIKP), sub formă de lichid vâscos brun (GKL), pastă alb-gălbuie (KP), pastă gălbuie (OC1 şi OC2). Soluţia de 1% are pH = 5,0–7,0. Conţinut de substanţă uscată 40–45%

Emoliere şi antistatizare pentru vopsirea produselor textile din poliester în amestec cu fibre celulozice sau lână (GFL), poliester cu poliamidă (KP), poliacrilonitrilice, lână, bumbac, poliamidice (OC1) şi (OC2). Concentraţia flotelor Kf = 5–15 g/l

Page 185: Manualul inginerului textilist

Cerarea urzelilor 1315

Tabelul IV.5.3

Agenţi chimici de udare

Denumire Structură şi proprietăţi Utilizare

Romopal LN Agent de udare de suprafaţă, neionic, polietoxilat, sub formă de lichid gălbui, cu un conţinut de 30% substanţă uscată şi 30% substanţă activă neionică

Ca agent de udare şi dispersare în diferite operaţii ale tehnologiilor chimice textile, în flote de 1–2 g/l Romopal şi temperaturi de 20...95°C

Ulei sulfonat tip RST I

Agent de udare pe bază de ulei de ricin sulfatat, sub formă de lichid uleios, galben brun, cu 40% substanţe grase. Amestecul de 10% în apă are pH = 7,7–8,5

Ca agent de udare şi ca emulgator în diferite tehnologii textile

Înmuiant rapid C Agent de udare anionic pe bază de esteri ai acidului sulfosuccinic, sub formă de lichid, galben, cu conţinut de 50% substanţă anion activă. Soluţia de 1% are pH = 5,5–7

Ca agent de udare în diferite tehnologii textile pentru materiale celulozice. La flota de încleiere poate avea concentraţia de 0,3–0,5 g/l

Tabelul IV.5.4

Produse de cerare-încleiere la rece

Denumirea produsului Structură şi proprietăţi Utilizare

Ceraplast RG Ceraplast VA (Bozzetto)

Amestec de polietilenglicol şi poliacrilaţi. Tipul RG cu viscozitate scăzută şi tipul VA cu viscozitate ridicată

Agent de antistatizare, lubrifiere şi încleiere pentru urzeli din in, lână şi amestecuri ale acestora

Cerat AEK (Böhme)

Amestec de alcool polivinilic cu agent de suprafaţă cationic

Agent de încleiere la rece pentru urzeli din fibre sintetice şi amestecuri cu bumbac, lână, in

Grünau Kaltschlichte 900 (Henkel)

Soluţie de alcool polivinilic, copolimeri aditivi lichizi şi agenţi de suprafaţă neionici

Agent de cerare-încleiere la rece a urzelilor din orice tip de fibre

Olinor KW 66/79 (Henkel)

Amestecuri sinergetice de copolimeri acrilici

Agent de cerare-încleiere la rece pentru urzeli din fire filate, în special din lână

Chimgel X 81/4 Chimgel X 81/7 (Chimitex)

Soluţie diluată de alcool polivinilic cu mare capacitate de udare şi încleiere

Agent de încleiere-cerare la rece pentru urzeli din fire filate din bumbac, celofibră, lână, poliester, fibre acrilice şi amestecuri ale acestora

Page 186: Manualul inginerului textilist

1316 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.5.5

Reţete de cerare şi încărcarea urzelilor

Structura reţetei de cerare Tipul firelor din urzeală Încărcarea urzelilor, Is (%)

5% prepatim + 10% alcool gras + 5% monoetilen glicol + 8% apă

100% lână fire 25 tex × 2 30% lână + 7% pes fire 25 tex × 2

2 2,5

5% prepatim + 5% monoetilen glicol + 4% sandozin + 86% apă

30% lână + 70% pes fire 25 tex × 2 60% pes + 40% celo fire 19,23 tex × 2

2,5 2

1% prepatim + 25% cerat 946 + 0,5% Romopal + 73,5% apă

60% pes + 40% celo fire 19,23 tex × 2

2

10% alcool gras + 70% cerat 946 + 2% aracet APV + 18% apă

60% pes + 40% celo, fire 19,23 tex × 2 30% lână + 70% pes, fire 25 tex × 2

2 2,5

25% cerat 946 + 1% prepatim + 0,5% metaopan + 73,5% apă

10% lână + 90% celo fire 20 tex × 2

1,5

50% cerat 946 + 5% glicerină + 1% metaopan + 44% apă 30% lână + 70%, celo fir 25 tex × 2 2

10% torsital + 1% monoetilenglicol + 1% Romopal NF 10 + 84% apă

60% poliester + 40% celo fire 19,23 tex × 2

2

Page 187: Manualul inginerului textilist

IV.6 NĂVĂDIREA

Năvădirea constă în introducerea firelor de urzeală prin cocleţii iţelor, lamele şi spată şi

echiparea urzelilor cu componentele tehnologice necesare procesului de ţesere. Operaţia se poate executa manual, semiautomat sau automat.

IV.6.1. Năvădirea în iţe Iţele în care are loc năvădirea firelor de urzeală au ca elemente de bază ramele şi

cocleţii. Tipurile şi dimensiunile principale ale ramelor iţelor sunt prezentate în tabelul IV.6.1, iar a cocleţilor în tabelul IV.6.2, pentru cei confecţionaţi din sârmă, şi în tabelul IV.6.3, pentru cocleţii plaţi. Dimensiunile cocleţilor din sârmă, pe domenii de utilizare, se pot alege pe baza tabelelor IV.6.4 şi IV.6.5. Cocleţii pentru ţeserea jacard au dimensiunile principale şi domeniile de utilizare trecute în tabelele IV.6.6 şi IV.6.7. Montarea cocleţilor pe iţe se face pe tijele portcocleţilor (tabelul IV.6.8) susţinute de călăreţi pentru ramele iţelor (tabelul IV.6.9). Năvădirea în iţe se poate face manual, semiautomat şi automat (tabelul IV.6.10).

Tabelul IV.6.1

Tipuri şi dimensiuni principale ale ramelor iţelor (fig. IV.6.1)

Mărimea Dimensiuni principale, în mm

A B C E F G H K R

0 1 2 3 4 5 6 7 8 9

Ramă iţe tip A– cu urechi şi ştifturi de ghidare laterale

1. 2. 3. 4. 5.

1197 1197 1597 1797 1797

1232 1237 1632 1832 1837

17,5 20,0 17,5 17,5 20,0

483 ± 1,2 483 ± 1,2 483 ± 1,2 483 ± 1,2 483 ± 1,2

326 326 326 326 326

13 13 13 13 13

64,8 64,8 64,8 64,8 64,8

11,5 11,5 11,5 11,5 11,5

1259 1258 1658 1859 1859

Page 188: Manualul inginerului textilist

1318 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.6.1 (continuare)

0 1 2 3 4 5 6 7 8 9 Ramă iţe tip B cu urechi de prindere în traversele longitudinale – STAS 10683/3–90

1. 1'. 2. 3. 4. 5. 6. 6'.

1160 1170 1167 1217 1240 1260 1660 2660

1200 1202 1207 1257 1280 1300 1700 2700

20 20 20 20 20 20 20 20

482,0 472,0 482,0 484,6 482,0 482,0 482,0 486,0

322(326) 322(326) 322(326) 322(326) 322(326) 322(326) 322(326) 322(326)

13 13 13 13 13 13 13 13

64,8 64,8 64,8 64,8 64,8 64,8 64,8 64,8

11,5 11,5 11,5 11,5 11,5 11,5 11,5 11,5

896 938 945 940 945 990 1390 2390

Ramă iţe tip C–cu legătură tip R – STAS 10683/4–90 1. 2. 3. 4. 5. 6. 7. 8. 9.

1017 1017 1200 1125 1177 1177 1730 1897 1999

1057 1057 1154 1165 1217 1217 1770 1937 2039

20 20 20 20 20 20 20 20 20

432 482 492 504 412 482 482 532 532

276 326 326 376 256 326 326 376 376

13 13 15 13 13 13 13 13 13

64,8 64,8 64,8 64,8 64,8 64,8 64,8 64,8 64,8

11,5 11,5 11,5 11,5 11,5 11,5 11,5 11,5 11,5

– – –

952 946 943 1570 1230 1340

Ramă iţe tip D – cu urechi laterale–STAS 10683/5–90 1. 2. 3. 4.

1172 1222 1222 1765

1207 1257 1257 1797

17,5 17,5 17,5 16,0

482 475 482 476

326 325 326 326

13 13 13 15

64,8 60,0 64,8 60,0

11,5 13,0 11,5 12,5

1220 1270 1270 1810

Ramă iţe tip G – cu cârlige – STAS 10683/6–90 1. 2. 3. 4. 5. 6.

1018 1016 1120 1200 1600 1760

1050 1056 1160 1240 1640 1800

16 20 20 20 20 20

425 402 482 482 482 482

275 276 326 326 326 326

15 13 13 13 13 13

60,0 50,0 64,8 64,8 64,8 64,8

11,5 11,5 11,5 11,5 11,5 11,5

– – – – – –

Ramă iţe tip F – cu antrenare – STAS 10683/7–90 1. 1'. 2. 3.

1042 1865 2202 2582

1070 1837 2230 2610

– – – –

394 94 94 94

271 278 278 278

– – – –

– – – –

– – – –

488 820 1200 1550

Ramă-iţe tip G – cu două rânduri de şine pentru cocleţi – STAS 10683/8–90 1. 2. 3.

1516 1796 1916

1560 1840 1960

– – –

547 547 547

324 324 324

– – –

– – –

24 24 24

– – –

Ramă iţe tip H – cu piesă de legătură – STAS 10683/9–90 1. 460 500 20 472 326 – – – –

Ramă iţe tip K – cu suport–STAS 19683/10–90 1. 1190 1230 20 475 325 – – – 1259

Ramă iţe tip L – cu urechi, ştifturi de ghidare laterale şi legături tip R – STAS 19683/11–90 1. 2697 2732 17,5 483 326 13 64,8 11,5 2759

Page 189: Manualul inginerului textilist

Năvădirea 1319

Fig. IV.6.1. Rama iţelor.

Tabelul IV.6.2

Dimensiuni de bază ale cocleţilor din sârmă pentru iţe (fig. IV.6.2) (SR ISO 364–1997)

Dimensiuni de bază, în mm Dimensiuni corelate

Grosimea sârmei

Tipul coletului Distanţa între bucle de capăt L, egală cu: Tip F, cu

ochi simplu Tip M, cu maion

inserat Bucle de

capăt

d Număr h1 × b1 h2 × b2 Număr h × b 280 300 330 380 420 450 480 520

0,25 34 5 × 1 2,6 × 0,9 1010R 16 × 4 – – x – – – – –

0,3 32 6 × 1,5 2,6 × 0,9 1010R 16 × 4 x x x – – – – –

0,35 30 6 × 1,5 3,2 × 1,3 1015R 16 × 4 x x x – – – – –

0,4 28 7 × 2 4 × 1,5 1020R 16 × 4 x x x x x – – –

0,4 28 7 × 2 5,2×2,3 355R 16 × 4 x x x x x – – –

0,5 26 8 × 2,5 5,6 × 2,7 380R 16 × 4 x x x x x x x –

6,6 × 3,9 1080R 16 × 4 x x x x x x – –

0,6 24 – 6,6 × 3,9 1080R 16 × 4 – – x x x x – –

8 × 4,2 390R 16 × 4 – – x x x x – –

0,7 22 –

– – 18 × 5 – – x – – – – x

8 × 4,2 390R 22 × 6,5 – – x – – – – x

10 × 6,3 450R 18 × 5 – – x – – – – x

– – 22 × 6,5 – – x – – – – x

0,9 20 – 10 × 6,3 450R 18 × 5 – – x – – – – x

22 × 6,5 22 × 6,5 – – x – – – – x

Page 190: Manualul inginerului textilist

1320 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig.

IV.6

.2. T

ipod

imen

siuni

ale

coc

leţil

or d

in sâ

rmă

pent

ru iţ

e.

Page 191: Manualul inginerului textilist

Năvădirea 1321

Tabelul IV.6.3

Tipuri şi dimensiuni principale ale cocleţilor plaţi–STAS 9491/1–87 (fig. IV.6.3)

Dimensiuni principale şi masa M Dimensiuni principale şi masa M

Secţiunea, a×b, mm

Dimensiunile ochiului,

a1×b1, mm

L

mm

M

kg/1000 buc.

Secţiunea, a×b, mm

Dimensiunile ochiului, a1×b1, mm

L,

mm

M

kg/1000 buc.

Cocleţi plaţi simplex (drepţi) şi duplex (cotiţi) pentru uz general

Cocleţi plaţi speciali tip I, pentru pasmanterie-fire tip mătase cu desime mare

1,8×0,25 1,0×1,5 260 1,033(1,700) 1,8×0,25 1,0×5,0 216 0,745(1,390)

1,8×0,24 1,0×1,5 280 1,104(1,760) 2,0×0,30 1,2×5,5 – 0,987(1,590)

1,8×0,25 1,0×1,5 300 1,174(1,840) 2,3×0,35 1,5×6,0 – 1,230(1,860)

1,8×0,25 1,0×1,5 330 1,280(1,980) 3,0×0,46 2,0×7,0 – 2,220(2,640)

2,0×0,30 1,2×5,5 260 1,334(1,960) 3,0×0,46 2,0×7,0 – 2,220(2,640)

2,0×0,30 1,2×5,5 280 1,428(2,050)

Cocleţi plaţi speciali tip II, pentru pasmanterie fire tip mătase, cu desime normală 2,0×0,30 1,2×5,5 300 1,523(2,150)

2,0×0,30 1,2×5,5 330 1,644(2,290)

2,3×0,35 1,5×6,0 260 1,747(2,320) 4,0×0,32 2,0×4,0 180 1,600(2,220)

2,3×0,35 1,5×6,0 280 1,874(2,450) Cocleţi plaţi speciali tip III, pentru fire de sticlă

2,3×0,35 1,5×6,0 300 2,000(2,570)

2,3×0,35 1,5×6,0 330 2,190(2,760) 2,3×0,35 1,5×6,0 234 1,470

2,3×0,35 1,5×6,0 380 3,215(3,970) Cocleţi plaţi speciali tip IV, pentru benzi din fire

de sticlă 2,6×0,40 1,8×6,5 280 1,980(3,550)

2,6×0,40 1,8×6,5 300 2,640(3,740) 2,3×0,35 1,0×2,0 144 0,853

2,6×0,40 1,8×6,5 330 2,880(3,970) 2,3×0,35 1,0×2,0 158 1,096

2,6×0,40 1,8×6,5 380 3,215(3,970)

Page 192: Manualul inginerului textilist

1322 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.6.3. Tipodimensiuni ale cocleţilor plaţi.

Page 193: Manualul inginerului textilist

Năvădirea 1323

Tabelul IV.6.4

Domenii de utilizare cu dimensiunile recomandate ale cocleţilor din sârmă (fig. IV.6.2)

Domenii recomandate

pentru utilizare

Dimensiuni ale cocleţilor, în mm

L+l d Fixarea ochiului

Tipul ochiului cocletului

F Ma Mb Ma şi Mb Mc

F M1 M2 b1 h1 a2 a3 b2 h2 a4 b3 h3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fire filamentare 280 0,3 x x – 1,3 4,8 0,5 – 1,3 3,2 0,32 1,3 2,6

Fire de bumbac 280 0,35 x x – 1,5 5,5 0,5 – 1,5 4 0,42 1,8 3,2

Fire medii de bum-bac, fire fine de in 280 0,4 x x x 1,8 6,5 0,55 – 2,3 5,2 0,42 1,8 3,2

Fire groase de bumbac, fire subţiri de liberiene

280 0,45 x x x 2,5 8 0,6 – 2,7 5,6 0,5 2 5

Catifele, velur 280 0,6 x – x 2,5 8 0,6 – 2,7 5,6 – – –

Fire foarte groase de bumbac 280 0,7 x – – 7 15 – – – – – – –

Fire de iută 280 0,7 – – x – – – 2,25 4 6,6 – – –

Fire filamentare 330 0,25 x x – 1,2 4,2 0,4 – 0,9 2,6 0,3 0,9 2,4

Fire filamentare 330 0,3 x x – 1,3 4,8 0,5 – 1,3 3,2 0,32 1,3 2,6

Fire filamentare 330 0,35 x x – 1,5 5,5 0,5 – 1,5 4 0,42 1,8 3,2

Fire medii de bumbac 330 0,4 x – – 1,8 6,5 – – – – – – –

Fire fine de bumbac 330 0,4 – x x – – 0,55 – 2,3 5,2 0,42 1,8 3,2

Fire groase de cânepă sau in 330 0,45 x x x 2,5 8 0,6 – 2,7 5,6 0,5 2 5

Fire cord 330 0,6 – – x – – 0,6 – 2,7 5,6 – – –

Fire foarte groase din asbest, iută 330 0,7 – – x – – – 2,25 4 6,6 – – –

Fire cord sau de iută foarte groase 330 0,9 – – x – – 1,0 1,0 4,2 8 – – –

Fire filamentare, catifele şi stofe de mobilă

380 0,3 x x – 1,3 3,2 0,32 – 1,3 3,2 0,32 1,3 2,6

Urzeli pentru inlet, damast, benzi 380 0,35 x x – 1,5 5,5 0,5 – 1,5 4 0,42 1,8 3,2

Stofe de mobilă 380 0,4 x x x 1,8 6,5 0,55 – 2,3 5,2 0,42 1,8 3,2

Page 194: Manualul inginerului textilist

1324 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.6.4 (continuare)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fire de lână cardată sau pieptănată

380 0,45 x x x 2,5 8 0,6 – 2,7 5,6 0,5 2 5

Urzeli pentru chingi 380 0,6 – – x – – 1,0 1,0 4,2 8 – – –

Bandă de frânare 380 0,9 – x x – – 1,5 1,5 7,5 13,5 – – –

Fire de lână car-dată sau pieptă-nată (filţuri)

450 0,45 x x x 2,5 8 0,6 – 2,7 5,6 0,8 2 5

Fire cardate sau pieptănate 450 0,6 – – x – – 0,8 1,0 3,9 6,6 – – –

Filţuri 450 0,7 – – x – – 1,0 1,0 4,2 8 – – –

Curele de trans-misie, furtun, fire de efect

450 0,7 – – x – – 1,4 1,5 6,3 10 – – –

Filţuri 450 0,9 – – x – – – 1,5 7,5 13,5 – – –

Pluşuri 480 0,35 – x – – – 0,5 – 1,5 4 0,42 1,8 3,2

Pluşuri; fire cardate sau pieptănate

480 0,45 x x x 2,5 8 0,6 – 2,7 5,6 0,5 2 5

Fire de efect 480 0,7 – – x – – 1,4 1,5 6,3 10 – – –

Dublu pluş 520 0,4 – x x – – 0,55 – 2,3 5,2 0,42 1,8 3,2

Dublu pluş, filţuri 520 0,45 – x x – – 0,6 – 2,7 5,6 0,5 2 5

Filţuri 520 0,7 – – x – – 1,0 1,0 4,2 8 – – –

Filţuri 520 0,9 – – x – – 1,4 1,5 6,3 10 – – –

Filţuri 580 0,45 – x x – – 0,55 – 2,3 5,2 0,5 2 5

Filţuri 580 0,6 – – x – – 0,8 1,0 3,9 6,6 – – –

Filţuri 580 0,7 x – x 7 15 1,0 1,0 4,2 8 – – –

Curea transmisie 580 0,9 x – x 7 15 1,4 1,5 6,3 10 – – –

Bandă de frânare filţuri 580 0,9 x – x 7 15 1,5 1,5 7,5 13,5 – – –

Curele de transmisie

680 0,7 – – x – – 1,0 1,0 4,2 8 – – –

680 0,9 – – x – – 1,4 1,5 6,3 10 – – –

710 0,9 – – x – – 1,4 1,5 6,3 10 – – –

Page 195: Manualul inginerului textilist

Năvădirea 1325

Tabelul IV.6.5

Domenii şi dimensiuni recomandate ale cocleţilor din sârmă pentru iţe de covoare (fig. IV.6.2) [8]

Domenii recomandate pentru

utilizare

Dimensiuni ale cocleţilor, în mm

L + l

L1

d

Fixarea maionului

Tipul maionului

Ma Mb Ma şi Mb Mc

M1 M2 a2 a3 b2 h2 a4 b3 h3

Covor Axminster, urzeală de legătură 480 270 0,7 – x 0,8 1,5 3,9 6,6 – – –

Covor Axminster urzeală de legătură 480 270 0,7 – x 1,4 1,5 6,3 10 – – –

Dublu pluş 520 200 0,35 x – 0,5 – 1,5 4 0,42 1,8 3,2

520 200 0,45 x x 0,6 – 2,7 5,6 0,5 2 5

Covor Tournay, urzeala de legare 580 240 0,7 – x 0,8 1,0 3,9 6,6 – – –

Covor Tournay 580 240 0,9 – x 1,4 1,5 6,3 10 – – –

Covor cu bucle, urzeală de umplutură

580 290 0,9 – x 1,5 1,5 7,5 13 – – –

Covor cu bucle, urzeală de legare 580 320 0,9 – x 1,0 1,0 4,2 8 – – –

Covor jacard cu bucle, urzeală de umplutură

580 320 0,9 – x 1,5 1,5 7,5 13,5 – – –

Tabelul IV.6.6

Dimensiuni principale ale cocleţilor din sârmă pentru ţesere jacard SR–ISO–365/1997 (fig. IV.6.4)

Dimensiuni principale

Sârmă Maion inserat Buclă de capăt Distanţele L, L1, L2, în mm

d, mm

Nr. h1×b1, mm

Nr. Tip h×b, mm

b2, mm

L 350

L1 150

L2 150

L 400

L1 190

L2 200

0,3 32 2,6×0,9 10101R 1(M1) 3,5×1,7 2,2 x –

0,35 30 3,2×1,3 1015R 1(M1) 3,5×1,7 2,2 x –

0,4 28 4,0×1,5 1020R 1(M1) 4,0×2,0 2,5 x x

0,4 28 5,2×2,3 355R 1(M1) 4,0×2,0 2,5 x x

0,5 26 5,6×2,7 380R 2(M2) 5,0×2,5 2,5 – x

0,5 26 6,6×3,9 1080R 2(M2) 5,0×2,5 2,5 – x

Page 196: Manualul inginerului textilist

1326 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.6.4. Cocleţi din sârmă pentru ţesere jacard.

Tabelul IV.6.7

Domenii şi dimensiuni recomandate ale cocleţilor jacard din sârmă (fig. IV.6.2) [8]

Domenii recomandate pentru utilizare

Dimensiuni ale cocleţilor, în mm

L+l

L1

d

Tipul şi fixa-rea ochiului

Tipul maionului Ma Mb Ma şi Mb Mc

F M2 a2 a3 b2 h2 a4 b3 h3

Fire filamentare 350 150 0,25 x – 0,4 – 0,9 2,6 0,3 0,9 2,4 350 150 0,3 x – 0,5 – 1,3 3,2 0,32 1,3 2,6

Ţesături decorative, cuverturi

350 150 0,35 x – 0,5 – 1,5 4 0,42 1,8 3,2

Fire de in, ţesături decorative, inlet

350 150 1,4 x x 0,55 – 2,3 5,2 0,42 1,8 3,2

Ţesături frotte decorative 350 150 0,45 x x 0,6 – 2,7 5,6 0,5 2 5 Ţesături decorative 400 190 0,35 x – 0,5 – 1,5 4 0,42 1,8 3,2 Stofe de mobilă 400 190 0,4 x x 0,55 – 2,3 5,2 0,42 1,8 3,2 Stofe de mobilă şi deco-rative din fire cardate şi pieptănate

400 190 0,45 x x 0,6 – 2,7 5,6 0,5 2 5

Pături din fire cardate 400 190 0,7 – x 0,8 1,0 3,9 6,6 – – – 400 190 0,7 – x 1,0 1,0 4,2 8 – – – 400 190 0,7 – x 1,4 1,5 6,3 10 – – –

Pluşuri 520 250 0,4 x x 0,55 – 2,3 5,2 0,42 1,8 3,2 520 250 0,4 x x 0,6 – 2,7 5,6 0,5 2 5

Covor cu bucle 580 580

300 340

0,90,7

––

xx

1,51,0

1,51,0

7,54,2

13,58

– –

– –

– –

Covor dublu pluş 680 680 680

340 340 340

0,450,60 0,70

–– –

xx x

0,60,6 1,0

––

1,0

2,72,7 4,2

5,65,6 8,0

– – –

– – –

– – –

Page 197: Manualul inginerului textilist

Năvădirea 1327

Tabelul IV.6.8

Dimensiuni de bază ale tijelor portcocleţi şi buclelor cocleţilor (fig. IV.6.5) – SR ISO 570/97

Dimensiuni c × d (mm) la tije portcocleţi

Tip A Tip B

9 × 1,5 9 × 2,5 12 × 2,5 9 × 1,5

Dimensiuni buclă f × g (mm) la cocleţi plaţi

16 × 1,6 16 × 2,8 16 × 2,8 20 × 3

16 × 1,6

Dimensiuni buclă, h × b (mm), la cocleţi din două sârme lipite

16 × 3 16 × 4

16 × 4 18 × 4

22 × 6,5

18 × 5 22 × 6,5

16 × 3 16 × 4

Fig. IV.6.5. Tipodimensiuni ale tijelor portcocleţi şi buclelor cocleţilor.

Fig. IV.6.6. Dimensiuni ale călăreţilor.

Page 198: Manualul inginerului textilist

1328 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.6.9

Forme şi dimensiuni ale călăreţilor pentru ramele iţelor – STAS 10871–87 (fig. IV.6.6)

Dimensiuni, în mm

Mărimea A B C D E F G1 G2 H H1 H2 H3 K L

Călăreţi tip A – Forma I 1. 8,0 3,9 1,4 26,2 2,9 4,5 2,0 2,0 37,0 10,0 3,1 1,5 10,0 40,0 2. 8,5 4,6 1,7 29,0 3,9 4,0 2,5 1,5 38,5 10,0 2,5 1,0 10,0 40,0 3. 9,0 5,0 1,8 27,5 2,0 4,0 2,0 2,5 36,0 10,7 2,8 2,0 10,0 40,0 4. 8,5 4,5 1,3 27,5 4,5 4,0 2,5 2,0 37,5 10,0 2,5 1,0 10,5 40,0 5. 8,0 4,5 1,3 27,5 3,2 5,0 2,0 2,0 38,8 10,0 3,4 1,5 11,0 42,0

Călăreţi tip A – Forma II 1. 8,0 – 1,4 – 1,3 – 3,0 1,4 42,0 11,7 9,0 – 8,0 40,0 2. 9,4 – 2,2 – 2,3 – 3,2 1,9 41,0 11,4 8,5 – 8,8 39,2

Călăreţi tip B – Forma I 1. 11,0 6,0 2,3 29,5 4,4 – 2,5 – 45,0 12,5 7,5 – 12,0 – 2. 10,5 5,2 1,3 29,0 3,5 – 2,0 – 39,0 12,0 5,0 – 12,5 –

Călăreţi tip B – Forma II

1. 11,0 4,40 1,3 0,340,29

3,75 4,9 2,5 – 44,0 – – – 12,0 40,0

2. 11,0 4,25 1,4 5,345,29

4,50 4,5 2,5 – 44,0 – – – 12,0 40,0

Călăreţi tip C – Forma I 1. 11,6 – – – – – 4,8 – 38,0 9,0 – – – 41,5

Călăreţi tip C – Forma II 1. 8,5 – 1,8 27,5 – 4,0 5,5 – 41,4 9,5 – – – 40,0

Tabelul IV.6.10

Performanţe tehnice ale maşinilor automate de năvădit

Tipul maşinii Domenii de utilizare Viteza de lucru Dotări speciale

Titan–PM 4 System (Danemarca)

Bumbac, lână, mătase, sintetice

20000 fire/oră la selectare 4800 fire/oră năvădite în spată

Sistem de năvădire informatizat. Aparat de năvădit în spată şi lamele. Selector pentru urzeli

Stäubli-Delta 2000 (Elveţia)

Orice tip de fir cu Nm 3–300 200 fire/min Calculator pentru programare

Knotex Plus (Germania)

Bumbac, lână, sintetice, amestecuri fire de efect, sticlă, metalice

– Sistem de alimentare cu fire. Maşină de aşezat lamele

Zellweger-Uster EMU–21 (Elveţia) – 4600 fire/oră Năvădire automată numai în iţe

(2–28 iţe) cu programare prin cartele

Intertex Barber-Colman tip 86 L 94 – 5000 fire/oră

Năvădire automată în lamele, iţe (2–26 şi programare prin cartele) şi spată

Page 199: Manualul inginerului textilist

Năvădirea 1329

Numărul de cocleţi pe iţe se calculează cu relaţia [ ]16 :

,

2*

criimmm

fmii

fci NC

CrN

RCr

NN +++= (IV.6.1)

unde: Nci este numărul de cocleţi pe o iţă oarecare i; Nf – numărul de fire din fondul urzelii; r – raportul de năvădire a firelor din fondul urzelii;

*

rN f – numărul întreg de rapoarte de năvădire existent în fondul urzelii;

Ri – numărul de fire de urzeală din raportul de năvădire incomplet rămas ca rest la

împărţirea r

N f ;

Ci – numărul de fire năvădite pe iţa i în cadrul unui raport de năvădire; Nfm – numărul firelor pentru margini; rm – raportul năvădirii firelor din margini; Cm – numărul firelor de margine năvădite într-un coclet; Cim – numărul de fire de margine năvădite în iţa i în cadrul unui raport de năvădire rm; Ncri- numărul cocleţilor de rezervă pe iţa i (Ncri = 4–10 în funcţie de Nci). Desimea cocleţilor pe iţa cea mai încărcată Pc se calculează cu relaţia:

,ui

maxcic l

NP = (IV.6.2)

unde: Ncimax este numărul de cocleţi pe iţa cea mai încărcată; lui – lăţimea urzelii la nivelul iţelor. Trebuie îndeplinită condiţia:

cac PP ≤ ,

unde: Pca este desimea maximă admisă a cocleţilor pe iţe, care are valorile: 4–6 cocleţi/cm la fire cu fineţe mică (Nm ≤ 18); 10–12 cocleţi/cm la fire cu fineţe medie (Nm = 18–60); 12–14 cocleţi/cm la fire cu fineţe mare (Nm > 60). IV.6.2. Năvădirea în lamele Lamelele utilizate pot avea diverse dimensiuni, forme şi mase (fig. IV.6.7 şi

tabelul IV.6.11). În funcţie de natura firelor se pot alege lamele cu masa şi dimensiunile din tabelul IV.6.11.

Distribuţia lamelelor se face pe 2–6 rânduri, în funcţie de desimea urzelii. Desimea maxim admisă a lamelelor (lamele/cm) are valorile:

6–8, pentru fire groase; 8–11, pentru fire de fineţe medie; 12–16, pentru fire fine; 13–20, pentru fire foarte fine.

Page 200: Manualul inginerului textilist

1330 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Fig. IV.6.7. Dimensiuni principale ale lamelelor.

Page 201: Manualul inginerului textilist

Năvădirea 1331

Tabelul IV.6.11

Dimensiunile şi masa lamelelor – SR ISO 1150/1999 (fig. IV.6.7) [8]

Dimensiuni, în mm Masa lamelei, în g

l e l1 b M1 M2 M3 E1 E2 E3

(Mg) (M0) (Mgx) (Eg) (E0) (Eax)

125 125 125 125 145 145 145 145 145 165 165 165 165 185 185

0,15 0,2 0,3 0,4 0,15 0,2 0,3 0,4 0,5 0,2 0,3 0,4 0,5 0,2 0,3

53 53 53 53 65 65 65 65 65 65 65 65 65 75 75

8 11 11 11 11 11 11 11 11 11 11 11 11 11 11

1,2 1,7 2,5 3,3 1,4 1,9 2,9 3,8 4,8 2,2 3,3 4,4 5,5 – –

0,87 1,45 2,18

– –

1,65 2,5 – –

1,9 2,5 – – – –

– 1,62 2,47

– – – – – – – – – – – –

1,2 1,7 2,5 3,3 1,4 1,9 2,9 3,8 4,8 2,2 3,3 4,4 5,5 – –

– – – – –

1,60 2,40

– –

1,81 3,72

– –

2,09 3,14

– – – – –

0,99 – – – – – – – – –

Năvădirea firelor în lamele se poate face concomitent cu năvădirea în cocleţii iţelor, sau

separat, direct la maşina de ţesut, cu maşini de aşezat lamele. Unele performanţe tehnologice ale maşinilor de aşezat lamele sunt prezentate în tabelul IV.6.12.

Tabelul IV.6.12

Performanţe tehnice ale maşinilor de năvădit în lamele

Tipul maşinii Domeniul de utilizare Viteza de lucru Dotări speciale

Knotex tip LHM 1A (Germania)

Toate tipurile de fire cu Nm 0,8–600 – Cuplată rigid la instalaţia

semiautomată de năvădit

Fischer-Poege tip LS 86 (Germania)

Lamele cu lăţimea de 7–16 mm şi grosimea de 0,2–0,6 mm pe orice tip de fir şi pe 2–12 rânduri

– Selecţie electronică a firelor şi lamelelor

Zellweger-Uster (Elveţia)

Toate tipurile de fire. 1–6 rânduri de lamele

300 lamele/min Portabilă cu rastel pentru aşezare la maşina de ţesut

Miter Wira Toate tipurile de fire 2–6 rânduri

300 lamele/min

Portabilă cu rastel pentru montare la maşina de ţesut. Utilizabilă şi la urzeli cu raport de culoare

Page 202: Manualul inginerului textilist

1332 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

IV.6.3. Năvădirea în spată Spata de ţesere este constituită din lamele de oţel paralele (dinţi), uniform distribuite, şi

fixate la capete pe două liniale paralele (fig. IV.6.8 şi IV.6.9). Lăţimea dinţilor spetei (b), grosimea legăturii spetei (d) şi înălţimea totală a spetei sunt standardizate, având limitele de variaţie din tabelul IV.6.13.

Fig. IV.6.8. Spată metalică.

Fig. IV.6.9. Spată metalică cu legătură arcuită.

Page 203: Manualul inginerului textilist

Năvădirea 1333

Tabelul IV.6.13

Dimensiuni standardizate ale spetelor (SR–ISO 366–2)

Tipul spetei Dimensiuni, în mm (h are valori standardizate din 10 în 10 mm)

Spată cu legătură plată

Lăţimea dinţilor, b 3 3 3 4 4 4

Grosimea legăturii, d 5 5,5 8 6 6,5 8

Înălţimea totală, h 90–150 90–150 90–150 90–180 90–180 90–180

Spată cu legătură din material plastic

Lăţimea dinţilor, b 3 3 4 – – –

Grosimea legăturii, d 5,6 8 8 – – –

Înălţimea totală, h 110–150 100–150 110–160 – – –

Spată cu legătură dublă arcuită

Lăţimea dinţilor, b 3 4 5 6 – –

Grosimea legăturii, d 6,5 8 9 10 – –

Înălţimea totală, h 110–150 110–160 110–160 110–160 – –

Spetele se construiesc cu diferite desimi ale dinţilor, precizate prin „numărul spetei“,

care reprezintă numărul de dinţi pe o lungime de 10 cm a spetei. Numărul spetei este stan-dardizat şi variază de la 10 la 400.

Numărul teoretic al spetei, necesar năvădirii unei urzeli, se calculează cu una din relaţiile [ ]16 :

spi

f

i

btucst lC

NC

CPN 10

N sau 100

)100(st =

−= , (IV.6.4)

pentru cazul Ci = constant, şi:

∑∑==

−=

−= n

iisp

btfstn

ii

btucst

Cl

CNnN

C

CPnN

11

100

)100( 10 sau

100

)100( , (IV.6.5)

pentru cazul în care Ci are n valori succesive în raportul de năvădire în spată. S-au folosit notaţiile:

Nst – numărul teoretic al spetei, în dinţi/10 cm (celule/10 cm); Puc – desimea urzelii în ţesătura crudă, în fire/10 cm; Cbt – contracţia bătăturii la ţesere, în %; Ci – numărul de fire năvădite într-o celulă a spetei, în fire/celulă; (Ci =1; 2; 3; 4 ... 8 fire

în funcţie de fire, legătură şi desime); Nf – numărul de fire din fondul urzelii; lsp – lăţimea urzelii în spată, în cm; n – numărul de valori succesive Ci din raportul de năvădire în spată. Numărul adoptat al spetei pentru năvădire, Nsa, va fi cel mai apropiat număr normat al

spetei Nsn (tabelul IV.6.14), care satisface cerinţele tehnologice de realizare a lăţimii ţesăturii crude şi a celei finite.

Năvădirea în spată se poate face manual sau cu maşini de năvădit (de tras) în spată (ta-belul IV.6.15). Maşina de năvădit în spată poate folosi mai multe domenii de avans în funcţie de tipul constructiv şi de numărul spetei, ca de exemplu: 40–200; 210–300; 310–400 etc.

Page 204: Manualul inginerului textilist

1334 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

Tabelul IV.6.14

Numărul normat al spetelor, Nsn, cu variaţii din 1 în 1, pentru Nsn ≤ 200 şi din 5 în 5,

pentru Nsn > 200

Dimensiuni cu notaţii din fig. IV.6.8 şi IV.6.9 Dimensiuni cu notaţii din fig. IV.6.8 şi IV.6.9

Nsn, dinţi/10 cm

h, mm

b, mm

h1, mm

Nsn, dinţi/10 cm

h, mm

b, mm

h1, mm

1 2 3 4 1 2 3 4

Spete cositorite dublu spiral Spete cositorite cu şină

40–240

40–180 30–150 30–130 20–150 20–150 20–150 20–130 20–130 20–130

110

120 130 140 110 120 130 140 150 160

2,5

2,5 2,5 2,5 40 4,0 4,0 4,0 4,0 4,0

82

92 102 112 74 84 94 104 114 124

40–240

40–210 40–180 40–150 20–150 20–150 20–150 20–150 20–130 20–130

90 (100) 110 120 130 110 120 130 140 150 160

2,5

2,5 2,5 2,5 4,0 4,0 4,0 4,0 4,0 4,0

57(67)

77 87 97 74 84 94 104 114 124

Spete cositorite pentru covoare Spete cositorite din arc spiral (tip 1) sau cu şină (tip 2) pentru pluşuri

14–75 14–75 14–75 14–75 14–75 14–75 14–75

160 180 200 240 260 270 280

8,0 8,0 8,0 8,0 8,0 8,0 8,0

– – – – – – –

20–120 20–120 20–120 20–120 20–120 20–120 20–120 20–120 20–120

100 110 120 130 140 150 160 170 180

2,5; 4,0 2,5; 4,0 2,5; 4,0 2,5; 4,0 2,5; 4,0 2,5; 4,0 2,5; 4,0 2,5; 4,0 2,5; 4,0

62 72 82 92 102 112 122 132 142 Spete cositorite cu şină şi dublu spiral

141–200 40–140

120 130

2,5 2,5

76 84

Spete cositorite (inserare pneumatică)

20–150 20–150 20–150 20–150 20–150

90 100 110 120 130

4,0 4,0 4,0 4,0 4,0

48 58 68 78 88

Spete cositorite cu şina pentru pâslă

14–140 14–140 14–140

155 230 280

4,0 6,0 8,0

– – – Spată cositorită dublu spiral (inserare cu proiectil)

20–149 90 2,5 58

Page 205: Manualul inginerului textilist

Năvădirea 1335

În cazul schimbării pe maşina de ţesut a urzelilor cu aceleaşi caracteristici, se înclo-

cuiesc toate operaţiile de năvădire cu operaţia de înnodare a urzelilor cu maşini de înnodat (tabelul IV.6.16).

Tabelul IV.6.15

Performanţe tehnice ale maşinilor de năvădit în spată

Tipul maşinii Lăţimi de năvădire, mm

Viteza de năvădire,

trageri/min Fire năvădite Numărul spetei

Titan tip BE–PC (Danemarca)

1200–3900, multiplu de 300 80 Toate tipurile Ns < 300

Fischer-Poege tip CKD–AIR–yet sau tip WBE 83 (Germania)

– – Toate tipurile Ns < 380 la tip CKD, Ns < 240 la tip WBE

Knotex tip RS 1H PLUS (Germania) Până la 5400 – Toate tipurile 40–300

Tabelul IV.6.16

Performanţe tehnice ale maşinilor de înnodat urzeli

Tipul maşinii Domenii de utilizare Viteza de lucru Dotări speciale

Knotex Knot Control (Germania)

Orice tip de fir 600 noduri/min

Calculator cu montare a numărului de rapoarte. Dispozitiv de control al culorii şi al raportului. Dispozitiv de repetare a înnodării

Titan tip KM 2000 Electronic (Danemarca)

Orice tip de fir cu Nm = 0,5–450 400–600 noduri/min Calculator pentru control şi

conducere

Fischer-Poege tip PU–ELA (Germania)

Bumbac, lână, sintetice, amestecuri 60–600 noduri/min

Dispozitiv special pentru noduri. Dispozitiv de frânare a capetelor de fir

Stäubli tip Topomatic (Elveţia)

Orice tip de fir cu Tt = 0,8–500 tex 600 noduri/min

Dispozitiv pentru noduri simple şi duble. Contor de noduri

Zellweger-Uster tip Ustermatic 4 (Elveţia)

Fire filate şi sintetice cu Tt = 6–300 tex sau Tt = 10–1000 tex

600 noduri/min Dispozitiv pentru nod rotund, simplu sau dublu

Page 206: Manualul inginerului textilist

IV.7 CANETAREA FIRELOR

IV.7.1. Caracteristicile înfăşurării firului pe canete Caneta (fig. IV.7.1) este formatul textil cu fir de bătătură ce se introduce în suveica

maşinii de ţesut. Înfăşurarea firului pe canetă se face pe straturi conice sub formă de spire. Înfăşurarea rezultă prin combinarea rotaţiei canetei (3 000–12 000 rot/min) cu oscilarea cursorului pentru distribuţia spirelor pe înălţimea H a suprafeţei înfăşurării şi cu avansul cursorului (a straturilor), pentru realizarea lungimii necesare a canetei. La aceste mişcări principale se mai adaugă mişcarea de schimbare ciclică a poziţiei cursorului pentru înfăşurarea diferenţială. Înfăşurarea firului pe canetă (fig. IV.7.2) se caracterizează prin: numărul de spire în strat Ns, pasul şi desimea spirelor (h şi ns), înclinarea şi încrucişarea spirelor (α şi 2α ), grosimea şi desimea axială a straturilor (δa şi na), conicitatea suprafeţei, β, densitatea canetelor, ρ, saltul, sa şi ciclul de salt al cursorului xcs. Caracteristicile de înfăşurare ale firului pe canete se calculează cu următoarele relaţii [ ]60 :

;2

sin arcL

DD vb −=β (IV.7.1)

; sau 2 ; 2

t

stcs

k

cs

o

cs n

NnNnnN

nnN === (IV.7.2)

constant; şi 1 ; ==== ss

ss

s

s h nnN

hn

NLh (IV.7.3)

;cos tgarcD

β=α (IV.7.4)

constant; şi 1 ; =δ==δ= aa cs

a

aa

a

csa n

Ns

nsNn (IV.7.5)

;sin cos 10

5 βα

=ρ ast nnT (IV.7.6)

xcs = 0,5, la maşini de canetat cu salt după fiecare strat (maşini de canetat ţevi oarbe); xcs = 1, la maşini de canetat cu salt din două în două straturi (maşini tip Scalafhorst);

xcs = == Knn

sa

o constant la maşini de canetat cu salt după un număr constant de straturi

duble (maşina Hacoba-Totex): xcs= variabil, dependent de tensiunea şi fineţea firului (maşini de tip Schweiter).

Page 207: Manualul inginerului textilist

Canetarea firelor 1337

Fig. IV.7.1. Caneta şi elementele sale geometrice.

Fig. IV.7.2. Caracteristicile înfăşurării firului pe canetă.

În relaţiile anterioare s-au făcut şi următoarele notaţii specifice: nc, nk, nt – turaţia canetei, a camei cursorului şi a tamburului şănţuit, de distribuţie a

spirelor; Nst – numărul de spire ale canalului tamburului şănţuit pentru distribuţia spirelor

dintr-un strat; nc – frecvenţa de oscilare a firului (cursorului); Ncs – numărul de straturi depuse pe canetă între două salturi; sa – saltul axial al cursorului de distribuţie a spirelor; nsa – frecvenţa salturilor pe minut (turaţia organului de acţionare a mecanismului de salt). Caracteristicile de bază ale structurii canetelor sunt determinate de natura şi tipul firelor

(tabelul IV.7.1). Referitor la densitatea canetelor valoarea optimă a acesteia este cea la care numărul de ruperi la ţesere este minim (fig. IV.7.3). Densitatea canetelor se reglează prin tensionarea firului, pentru care se pot recomanda valorile din tabelul IV.7.2.

Fig. IV.7.3. Ruperi la ţesere în funcţie de densitatea canetelor.

Page 208: Manualul inginerului textilist

Tabelul IV.7.1 Caracteristicile de structură ale înfăşurării firului pe canete

Natura firelor Caracterizarea structurală

Ns β° Ls, mm ρ, g/cm3

Fire din bumbac pieptănat 8–12 15–19 45–50 50 tex 30 tex 19 tex 17 tex 15 tex Fire răsucite 0,54 0,56 0,57 0,58 0,59 0,55–0,62

Fire din bumbac cardat 8–12 15–19 45–50 0,45 0,48 0,50 0,52 0,54 0,55–0,58 Fire din celofibră 8–12 15–19 40–50 0,45–0,48, la fire peste 25 tex şi 0,47–0,50, la fire sub 25 tex

Fire din lână pieptănată 10–12 12–15 45–55 32 tex 22 tex 50 tex × 2 42 tex × 2 30 tex × 2 25 tex × 2 20 tex × 2 19 tex × 20,34 0,35 0,36 0,36 0,39 0,41 0,42 0,43

Fire din lână cardată 10–12 2–3 t.o

12–15 8–10

40–50 25–30

0,55–0,6 pe ţevi cu suport (ţ.s) 0,34–0,44 pe ţevi oarbe (ţ.o)

Fire tip liberiene 8–10 t.s 2–3 t.o

8–12 8–10

25–30 25–30

0,55–0,65 pe ţevi cu suport (ţ.s) 0,65–0,7 pe ţevi oarbe (ţ.o)

Fire filamentare 7–8 7–10 40–50 Viscoză 0,70–0,8

Acetat 0,65–0,75

Mătase 0,60–0,65

Poliamidice 0,70–0,85

Poliesterice 0,70–0,8

Tabelul IV.7.2

Tensiunea firelor în timpul canetării

Fire tip bumbac Fire tip lână Fire liberiene Fire filamentare Tt, tex T, cN Tt, tex T, cN T, cN Natura firului T, cN

50 (0,14–0,18) Sr Fire cardate 0,8 Tt; 0,1 Sr 0,08 Sr – la fire de iută (0,08–0,1) Sr – la fire rezistente(0,8–0,12) Sr – la fire de

rezistenţă medie (0,10–0,12) Sr – la fire fine

Viscoză (0,25–0,4) Td 30 (0,14–0,16) Sr Fire pieptănate Triacetat (0,3–0,4) Td 19 (0,12–0,16) Sr T = 1,2 Tt sau Acetat (0,2–0,35) Td 17 (0,12–0,15) Sr 30 20–30 Mătase naturală 0,33 Td 15 (0,12–0,14) Sr 22 15–25 Poliamidice (0,1–0,15) Td

Fire răsucite (0,16–0,18) Sr

42 tex × 2 55–60 Poliesterice (0,1–0,12) Td 25 tex × 2 30–40 Texturate (0,1–0,13) Td

fibre chimice 1,2 Tt Notaţii în tabel: Sr – sarcina de rupere a firului; T – tensiunea firului;

Tt şi Td – densitatea de lungime a firului, în tex şi denyer. 20 tex × 2 25–35

Fibre chimice 1,8 Tt 30 tex × 2 50–55

Page 209: Manualul inginerului textilist

Canetarea firelor 1339

IV.7.2. Legile de distribuţie a straturilor în corpul canetelor Distribuţia straturilor în corpul canetelor determină stabilitatea spirelor la desfăşurare şi

este dată de mişcarea de salt a cursorilor de distribuţie a spirelor. Fiecare strat are o anumită lungime L, iar două câte două straturi au drept punct comun punctul de întoarcere al cursorului. Distribuţia straturilor în corpul canetei, va fi exprimată prin distanţa y a punctului de întoarcere comun faţă de începutul canetei (fig. IV.7.4).

Fig. IV.7.4. Legi de distribuţie a straturilor în corpul canetelor cu ciclul de salt xcs = 1.

La maşinile de canetat cu ciclu de salt xcs = 0,5 (ţevi oarbe), fără înfăşurare diferenţială, legea de înaintare a cursorilor este dată de relaţia [ ]59 :

xh

Ty t sin cos 10

25 βα

= , (IV.7.7)

care reprezintă o dreaptă a cărei pantă depinde de fire şi tehnologia de canetare. La maşinile de canetat cu ciclul de salt xcs = 1 (maşini Schlafhorst) cu mecanisme de

înfăşurare diferenţială, distribuţia straturilor în corpul canetei este dată de ecuaţiile [68], [60]:

) (2 sin cos 10

25 ldl

td nxnx

hT

y −λ±βα

= , (IV.7.8)

pentru mişcarea liniară de diferenţiere a straturilor (fig. IV.7.4, a) şi

), 2cos1(2sin cos 10

215 xn

hT

y dt

d π−λ

+βα

= (IV.7.9)

la mişcare cosinusoidală de diferenţiere (fig. IV.7.4, b).

Page 210: Manualul inginerului textilist

1340 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

S-au folosit notaţii specifice:

λ – amplitudinea de diferenţiere (λ = 1–5 mm); nd1 – numărul de rotaţii al camei de diferenţiere în timpul depunerii a două straturi; n1 – numărul întreg cel mai apropiat de valoarea nd1x. La maşinile de canetat cu ciclu de salt xcs > 1, dar constant (Hacoba, Totex), cu mecanis-

me de diferenţiere a straturilor, distribuţia straturilor în corpul canetelor este dată de ecuaţiile:

a. Camă cu profil liniar de diferenţiere (fig. IV.7.5, a):

),(2 11 nxnsxxxy dics

rd −λ±⎟⎠

⎞⎜⎝

⎛−= (IV.7.10)

dacă sunt satisfăcute inecuaţiile de limitare a fazelor de salt:

ricscs

xxxxx

≤⎟⎟⎠

⎞⎜⎜⎝

⎛−≤ *0 ; (IV.7.11)

cscs

ri xxxxx ⎟

⎞⎜⎝

⎛−> şi

),(2 11* nxnxxx

xx

xssx

xxy drics

cssi

ii

csî −λ±−⎟

⎞⎜⎝

⎛−+⎟

⎞⎜⎝

⎛−= (IV.7.12)

dacă sunt satisfăcute inecuaţiile de limitare a fazelor de salt:

;ricscs

xxxxxx −⎟

⎞⎜⎝

⎛−>

cscscs

ri xxxxxx ≤⎟

⎞⎜⎝

⎛ −≤ * . (IV.7.13)

Fig. IV.7.5. Legi de distribuţie a straturilor în corpul canetelor cu ciclu de salt xcs > 1, dar constant.

Page 211: Manualul inginerului textilist

Canetarea firelor 1341

În relaţiile de mai înainte s-au făcut următoarele notaţii specifice:

x – partea zecimală a raportului csxx ;

x* – partea întreagă a raportului csxx ;

si – saltul cinematic al cursorului conform unui reglaj oarecare i; xri – numărul de straturi depuse în faza de repaus al mişcării de salt; xsi – numărul de straturi duble depuse în faza de salt al cursorului. b. Camă de diferenţiere cu profil cosinusoidal (fig. IV.7.5, b):

), 2cos1(2 1xnsx

xxy dics

î π−λ

+⎟⎠

⎞⎜⎝

⎛−= (IV.7.14)

dacă sunt satisfăcute inecuaţiile IV.7.11;

), 2cos1(2 1

* xnxxxxx

xssx

xxy drics

cssi

ii

csî π−

λ+⎥

⎤⎢⎣

⎡−⎟

⎞⎜⎝

⎛−+⎟

⎞⎜⎝

⎛−= (IV.7.15)

dacă sunt satisfăcute inecuaţiile IV.7.13. La maşinile de canetat cu xcs dependent de tensiunea şi fineţea firelor (Schweiter), legile

de înaintare ale cursorilor, respectiv de distribuţie ale straturilor în corpul canetelor, sunt date de ecuaţiile [60], [69]:

a. Pentru fazele de repaus ale mişcării de salt:

),)(( 11 nxnLLsxxxy dmpMsctcs

r −−+⎟⎠

⎞⎜⎝

⎛−= (IV.7.16)

dacă 1−∆+⎟⎠

⎞⎜⎝

⎛−≥ ntcs

tcsxxx

xxx

şi ncsntcstcs

n xxxxxxx +∆≤⎟

⎞⎜⎝

⎛ −≤∆ −− 11 * , (IV.7.17)

respectiv )()(1 11 nxnLLsxxxy dmMctcs

r −−+⎟⎠

⎞⎜⎝

⎛−−= , (IV.7.18)

dacă tcstcs

xxxxx ⎟

⎞⎜⎝

⎛−>

şi . *0 cncsrcstcstcs

sxxxxxxx

−−≤⎟⎠

⎞⎜⎝

⎛−≤ (IV.7.19)

b. Pentru fazele de salt ale cursorilor de distribuţie ai spirelor:

),)((

1

11

*

nxnLL

xxxxxxx

xssx

xxy

dmsMs

tcstcs

ncsrcsscsc

cc

tcsî

−−+

+⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛−−−−+⎟

⎞⎜⎝

⎛−−=

(IV.7.20)

dacă scncsrcstcstcs

xxxxxxxx −−+⎟

⎞⎜⎝

⎛−> * (IV.7.21)

Page 212: Manualul inginerului textilist

1342 MANUALUL INGINERULUI TEXTILIST – ŢESĂTORIE

şi sctcstcs

xxxxx

≤⎟⎠

⎞⎜⎝

⎛ − * .

În sistemul celor trei ecuaţii, cu inecuaţiile corespunzătoare de limitare, s-au folosit următoarele caracteristici de înfăşurare specifice:

– ciclul teoretic de salt, xtcs, ce reprezintă numărul teoretic de straturi duble după care s-a dat comanda de salt, şi care se calculează cu relaţia [ ]69 :

st

ctcs nT

sx 2

sin cos 105 βαρ= ; (IV.7.22)

– ciclul necesar de salt, xncs, ce reprezintă numărul necesar de straturi duble a fi depuse pe canetă pentru a primi comanda de salt cursorul de distribuţie al spirelor şi se calculează cu relaţia:

canst

cncs xN

nTsx )1(

2 sin cos 10

1

5

−−−βαρ

= ; (IV.7.23)

– ciclul real de salt, xrcs, reprezintă numărul real de straturi duble depuse între două salturi ale cursorului, şi se calculează cu relaţia:

carnrcs xnx *= , (IV.7.24)

unde: *rnn este cel mai mic număr întreg ce asigură îndeplinirea condiţiei ncsrcs xx ≥ ;

– saltul cinematic, sc, al cursorului de distribuţie a spirelor şi care se calculează după schema cinematică a maşinii;

– numărul de straturi suplimentare, 1−∆ nx , depuse pe canetă în ciclul n – 1 de salt, între momentul realizării valorii xtcs şi cel al realizării efective a saltului. Se calculează cu relaţia:

cann xNx )1( 11 −− −=∆ , (IV.7.25)

unde 1−nN este partea zecimală a expresiei:

⎟⎟⎠

⎞⎜⎜⎝

⎛−=− x

xx

xxN

tcsca

tcsn 1 , (IV.7.26)

iar xca este numărul de straturi depuse între două cicluri de acţionare ale mecanismului de salt;

x – partea zecimală a raportului tcsxx ;

x* – partea întreagă a raportului tcsxx ;

LMs şi Lms – lungimea maximă şi minimă a straturilor depuse pe canetă, ca urmare a lungirii şi scurtării acestora de către mecanismul de diferenţiere a distribuţiei punctelor de întoarcere şi a straturilor;

ndl – numărul de rotaţii ale camei de diferenţiere în timpul înfăşurării a două straturi; n1 – numărul întreg cel mai apropiat de valoarea ndlx; – numărul de straturi depuse în timpul saltului, xsc, care se calculează în funcţie de

schema cinematică a maşinii. Ecuaţiile ce redau distribuţia straturilor în corpul canetei (distribuţia punctelor de

întoarcere) permit construirea curbelor pe care se distribuie aceste puncte (fig. IV.7.6) şi

Page 213: Manualul inginerului textilist

Canetarea firelor 1343

analiza obiectivă a eficienţei mecanismelor de diferenţiere cu care sunt dotate maşinile pentru asigurarea stabilităţii spirelor şi ruperi cât mai puţine la desfăşurare.

Fig. IV.7.6. Legea de distribuţie a straturilor în corpul canetelor cu ciclu de salt xcs dependent de tensiunea şi fineţea firului.

Page 214: Manualul inginerului textilist

Lista simbolurilor utilizate la capitolele IV.1–IV.7

A – coeficient de proporţionalitate dintre diametrul firului şi densitatea de lungime a acestuia,

în tex; a – acceleraţia firului la deplasarea peste conducători de fir; α – unghiul de înclinare al spirelor pe suprafaţa de înfăşurare (desfăşurare) a formatelor

(corpurilor) textile; 2α – unghi de încrucişare al spirelor; αm – coeficient de torsiune metric la răsucire; αt – coeficient de torsiune pentru tex la răsucire; β – unghiul dintre generatoarea suprafeţei de înfăşurare şi axa corpului textil rezultat (bobină,

canetă etc.); C – coeficient de proporţionalitate pentru calculul diametrului firului în raport cu fineţea

acestuia, în Nm; Cs – coeficient de scurtare la răsucire; d – diametrul firului; δr – grosimea radială a stratului de spire înfăşurate pe bobine, suluri etc.; δa – grosimea axială a stratului de spire înfăşurate pe canete, ţevi etc.; Ff – forţa de frânare a unui corp oarecare (fir, vârtelniţă, bobină, sul, tambur etc.) g – acceleraţia gravitaţională; h – pasul spirelor înfăşurate pe corpuri (formate) textile (bobine, ţevi, canete etc.); H – curba de oscilare a cursorului pentru distribuţia spirelor pe suprafaţa de desfăşurare; If – încărcarea urzelii cu flotă la ieşirea din baia de încleiere, în %; Is – încărcarea urzelii cu substanţe active de încleiere, după uscare şi înfăşurare, în %; Its – încărcarea tehnologică recomandată a urzelii cu substanţe de încleiere, după uscare şi

înfăşurare, în %; Ips – încărcarea practică (efectivă) a urzelii cu substanţe de încleiere, după uscare şi înfă-

şurare, în %; Ia – încărcarea urzelii cu apă la ieşirea din baia de încleiere, în %; J – moment de inerţie al unui corp textil (bobină, sul etc.); K – concentraţia flotei de încleiere în substanţe active uscate la umiditatea normată; Kt – concentraţia tehnologică recomandată a flotei de încleiere cu substanţe active uscate la

umiditatea normată; Kp – concentraţia practică a flotei de încleiere în substanţe active uscate la umiditatea normată; Ku – coeficient de umplere al unui corp textil (bobină, sul, canetă etc.); Ls – lungimea stratului de spire înfăşurate (desfăşurate) pe un corp textil (bobină, canetă etc.); LMs – lungimea maximă a stratului de spire; Lms – lungimea minimă a stratului de spire; µ – coeficient de frecare (fir-suprafaţa de desfăşurare; fir-fir; fir-conducător de fir; bandă-

roată de frânare; etc.); Nm – numărul metric al firului;

Page 215: Manualul inginerului textilist

Lista simbolurilor 1345

Nt – numărul total de spire în urzeală (urzeli preliminare, urzeli finale etc.); Ns – numărul de spire dintr-un strat la înfăşurare sau desfăşurare; Nst – numărul de spire ale canalului tamburului şănţuit de distribuţie a spirelor unui strat pe

suprafaţa de înfăşurare; ns – desimea spirelor din strat; nr – desimea radială a straturilor; na – desimea axială a straturilor; Pu – desimea urzelii (urzeli preliminare, urzeli din benzi, urzeli de ţesere etc.); R – raza unui corp oarecare; Rx – raza la un moment dat, de înfăşurare, sau de desfăşurare, pe un corp textil (bobină, sul,

ţeavă, canetă etc.); Rxi – raza iniţială de înfăşurare sau de desfăşurare după caz; Rxf – raza finală de înfăşurare sau de desfăşurare, după caz; Rf – raza de frânare, pe roata de frână, cu bandă sau sabot de frânare; Rfs, Rft, Rfm – raza de frânare a sulului, a tamburului, a cilindrului măsurător la urzire; ρ – densitatea de înfăşurare a firelor pe corpuri textile (bobine, ţevi, suluri, canete etc.); ρf – densitatea firului; ρr – sarcina de rupere a firului; sa – saltul axial al stratului (cursorului de distribuţie a spirelor în strat); S – scurtarea firului la răsucire; T – tensiunea firului la prelucrare în diverse puncte ale traseului tehnologic de pe maşini şi

faze tehnologice; T – temperatură; Tt – densitatea de lungime a firului, în tex; Td – densitatea de lungime a firului în den; v – viteza firului la prelucrare pe diferite maşini (vb – la bobine, vu – la urzire etc.).