Click here to load reader

Manipulation of Harmonics and Hybrid Light- Matter · PDF fileNano Israel 2016 Plasmon h e I II Exciton-plasmon hybridizationStructural quadratic Nonlinearity (2) Exploring active

  • View
    215

  • Download
    0

Embed Size (px)

Text of Manipulation of Harmonics and Hybrid Light- Matter · PDF fileNano Israel 2016 Plasmon h e I...

  • Nano Israel 2016

    Tal Ellenbogen

    Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University

    website: www.eng.tau.ac.il/~tal/neolab

    Manipulation of Harmonics and Hybrid Light-Matter States with Optical Metasurfaces

    p

    http://www.eng.tau.ac.il/~tal/neolab
  • Nano Israel 2016

    Metasurfaces New Physics and Applications

    Opt. Lett. 27, 285-287 (2002)

    Opt. Lett. 29, 238-240 (2004)

    Opt. Commun. 251, 306 (2005)

    Space variant sub-wavelength gratings

    Spinoptical Metamaterials

    Science 340 (2013)

    Pancharatnam phase

    Science 334

    (2011)

    Science 335

    (2012)

    Generalized Snells Law

    90 0

    Ellenbogen et. al Nano Lett. 12, 1026-1031 (2012)

    Chromatic Plasmonic Polarizers

    Broadband Holography

    Yifat et. al Nano Lett. 14, 2485-2490 (2014)

    Hasmans group

  • Nano Israel 2016

    Plasmon

    h e

    Exciton-plasmon hybridization I II Structural quadratic Nonlinearity

    (2)

    Exploring active metasurfaces

  • Nano Israel 2016

    Nonlinear Metamaterials Enhanced Nonlinearity and Functionality

    O. Wolf, et al., Nat. Commun. 6, 7667 (2015)

    J. Lee, et al., Nature 511, 65 (2014)

    Resonant (2) 3-5 orders of magnitude

    larger nonlinearity

    Shape

    based

    quadratic

    nonlinearity

    A. Salomon, M. Zielinski, R. Kolkowski, J.

    Zyss, and Y. Prior, J. Phys. Chem. C 117

    (2013)

    M. Kauranen and A. V. Zayats, Nat. Photonics 6 (2012)

    Kolkowski et al. ACS Photonics 2 (2015)

    Functionality

    Almeida et al. Nat. Commun. 7

    (2015)

  • Nano Israel 2016

    Symmetry considerations Quadratic Optical Nonlinearity

    ...][ )3()2()1(0 lkjijklkjijkjiji EEEEEEP

    )()( EPEP Inversion symmetry (even)=0

    Breaking symmetry

    Bulk Surface/Shape

  • Nano Israel 2016

    )2(

    eff

    Experimental Results Nonlinear Diffraction from Metamaterial based Photonic Crystal

    SH 600 nm

    FH 1200nm

    N. Segal, S. Keren-Zur, N. Hendler and T. Ellenbogen, Nature Photon. 9, 180-184 (2015)

    Gold 30 nm Ti 3 nm ITO Glass

    p

  • Nano Israel 2016

    All-Optical

    Scanning

    2sin 1 mSH

    SH=650nm

    Experimental Results NLMPC

    Nonlinear

    diffraction

    from

    2D Crystals

    Triangular Square Penrose (Quasi-periodic)

    0

    50

    100

    150C

    0

    20

    20

    1 1.5 20.50

    m=3 m=1

    m=1m=3

    (mm

    )(m

    m)

    enha

    ncem

    ent

    20

    20

    0

    D

    E

    200 400 600 800 1000 1200 1400 1600

    50

    100

    150

    200

    B Z=0 mm

    Z=1 mm

    A

    Z (mm)

    Simulated

    Measured

    200nm

    0

    50

    100

    150C

    0

    20

    20

    1 1.5 20.50

    m=3 m=1

    m=1m=3

    (mm

    )(m

    m)

    enha

    ncem

    ent

    20

    20

    0

    D

    E

    200 400 600 800 1000 1200 1400 1600

    50

    100

    150

    200

    B Z=0 mm

    Z=1 mm

    A

    Z (mm)

    Simulated

    Measured

    200nmNonlinear

    Focusing of

    SH

    0

    50

    100

    150C

    0

    20

    20

    1 1.5 20.50

    m=3 m=1

    m=1m=3

    (mm

    )(m

    m)

    en

    ha

    nce

    me

    nt

    20

    20

    0

    D

    E

    200 400 600 800 1000 1200 1400 1600

    50

    100

    150

    200

    B Z=0 mm

    Z=1 mm

    A

    Z (mm)

    Simulated

    Measured

    200nm

    Nature Photon. 9,

    180-184 (2015)

  • Nano Israel 2016

    kx ky

    +2

    -

    2

    SH660nm

    Experimental

    + -

    Experimental

    2

    , = (2)

    2

    , ,

    Beam shaping with metasurface based nonlinear computer generated holograms

    x, y encodes phase q x, y - encodes the amplitude

    A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Opt. Lett. 37, 2136 (2012)

    FF=1320

    nm

    Airy beam Vortex Beam Hologram

    Airy Beam Hologram

    +2

    2

    2

    , = (2)

    cos2

    2

    , = (2)

    cos2

    3

    Airy Beam Hologram

    Vortex Beam Hologram

    S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, ACS Photonics 3, 117-123 (2016)

  • Nano Israel 2016

    Perfect beam shaping metasurfaces HG01

    () 2

    Near field

    SH

    Far field

    SH

    Bin

    ary

    P

    erf

    ect

    / 0.1 0.2

    0.5

    1

    2

    2 1

    -1

    K. OBrien, H. Suchowski, et. al., Nat. Mater. 14, 379 (2015).

    20 40 60 80 100 120 140 160

    20

    40

    60

    80

    100

    120

    140

    160

    bi

    20 40 60 80 100 120 140 160

    20

    40

    60

    80

    100

    120

    140

    160 af

    10 20 30 40 50 60 70 80 90 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    bf

    10 20 30 40 50 60 70 80 90 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Near field

    SH

    Far field

    SH

    Experiment

    Bin

    ary

    P

    erf

    ect

    S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, ACS Photonics 3, 117-123 (2016)

  • Nano Israel 2016

    0

    0

    , =1

    2[0 +

    02

    +

    2 42 + 0

    02

    2

    2

    ]

    Plasmon

    h e

    Exciton Plasmon as Coupled Oscillators

    2

    0 02

    = ,

    Aluminum

    - - ++

  • Nano Israel 2016

    Daskalakis, et al. Nat. Mater. 13 (2014) Vasa, P. et al. ACS Nano 4 (2010)

    Fundamental Science and Applications

    J. Hutchison, D. O'Carroll, T. Schwartz, et al., Angew. Chem. Int. Ed. 50 (2011).

    T. Schwartz, et al., Phys. Rev. Lett. 106 (2011).

    J. Hutchison, T. Schwartz, et al. Angew. Chem. Int. Ed. 51 (2012).

    T. Schwartz et al., ChemPhysChem 14 (2013).

    Schneider,, Reitzenstein, et al.,

    Nature 497 (2013)

  • Nano Israel 2016

    Why use Aluminum for Plasmonics

    Knight, M et al. ACS Nano 8 (2014)

    2-3nm stable oxide

    Support LSPs from visible to UV

    frequencies.

    Durable due to the stable oxide layer.

    Cheap and abundant.

    Was not used before for X-LSP.

  • Nano Israel 2016

    Large transition dipole

    moment.

    Narrow absorbance and

    emission spectra.

    The excitation is delocalized.

    Molecular J-Aggregates 180nm

    200 , 150 , 40x ynm nm W nm

    Aluminum Polaritonic Metasurface

    E. Eizner, et al., Nano Letters

    15, 6215-6221(2015).

  • Nano Israel 2016

    Upper X-LSP

    Lower X-LSP

    80 100 120 140 160 180 2000

    0.20.40.60.8

    1

    Diameter (nm)

    Fra

    ction

    80 100 120 140 160 180 2000

    0.20.40.60.8

    1

    Diameter (nm)

    Fra

    ction

    LSP

    Exciton

    LSP

    Exciton

    Upper X-LSP

    Lower X-LSP

    Probing Polaritons by Nanodisks transmission

    80 100 120 140 160 180 200

    1.8

    2.2

    2.6

    3

    Diameter (nm)

    En

    erg

    y (

    eV

    )

    Upper X-LSP

    Lower X-LSP

    = 0.4e

    , =1

    2[ + 4

    2 + 2]

    Bare Covered

  • Nano Israel 2016

    L=130nm

    /0

    80 100 120 140 160 180 2001.5

    2

    2.5

    3

    Length (nm)

    Ene

    rgy (

    eV

    )Upper X-LSP

    Lower X-LSP

    = 0.4e

    Nanorods transmission Polarized Polaritons

    Bare Covered Covered

  • Nano Israel 2016

    400 500 600 7001

    1.2

    1.4

    1.6

    1.81.8

    400 500 600 7000

    0.2

    0.4

    0.6

    400 500 600 7001

    1.2

    1.4

    1.6

    1.8

    22

    400 500 600 7000

    0.2

    0.4

    0.6

    400 500 600 7001

    1.2

    1.4

    1.6

    1.81.8

    400 500 600 7000

    0.2

    0.4

    0.6

    400 500 600 7001

    1.2

    1.4

    1.6

    1.8

    400 500 600 7000

    0.2

    0.4

    0.6

    400 500 600 7001

    1.2

    1.4

    1.6

    1.8

    400 500 600 7000

    0.2

    0.4

    Diameter (nm)

    75 115 155 205

    85 125 165 E

    mis

    sio

    n E

    nh

    an

    cem

    ent

    D=105nm

    Wavelength (nm)

    D=140nm

    D=125nm

    D=155nm D=205nm

    Wavelength (nm) Wavelength (nm)

    Wavelength (nm) Wavelength (nm)

    Em

    issio

    n E

    nh

    an

    cem

    ent

    1

    Em

    issio

    n E

    nh

    an

    cem

    ent

    Em

    issio

    n E

    nh

    an

    cem

    ent

    Em

    issio

    n E

    nh

    an

    cem

    ent

    1

    1

    1

    1

    Emission pulling due to near field enhancement and increase of density of states

    E. Eizner, O. Avayu, R. Ditcovski, T. Ellenbogen, Nano Letters 15, 6215-6221(2015).

  • Nano Israel 2016

    Sneak Peek to Another Story

  • Nano Israel 2016

    Plasmon

    h e

    Exciton-plasmon hybridization I II Structural quadratic Nonlinearity

    (2)

    Enhanced nonlinearity

    Easy integration

    Perfect engineering of nonlinearity

    Functional optical materials:

    Nonlinear photonic crystals, Perfect

    beam shaping, SFG and DFG

    Aluminum nanoantennas

    excellent p

Search related