19
Nano Israel 2016 Tal Ellenbogen Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University website: www.eng.tau.ac.il/~tal/neolab Manipulation of Harmonics and Hybrid Light- Matter States with Optical Metasurfaces p

Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

  • Upload
    hatu

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Tal Ellenbogen

Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University

website: www.eng.tau.ac.il/~tal/neolab

Manipulation of Harmonics and Hybrid Light-Matter States with Optical Metasurfaces

p

Page 2: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Metasurfaces New Physics and Applications

Opt. Lett. 27, 285-287 (2002)

Opt. Lett. 29, 238-240 (2004)

Opt. Commun. 251, 306 (2005)

Space variant sub-wavelength gratings

Spinoptical Metamaterials

Science 340 (2013)

Pancharatnam phase

Science 334

(2011)

Science 335

(2012)

Generalized Snell’s Law

90 0

Ellenbogen et. al Nano Lett. 12, 1026-1031 (2012)

Chromatic Plasmonic Polarizers

Broadband Holography

Yifat et. al Nano Lett. 14, 2485-2490 (2014)

Hasman’s group

Page 3: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Plasmon

h e

Exciton-plasmon hybridization I II Structural quadratic Nonlinearity

(2)

Exploring active metasurfaces

Page 4: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Nonlinear Metamaterials – Enhanced Nonlinearity and Functionality

O. Wolf, et al., Nat. Commun. 6, 7667 (2015)

J. Lee, et al., Nature 511, 65 (2014)

Resonant (2) 3-5 orders of magnitude

larger nonlinearity

Shape

based

quadratic

nonlinearity

A. Salomon, M. Zielinski, R. Kolkowski, J.

Zyss, and Y. Prior, J. Phys. Chem. C 117

(2013)

M. Kauranen and A. V. Zayats, Nat. Photonics 6 (2012)

Kolkowski et al. ACS Photonics 2 (2015)

Functionality

Almeida et al. Nat. Commun. 7

(2015)

Page 5: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Symmetry considerations Quadratic Optical Nonlinearity

...][ )3()2()1(

0 lkjijklkjijkjiji EEEEEEP

)()( EPEP Inversion symmetry (even)=0

Breaking symmetry

Bulk Surface/Shape

Page 6: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

)2(

eff

Experimental Results – Nonlinear Diffraction from Metamaterial based Photonic Crystal

SH 600 nm

FH 1200nm

N. Segal, S. Keren-Zur, N. Hendler and T. Ellenbogen, Nature Photon. 9, 180-184 (2015)

Gold 30 nm Ti 3 nm ITO Glass

p

Page 7: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

All-Optical

Scanning

2sin 1 mSH

SH=650nm

Experimental Results – NLMPC

Nonlinear

diffraction

from

2D Crystals

Triangular Square Penrose (Quasi-periodic)

0

50

100

150C

0

20

20

1 1.5 20.50

m=3 m=1

m=1m=3

(mm

)(m

m)

enha

ncem

ent

20

20

0

D

E

200 400 600 800 1000 1200 1400 1600

50

100

150

200

B Z=0 mm

Z=1 mm

A

Z (mm)

Simulated

Measured

200nm

0

50

100

150C

0

20

20

1 1.5 20.50

m=3 m=1

m=1m=3

(mm

)(m

m)

enha

ncem

ent

20

20

0

D

E

200 400 600 800 1000 1200 1400 1600

50

100

150

200

B Z=0 mm

Z=1 mm

A

Z (mm)

Simulated

Measured

200nmNonlinear

Focusing of

SH

0

50

100

150C

0

20

20

1 1.5 20.50

m=3 m=1

m=1m=3

(mm

)(m

m)

en

ha

nce

me

nt

20

20

0

D

E

200 400 600 800 1000 1200 1400 1600

50

100

150

200

B Z=0 mm

Z=1 mm

A

Z (mm)

Simulated

Measured

200nm

Nature Photon. 9,

180-184 (2015)

Page 8: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

kx ky

+2𝜋

Λ -

2𝜋

Λ SH660nm

Experimental

+ℏ -ℏ

Experimental

𝜒𝑒𝑓𝑓2

𝑥, 𝑦 = 𝜒𝑆𝑅𝑅(2)

𝑠𝑖𝑔𝑛 𝑐𝑜𝑠2𝜋𝑥

𝛬− 𝜑 𝑥, 𝑦 − 𝑐𝑜𝑠 𝜋𝑞 𝑥, 𝑦

Beam shaping with metasurface based nonlinear computer generated holograms

φ x, y − encodes phase q x, y - encodes the amplitude

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Opt. Lett. 37, 2136 (2012)

λFF=1320

nm

Airy beam Vortex Beam Hologram

Airy Beam Hologram

+𝜒𝑒𝑓𝑓2

−𝜒𝑒𝑓𝑓2

𝜒𝑒𝑓𝑓2

𝑥, 𝜙 = 𝜒𝑆𝑅𝑅(2)

𝑠𝑖𝑔𝑛 cos2𝜋

Λ𝑥 − 𝑙𝜙

𝜒𝑒𝑓𝑓2

𝑥, 𝑦 = 𝜒𝑆𝑅𝑅(2)

𝑠𝑖𝑔𝑛 cos2𝜋

Λ𝑥 − 𝑓𝑐𝑦3

Airy Beam Hologram

Vortex Beam Hologram

S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, ACS Photonics 3, 117-123 (2016)

Page 9: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Perfect beam shaping metasurfaces HG01

(𝑖𝑖) 𝐸𝐹𝐹 𝑖 𝜒𝑟𝑒𝑙2

Near field

SH

Far field

SH

Bin

ary

P

erf

ect

𝐿𝑦/𝐿𝑒𝑓𝑓 0.1 0.2

0.5

1

𝐿𝑒𝑓𝑓

𝐿𝑦

𝜒𝑟

𝑒𝑙

2

𝜒𝑟

𝑒𝑙

2 1

-1

K. O’Brien, H. Suchowski, et. al., Nat. Mater. 14, 379 (2015).

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

bi

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160 af

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

bf

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Near field

SH

Far field

SH

Experiment

Bin

ary

P

erf

ect

S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, ACS Photonics 3, 117-123 (2016)

Page 10: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

𝛾0 𝛾𝑐𝑎𝑣𝑖𝑡𝑦

𝜔𝑐𝑎𝑣𝑖𝑡𝑦 𝜔0 𝑔

𝑈𝐿𝑃,𝑈𝑃 =1

2[𝑈0 + 𝑈𝑐𝑎𝑣𝑖𝑡𝑦 − 𝑖

𝛾0

2+

𝛾𝑐𝑎𝑣𝑖𝑡𝑦

2± 4𝑔2 + 𝑈0 − 𝑈𝑐𝑎𝑣𝑖𝑡𝑦 − 𝑖

𝛾0

2−

𝛾𝑐𝑎𝑣𝑖𝑡𝑦

2

2

]

Plasmon

h e

Exciton Plasmon as Coupled Oscillators

𝑈𝑐𝑎𝑣𝑖𝑡𝑦 − 𝑖𝛾𝑐𝑎𝑣𝑖𝑡𝑦

2𝑔

𝑔 𝑈0 − 𝑖𝛾0

2

𝛼𝛽 = 𝑈𝐿𝑃,𝑈𝑃

𝛼𝛽

Aluminum

- - ++

Page 11: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Daskalakis, et al. Nat. Mater. 13 (2014) Vasa, P. et al. ACS Nano 4 (2010)

Fundamental Science and Applications

J. Hutchison, D. O'Carroll, T. Schwartz, et al., Angew. Chem. Int. Ed. 50 (2011).

T. Schwartz, et al., Phys. Rev. Lett. 106 (2011).

J. Hutchison, T. Schwartz, et al. Angew. Chem. Int. Ed. 51 (2012).

T. Schwartz et al., ChemPhysChem 14 (2013).

Schneider,…, Reitzenstein, et al.,

Nature 497 (2013)

Page 12: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Why use Aluminum for Plasmonics

Knight, M et al. ACS Nano 8 (2014)

2-3nm stable oxide

Support LSPs from visible to UV

frequencies.

Durable due to the stable oxide layer.

Cheap and abundant.

Was not used before for X-LSP.

Page 13: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Large transition dipole

moment.

Narrow absorbance and

emission spectra.

The excitation is delocalized.

Molecular J-Aggregates 180nm

200 , 150 , 40x ynm nm W nm

Aluminum Polaritonic Metasurface

E. Eizner, et al., Nano Letters

15, 6215-6221(2015).

Page 14: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Upper X-LSP

Lower X-LSP

80 100 120 140 160 180 2000

0.20.40.60.8

1

Diameter (nm)

Fra

ction

80 100 120 140 160 180 2000

0.20.40.60.8

1

Diameter (nm)

Fra

ction

LSP

Exciton

LSP

Exciton

Upper X-LSP

Lower X-LSP

Probing Polaritons by Nanodisks transmission

80 100 120 140 160 180 200

1.8

2.2

2.6

3

Diameter (nm)

En

erg

y (

eV

)

Upper X-LSP

Lower X-LSP

ℏΩ𝑅 = 0.4e𝑉

𝑈𝐿𝑃,𝑈𝑃 =1

2[𝑈𝑥 + 𝑓 ⋅ 𝑈𝐿𝑆𝑃 ± 4𝑔2 + 𝑈𝑋 − 𝑓 ⋅ 𝑈𝐿𝑆𝑃

2]

Bare Covered

Page 15: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

L=130nm

𝐸/𝐸0

80 100 120 140 160 180 2001.5

2

2.5

3

Length (nm)

Ene

rgy (

eV

)Upper X-LSP

Lower X-LSP

ℏΩ𝑅 = 0.4e𝑉

Nanorods transmission –Polarized Polaritons

Bare Covered Covered

Page 16: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

400 500 600 7001

1.2

1.4

1.6

1.81.8

400 500 600 7000

0.2

0.4

0.6

400 500 600 7001

1.2

1.4

1.6

1.8

22

400 500 600 7000

0.2

0.4

0.6

400 500 600 7001

1.2

1.4

1.6

1.81.8

400 500 600 7000

0.2

0.4

0.6

400 500 600 7001

1.2

1.4

1.6

1.8

400 500 600 7000

0.2

0.4

0.6

400 500 600 7001

1.2

1.4

1.6

1.8

400 500 600 7000

0.2

0.4

Diameter (nm)

75 115 155 205

85 125 165 E

mis

sio

n E

nh

an

cem

ent

D=105nm

Wavelength (nm)

D=140nm

D=125nm

D=155nm D=205nm

Wavelength (nm) Wavelength (nm)

Wavelength (nm) Wavelength (nm)

Em

issio

n E

nh

an

cem

ent

1−

𝑇 𝑛𝑜

𝑟𝑚

Em

issio

n E

nh

an

cem

ent

Em

issio

n E

nh

an

cem

ent

Em

issio

n E

nh

an

cem

ent

1−

𝑇 𝑛𝑜

𝑟𝑚

1−

𝑇 𝑛𝑜

𝑟𝑚

1

−𝑇 𝑛

𝑜𝑟

𝑚

1−

𝑇 𝑛𝑜

𝑟𝑚

Emission pulling due to near field enhancement and increase of density of states

E. Eizner, O. Avayu, R. Ditcovski, T. Ellenbogen, Nano Letters 15, 6215-6221(2015).

Page 17: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Sneak Peek to Another Story

Page 18: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Plasmon

h e

Exciton-plasmon hybridization I II Structural quadratic Nonlinearity

(2)

Enhanced nonlinearity

Easy integration

Perfect engineering of nonlinearity

Functional optical materials:

Nonlinear photonic crystals, Perfect

beam shaping, SFG and DFG

Aluminum nanoantennas

excellent platform for the

formation of hybrid exciton-

LSPs.

Manipulate the polarization of

the hybrid states and to confine

their mode volumes.

We observe enhancement of

the emission

Summary

Page 19: Manipulation of Harmonics and Hybrid Light- Matter … · Nano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active metasurfaces

Nano Israel 2016

Acknowledgments

website: www.eng.tau.ac.il/~tal/neolab

Ran Ditcovski

Elad Eizner

Ori Avayu

Shay Keren-Zur

Sharon Karepov

Itay Langstadter

Lior Michaeli

Barak Gilboa

Denis Karpov

Funding

NEO LAB TEAM: