31
Making the Most out of Energy Technologies at Value Prof. Marija Ilić [email protected] Electric Energy Systems Group (EESG) http://www.eesg.ece.cmu.edu/ , Director SRC Smart Grid Research Center (SGRC) http://www.src.org/program/eri/ , Director New Electricity Transmission Software Solutions (NETSS), Inc. Founder IEE-EPC Talk November 8 2012

Making the Most out of Energy Technologies at Value

  • Upload
    aimon

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

Making the Most out of Energy Technologies at Value. Prof. Marija Ilić [email protected] Electric Energy Systems Group (EESG) http://www.eesg.ece.cmu.edu/ , Director SRC Smart Grid Research Center (SGRC) http://www.src.org/program/eri/ , Director - PowerPoint PPT Presentation

Citation preview

Page 1: Making the Most out of Energy Technologies  at Value

Making the Most out of Energy Technologies at Value

Prof. Marija Ilić[email protected]

Electric Energy Systems Group (EESG) http://www.eesg.ece.cmu.edu/, DirectorSRC Smart Grid Research Center (SGRC)

http://www.src.org/program/eri/, DirectorNew Electricity Transmission Software Solutions (NETSS), Inc.

Founder

IEE-EPC Talk November 8 2012

Page 2: Making the Most out of Energy Technologies  at Value

2

OutlineDesigning and operating low-cost green electric energy

systems –possible problem statement (Smart Grid and Ostrom sustainable SES)

Making the most out of energy technologies at value [8]-industry operations and planning: the way it was (underlying assumptions and major hidden inefficiencies)- estimates of possible efficiency enhancements (short- and long-term)-possible changes in operations and planning to enhance efficiency (interactive planning; IT-enabled corrective resource management; the need for next generation software)

Page 3: Making the Most out of Energy Technologies  at Value

Possible problem statement - Coarse modeling of Socio-Ecological Systems (using SES interaction variables) [6]

Page 4: Making the Most out of Energy Technologies  at Value

“Smart Grid” electric power grid and IT for sustainable energy SES [2,5]

Energy SES

• Resource system (RS)

• Generation (RUs)

• Electric Energy Users (Us)

Man-made Grid

• Physical network connecting energy generation and consumers

• Needed to implement interactions

Man-made ICT

• Sensors• Communications• Operations• Decisions and

control• Protection

Page 5: Making the Most out of Energy Technologies  at Value

Future Electric Energy Systems [1]

Electro-mechanical Devices (Generators)

Energy Sources

Load(Converts Electricity into different forms of work)

Transmission Network

Electro-mechanical

Device

Photo-voltaic Device

Energy Sources

Demand Respons

ePHEVs

Page 6: Making the Most out of Energy Technologies  at Value

An illustrative future electric grid [2]

Page 7: Making the Most out of Energy Technologies  at Value

Transformational change in metrics of future energy systems [2] Today’s Power Grid

(centralized objective subject to many constraints (externalities)

``Smart Grid”(multi-layered interactive

coordination of objectives)Deliver supply to meet given demand Deliver power to support supply and demand

schedules in which both supply and demand have costs assigned

Deliver power assuming a predefined tariff Deliver electricity at QoS determined by the customers willingness to pay

Deliver power subject to predefined CO2 constraint

Deliver power defined by users’ willingness to pay for CO2

Deliver supply and demand subject to transmission congestion

Schedule supply, demand and transmission capacity (supply, demand and transmission costs assigned); transmission at value

Use storage to balance fast varying supply and demand

Build storage according to customers willingness to pay for being connected to a stable grid

Build new transmission lines for forecast demand

Build new transmission lines to serve customers according to their ex ante (longer-term) contracts for service

Page 8: Making the Most out of Energy Technologies  at Value

Future: Multi-layered smart balancing authorities [3]

Page 9: Making the Most out of Energy Technologies  at Value

DYMONDS-enabled Physical Grid [2,5]

Page 10: Making the Most out of Energy Technologies  at Value

Making the most out of given technologies-New technical problem At present the physical energy system, including its

communications and control, does not readily enable choice and multi-participant information exchange and processing for aligning often conflicting goals.

It is essential to design intelligence for T&D operations to align these goals and consequently to make the most out of available resources while simultaneously offering robust and affordable quality of service.

New flexible energy processing equipment will also be needed to handle increased variety and bandwidth of many participant requests.

Page 11: Making the Most out of Energy Technologies  at Value

11

Building a stronger and smarter electric energy infrastructureIT-enabled methods for radical enhancements in

reliability and efficiency Possible new operating framework in

future electric energy systems (Dynamic Monitoring and Decision Systems (DYMONDS) [2,5]

Proof-of-concept using Azores Islands electric power systems [4]

Page 12: Making the Most out of Energy Technologies  at Value

Difficult Questions: Systematic IT Design for Complex Energy Systems

Establish sufficiently accurate (but not too complex) modeling framework which captures inter-dependencies of energy Socio-Ecological Systems (SES), physical grid, ICT and governance system

The key objective: Match attributes of energy SES, physical grid, ICT and governance system by designing around a given energy SES

Interaction variables: A means of going from very coarse to granular and back

IT design to manage interaction variables (temporal, spatial and contextual)

Interaction variables-based unifying framework for relating engineering design, financial and environmental objectives

Page 13: Making the Most out of Energy Technologies  at Value

13

The challenge of multi-temporal and multi-spatial integration [2]

Today’s practice--- all information given to the control center; very complex decision making given many constraints

Future paradigm—distributed decision making to internalize many externalities (diverse inter-temporal dependencies, uncertainties, congestion management)

Therefore… DYMONDS

Page 14: Making the Most out of Energy Technologies  at Value

14

Major challenges and opportunities [5] Making ’’the most” out of available technologiesUnder-estimated role of ITPerformance metrics for the changing industry Managing resources at value:

- the key role of corrective actions (vs. preventive (N-1) ‘’reliability”);-the key role of automation (distributed power-electronically switched ‘’smart” devices)

Design of model-based quantifiable compliance standards; must be easy to implement).

Page 15: Making the Most out of Energy Technologies  at Value

15

Efficiency metrics for systematic use by all? [5]

Multiple values brought by different technologies Physical efficiency of stand-alone components (generation,

demand) Physical efficiency due to loss delivery savings Physical efficiency due to reduced reserve requirements (reliability

reserves-1) relaxed steady state limits; 2) relaxed stability limits. Physical efficiency due to temporal shifts during normal operations

(peak load shaving) Economic efficiency in electricity markets (spot and capacity) These are not additive. System-dependent. Tradeoffs defined by the system users, not by the hard constraints. Need systematic framework for modeling, and IT for implementing.

Page 16: Making the Most out of Energy Technologies  at Value

16

The key role of corrective actions [6,7] reduction of spilled wind power (380GWh spilled

in ERCOT in 2002); economic efficiency increase measured in terms of

annual generation cost savings (25% , estimated by FERC; $600M-$900M NY only);

increased power transfer into large load centers (300MW to 1GWW into NYC; 1 GW into SW CT.

increased power transfers across key transmission corridors.

Much higher equipment utilization; should study the effect on reducing the estimated $200B

Page 17: Making the Most out of Energy Technologies  at Value

17

The key role of PE-enabled automation:Power system with flywheel control [8]

Page 18: Making the Most out of Energy Technologies  at Value

18

The key role of ‘’smart” automation [8]

Page 19: Making the Most out of Energy Technologies  at Value

19

Potential stabilization by means of fast storage –nonlinear control [8]

Page 20: Making the Most out of Energy Technologies  at Value

20

Challenges to IT Software for complex bids (distributed optimization

under uncertainties)Software for corrective actions during non-time

critical contingenciesSoftware for ensuring dynamic stability and

observability of the systemPrimary multi-modal nonlinear control design for fast

automation, with minimal coordinationIntegration of these functionalities in a single

platformProof-of-concept for small islands [6]; need to pursue

for continental power grids

Page 21: Making the Most out of Energy Technologies  at Value

Three qualitatively different paradigms for standardization of dynamics in future smart grids [15,16]

Plug-and-play standards for dynamics, with no requirements for on-line communications. Much stricter standards at the component level will be needed for this to work.

System-level technical standards based on minimal coordination of interactions of decentralized component-level standards.

Interactive protocols for ensuring technical performance according to choice and at value—dynamic monitoring and decision systems (DYMONDS) [3].

Page 22: Making the Most out of Energy Technologies  at Value

Major differences

Plug-and-play standards for dynamics –enhanced decentralized control for internalizing effects of interactions and canceling them. Lots of advanced local control.

Standards based on minimal coordinated control of interaction variables for given nested architecture of future electric energy systems. Technical specifications at the decentralized level, economic and technical specifications at the system level. Minimal exchange of technical signals.

Interactive protocols in terms of interaction variables evolving dynamically over time and space according to system users’ preferences. Both economic and technical specifications at all levels. Minimal exchange of technical and economic signals. (markets)

Page 23: Making the Most out of Energy Technologies  at Value

23

IT-enabled markets to harvest hidden efficiencies [18-20]

Market

End-user

Load serving entity LSE LSELong-term contract

Key role of aggregators to account for the effects of DERs in distributions systems on whole-sale markets Adaptive Load Management (ALM)

Page 24: Making the Most out of Energy Technologies  at Value

24

Potential Use of Real-Time Measurements for Data-Driven Control and Decision-Making (new)

GPS synchronized measurements (synchrophasors ; power measurements at the customer side.

The key role of off-line and on-line computing. Too complex to manage relevant interactions using models and software currently used for planning and operations.

Our proposed design: Dynamic Monitoring and Decision Systems (DYMONDS)

Page 25: Making the Most out of Energy Technologies  at Value

25

Proof-of-Concept for Low-Cost Green Flores and Sao Miguel [4] Collected data and used to derive dynamic models (linear and

non-linear; with wind power dynamics, flywheels and power-electronics-control included) -equilibrium solutions (power flow); predictive models for wind power and demand power

-demonstrate the use of DYMONDS decision-making algorithms (distributed, MPC-based) for enabling efficient integration of wind power; efficient integration of Adaptive Load Management (ALM); efficient integration of electric vehicles (EVs)- demonstrate new methods for automated load following, E-AGC and E-AVC for balancing hard-to-predict small wind power fluctuations

Page 26: Making the Most out of Energy Technologies  at Value

AZORES ISLAND: ELECTRICAL CHARACTERISTICS[3], [4, CH. 3]

FLORES ISLANDRadial 15 kV distribution network Total demand : ~2 MWDiesel generator with total capacity: 2.5 MWHydro power generator with total capacity: 1.3 MW (reservoir)Wind turbine with total capacity: 0.6 MW

SAO MIGUEL ISLANDRing 60 kV and 30 kV distribution network Total demand - ~70 MWTwo large diesel generators with total capacity: 97 MWTwo large geothermal plants with total capacity: 27 MW 7 small hydro power generator with total capacity: 5 MW

M. Honarvar Nazari and M. Ilić, “Electrical Networks of Azores Archipelago”, Chapter 3, Engineering IT-Enabled Electricity Services, Springer 2012.

Page 27: Making the Most out of Energy Technologies  at Value

27

Overall educational challenge and opportunity [8]Important to educate ourselves how more efficient

services can be provided w/o creating operating problems

The opportunity is presented itself as IT is deployedThe challenge: How to manage the infrastructure

instead of simply deploying more hardwareNeed for new software for interactive planning,

corrective on-line resource management and automation; non-transmission solutions

States should take the lead in educating themselves and the industry (NARUC); design regulation to support this [10]

Page 28: Making the Most out of Energy Technologies  at Value

28

Educational Challenge to the US Universities [9] An important educational challenge: How to pose the problem,

and how to design sensing, communications, automated control and decision-making computer algorithms using well-understood concepts from basic disciplines?

The boundaries between electric energy processing and other types of energy processing (mechanical to electrical in generators; chemical/wind/hydro, diesel, nuclear into mechanical and/or electrical) becoming more gray than in the past as new energy resources are used

One possible unifying path– model the electric energy systems as dynamical systems and use systematic control design to pose the design objectives, and data-driven feedback and decision making for adaptation (18-618, Spring 2012, Carnegie Mellon University [9])

Page 29: Making the Most out of Energy Technologies  at Value

29

Conclusions and Next StepsIT has key role to play in operating future electric energy

systems with renewable resources. Systematic modeling of electric energy systems as complex

dynamic systems needed. Not possible to manage all as a single problem. The challenge is what IT to embed into hardware, what

information needs to be exchanged and why. Possible to be both reliable and efficient green with

carefully designed IT. Many examples of this not being possible with today’s IT in electric power systems.

Need to communicate to NARUC/US CongressDemonstrate using simulations for continental systems

(``Smart Grid in a Room”?)

Page 30: Making the Most out of Energy Technologies  at Value

30

References[1] Ilic, M., Smart Grid and Future Electric Energy Systems, Lecture Notes, 18-618, Carnegie

Mellon Univ, ECE, Spring 2012. [2] ] Ilic, M, et al, A Decision Making Framework and Simulator for Sustainable Electric Energy

Systems, The IEEE Trans. On Sustainable Energy, TSTE-00011-2010, January 2011.[3] ] Ilic, M., Dynamic Monitoring and Decision Systems for Sustainable Electric Energy, Proc of

the IEEE, Jan 2011. [4] Engineering IT-Enabled Sustainable Electricity Services: The Case of Low-Cost Azores Islands

(co-editors, M. Ilic and Le Xie), Springer Monograph (2012, to appear)[5] Ilic, M., Dynamic Monitoring and Decision Systems for Sustainable Electric Energy Systems,

Proc. of the IEEE, January 2011.[6] Elinor Ostrom, et al, A General Framework for Analyzing Sustainability of social-Ecological

Systems, Science 325, 419 (2009).[7] MIT Portugal, Universidade dos Açores, ”Characterization of the Azorean Residential Building

Stock”, Report, 2010.[8] Ilic, M. , ``Making the Most out of Energy Technologies at Value”, Ilic, White paper, April 17,

2012; under revision with FERC comments, November 2012. [9] Ilic, M., ``Critical Needs for Multi-Disciplinary Approach to Teaching Electric Energy Systems”,

IEEE Transactions on Education (Special Issue, invited), November 2012. [10] Ilic, Marija, “3Rs for Power and Demand”, Public Utilities Fortnightly Magazine, December

2009.

Page 31: Making the Most out of Energy Technologies  at Value

31

References[11 ] Ilic, Marija. “From Hierarchical to Open Access Electric Power Systems.” IEEE Special Issue on “Modeling,

Identification, and Control of Large-Scale Dynamical Systems,” Simon Haykin and Eric Mouines, Guest Editors. Vol. 95, No. 5, May 2007.

[12] M. Ilic. Toward reliable and efficient on-line resource management: A ramp rate-limited ac optimal power flow for integrating renewable resources and responsive demand. FERC Staff Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software, Docket No. AD10-12-003, Washington DC, June 25-27, 2012.

[13] M. Ilic. Voltage dispatch and pricing in support of efficient real power dispatch. Final Report, NYSERDA Funded NETSS Project #10476, November 20, 2011.

[14] M.Ilic, ‘’Toward Standards for Dynamics in Future Electric Energy Systems”, PSERC White Paper, June 2012.[15] M. Ilic,’’ Toward IT-enabled power systems: Large-scale distributed control for tomorrow's electricity grid”,Semi-

plenary talk, American Control Conference, Montreal, CA, June 2012. [16] Ilic, M., Liu, Q., ``Toward standards for dynamics in future electric energy systems”, APSIPA, Dec. 2012.

[17] ] Computing Research for Sustainability, NRC of the National Academies of Science, http://www.nap.edu/catalog.php?record_id=13415 , 2012.

[18] J.-Y. Joo and M.D. Ilić, A multi-layered adaptive load management system: information exchange between market participants for efficient and reliable energy use, IEEE PES Transmission and Distribution Conference, Apr 2010

[19] J.-Y. Joo and M. Ilić, “Distributed Multi-Temporal Risk Management Approach To Designing Dynamic Pricing”, IEEE Power and Energy Society General Meeting, July 2012

[20] J.-Y. Joo and M. Ilić, Multi-Temporal Risk Minimization Of Adaptive Load Management In Electricity Spot Markets, IEEE PES Innovative Smart Grid Technologies, Europe, Dec 2011

[18]