29
Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking at LHC M. Gintner, I. Melo, B. Trpišová University of Žilina Nuclear Seminar, FMFI UK Bratislava May 21, 2008

M. Gintner, I. Melo, B. Trpi šová University of Žilina

  • Upload
    royal

  • View
    20

  • Download
    0

Embed Size (px)

DESCRIPTION

Nuclear Seminar, FMFI UK Bratislava May 21, 200 8. Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking at LHC. M. Gintner, I. Melo, B. Trpi šová University of Žilina. Outline Strong Electroweak Symmetry Breaking - PowerPoint PPT Presentation

Citation preview

Page 1: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Signatures of a new vector resonance from strongly interacting electroweak

symmetry breaking at LHC

M. Gintner, I. Melo, B. TrpišováUniversity of Žilina

Nuclear Seminar, FMFI UK Bratislava May 21, 2008

Page 2: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Outline

• Strong Electroweak Symmetry Breaking

• BESS Model Vector Resonance ρ

• LHC processes sensitive to ρ, cross sections (CompHEP calculation)

• Reconstruction of pp → W+ W- t t + X; pp → b b t t + X

(CompHEP, Pythia, Atlfast, Root)

Page 3: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

EWSB - one of Great Mysteries of Particle Physics

• SM ………………………. 1 Higgs

• Strong EWSB …….. no Higgs

• SUSY (MSSM) ..... 5 Higgs

Monotheists

Atheists

Polytheists

Problem !

Classical

Page 4: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Naturalness problem (Fine-tuning problem)

≈ - (200 GeV)2 . 1032 for Λ = 1019 GeV

mH ≈ 100 – 200 GeV - (200 GeV)2 . 1032 + (200 GeV)2 . 1032

Page 5: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

SM

SUSY (MSSM)

= 0 → mH = 319 GeV

t1(2)

~

H not elementary, melts into techniquarks above ΛTC ≈ 1-3 TeV

Strong EWSB

Page 6: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Chiral SB in QCD SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV

EWSBSU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV

Page 7: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

052

01

0)(v

ttgttg

MigL tt

t t t

π = WL

v is EW scale (v = vev ~ 246 GeV)

1,2 1,2 1,2

R.Casalbuoni et al. Phys.Lett. B155 (1985) 95; M.Gintner, I.Melo, B.Trpisova, Acta Phys. Slovaca, 56(2006)1

,b

,b ,b

,b

mt = 171 GeV ≈ v/√2

(Equivalence theorem)

Page 8: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Large Hadron Collider: pp at 14 TeV

pp ―› jj WW pp ―› jj ttpp ―› ρtt ―› WW tt +Xpp ―› ρbb ―› WWbbpp ―› ρtt ―› tt ttpp ―› ρtt ―› bb ttpp ―› ρbb ―› bb ttpp ―› ρ+tb ―› tb tbpp ―› ρ+tb ―› W+Z tb

pp ―› WW+Xpp ―› tt+X

Mρ = 1 000 GeVΓρ = 42.3 GeV

Page 9: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Vg

Mg

v2

BESS (Breaking EW Symmetry Strongly) Model SU(2)L x SU(2)R global, SU(2)L x U(1)Y local

L = Lkin + Lnon.lin. σ model - a v2 /4 Tr[(ωμ + i gv ρμ . τ/2 )2] + Lmass + LSM(W,Z)

+ b1 ψL i γμ (u+∂μ – u+ i gv ρμ . τ/2 + u+ i g’/6 Yμ) u ψL

+ b2 ψR Pb i γμ (u ∂μ – u i gv ρμ . τ/2 + u i g’/6 Yμ) u+ Pb ψR + λ1 ψL i γμ u+ Aμ γ5 u ψL

+ λ2 ψR Pb i γμ u Aμ γ5 u+ Pb ψR

Standard Model with Higgs replaced with ρ

Our model

ωμ = [u+(∂μ + i g’/2 Yμτ3)u + u(∂μ+ i g Wμ . τ/2)u+]/2Aμ = [u+(∂μ + i g’/2 Yμτ3)u - u(∂μ+ i g Wμ . τ/2)u+]/2u = exp(i π . τ /2v)ψL = (tL,bL)

Pb = diag(1,p)Mρ ≈ √a v gv /2 v ≈ 246 GeV

R.Casalbuoni et al. Phys.Lett. B155 (1985) 95; M.Gintner, I.Melo, B.Trpisova, Acta Phys. Slovaca, 56(2006)1

2

21

21 4 V

Vtt

g

gO

bgggt

1,2

(2)

Page 10: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Unitarity constraints

WL WL → WL WL , WL WL → t t, t t → t t unitary up to 3 TeV

Low energy constraints

gπ ≤ 1.4 (Mρ= 1 000 GeV)gt ≤ 2.0 (Mρ= 1 000 GeV)

gv ≥ 10 gπ = Mρ /(2v gv) ≤ 0.2 Mρ (TeV)

|b2 – λ2 | ≤ 0.04 gt ≈ gv b1(2) / 4

|b1 – λ1 | ≤ 0.01

if

Page 11: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Partial (Γ―›WW) andtotal width Γtot of ρ0

Mρ = 1 000 GeVΓρ = 42.3 GeV

gv = 20b1 = 0.08

Page 12: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

CompHEP: pp → bb → tt + X

σS = 121 fb Background G G → tt 3 diagrams

σB = 26 617 fb

Signal bb → tt 6 diagrams

Cuts: Mρ-3Γρ < mtt < Mρ +3Γρ (GeV)

pT(t), pT(t) > 350 GeV

σB = 6 353 fb

σS = 47 fb

M±3Γ

Page 13: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

CompHEP: pp → bb → W+W- + X

uu → W+W-

dd → W+W-

4 diagrams

Signal 4 diagramsσS = 15.4 fb

σB = 450 fb

σS → 14.0 fb

σB → 100 fb

mWW

pTW

Background

M±3Γ

Page 14: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

CompHEP: pp → ttρ0 + X → bb t t + X

Signal 8 diagrams

σS = 3.7 fb

σB = 17 fb

QCD background 35 diagrams

QCD

Signal

mbb

pTb

QCD bottom

Signal bottom

M±3Γ

Page 15: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

CompHEP: pp → bbρ0 + X → bb t t + X

Signal 8 diagramsσS = 134 fb

σB = 833 fb

QCD background 35 diagrams

QCD

Signal

mtt

pTt

QCD top

Signal top

Γρ=127 GeV σ = 337 fb

Page 16: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

CompHEP: pp → tbρ+ + X → bb t t + X

Signal 8 diagrams

σS = 86 fb

σB = 332 fb

QCD background 35 diagrams

mtb

Signal top

QCD top

QCD

Signal

pTq

bottom

bottom

Page 17: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

39/8 diagrams in the dominant gg channel

ttWW -

jjbjjbjjl l

No-resonancebackground

ρ

ρ

ρ

CompHEP: pp → (W+ W-) t t + X pp → (W+ W-) b b + X

signal

Page 18: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Signal + Background: 39 diagrams

CompHEP: pp → (W+ W-) t t + X (continued) pp → (W+ W-) b b + X

Signal: 8 diagrams

b,

b,

,bσS+B = 4 400 fb

σS = 9.4 fb σS+B = 9.4 fb

σS = 6.7 fb

Cuts: Mρ-3Γρ < mWW < Mρ +3Γρ (GeV)

mW+b, mW-b > 200 GeV

Page 19: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Signal + Background: 46 diagrams

CompHEP: pp → (W+ Z) t b + X

Signal: 8 diagramsσS+B = 12.7 fb

σS = 2.9 fb σS+B = 2.9 fb

σS = 2.5 fb

Cuts: Mρ-3Γρ < mWZ < Mρ +3Γρ (GeV)

mW+b > 200 GeV

W+

Z

Page 20: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Signal + Background: 54 diagrams

CompHEP: pp → (tt) tt + X

Signal: 8 diagrams

σS+B = 3.7 fb

σS = 1.3 fb

Cuts: Mρ-3Γρ < mtt < Mρ +3Γρ (GeV)

t

t

Page 21: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

1. pp → bb → tt + X

2. pp → bb → W+W- + X

3. pp → (bb) tt + X

4. pp → bb (tt) + X

5. pp → b(bt) t + X

6. pp → (W+W-) t t + X

7. pp → (W+W-) b b + X

8. pp → (W+Z) t b + X

9. pp → (tt) tt + X

σS = 47

σS = 14

σS = 3.7

σS = 134

σS = 86

σS = 0.23

σS = 6.7

σS = 2.5

σS = 1.3

Cross sections in fb + statistical significance (peak region)

S = NS/ √(NB) statistical significance

NS = L σS , NB = L σB , with L = 100 fb-1 integrated luminosity

S = 5.9 *

S = 14.0 *

S = 9.0

S = 46.4

S = 47.2

S = 4.6

S = 40.8 *

S = 39.5 *

S = 8.4

σB = 6 353

σB = 100

σB = 17

σB = 833

σB = 332

σB = 0.25

σB = 2.7

σB = 0.4

σB = 2.4

signal background significance

* More than 1 cut applied

Page 22: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

pp → W W t t + X l jjbjjbjj reconstruction (in collaboration with Jonathan Ferland, University of Montreal)

One charged lepton channel:

jjbjjbjjlWbbWWWttWW l

Cuts: Tpelectron > 30 GeV

muon > 20 GeVjets > 25 GeV

Reconstruction criterion

22

2222

)()(

)()()(

2211

654321

tbWtbW

WjjWjjWjj

mmmm

mmmmmm

l

40% of events

mass of the W: 25Wm GeV

b-tagging efficiency 50%

of

(CompHEP, Pythia, Atlfast, Root)

Page 23: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

nu

mb

er o

f ev

ents

/17

GeV

GeV]mWW[

nu

mb

er o

f ev

ents

/17

GeV

GeV]mWW[

39 diagrams 8 diagrams

Lum=100/fb

12.2 events

Lum=100/fb

2.4 events

Distribution in invariant mass of WW pair (ρ →WW)

GeV]mWW[ GeV]mWW[

ρ: Mρ=700 GeV, Γρ=4 GeV, b2=0.08, gv=10

Pz(ν) chosen correctly in 61.5 % of events

Page 24: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

8 diagrams 39 diagramsn

um

ber

of

even

ts/0

.6 G

eV

nu

mb

er o

f ev

ents

/0.6

GeV

nu

mb

er o

f ev

ents

/2.5

GeV

nu

mb

er o

f ev

ents

/2.5

GeV

GeV]m jj[ GeV]m jj[

GeV]mWb[ GeV]mWb[

Mass of the W boson

Mass of the top quark

Lum=100/fbLum=100/fb

Lum=100/fbLum=100/fb

2.4 events

2.4 events 12.2 events

12.2 events

Page 25: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

GeV]mWW[

GeV]mWW[

nu

mb

er o

f ev

ents

/32

GeV

Lum = 100 fb-1

12.8 events

ρ: Mρ=1000 GeV Γρ=26 GeV

CompHEP

Reconstruction

Page 26: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

pp → ρ0 tt → bb t t + X → bb lνlb jjb (43.5%) reconstruction

(in collaboration with J. Ferland)

NS=0.8

NB=8

L = 100 fb-1Cuts: Tp

25Wm

of

e > 30 GeV

j > 25 GeV

μ > 20 GeV

L = 100 fb-1

GeV

2222 )()()(221121 tbWtbWWjj mmmmmm

Page 27: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Conclusions

• Strong EWSB: an alternative to SUSY

• ρ is a general prediction of Strong EWSB

• (Modified) BESS model preferentially couples ρ with t,b

• Several processes promising at CompHEP level

Page 28: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

Backup

Page 29: M. Gintner, I. Melo, B. Trpi šová University of  Žilina

EWSB: SU(2)L x U(1)Y → U(1)Q

Weakly interacting models: - SUSY - SM (light) Higgs

Strongly interacting models: - Technicolor

A new strong vector resonance ρ as an isospin triplet ( ) → BESS0,