52
VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D. Department of Computer Science, National Chiao Tung University, Taiwan, R.O.C. Fall, 2010 [email protected] http://www.cs.nctu.tw/~ldvan/

Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

  • Upload
    others

  • View
    21

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Low-Power CMOS VLSI Design

Lan-Da Van (范倫達), Ph. D.

Department of Computer Science,

National Chiao Tung University,

Taiwan, R.O.C.

Fall, 2010

[email protected]

http://www.cs.nctu.tw/~ldvan/

Page 2: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-2

Outline

Introduction

Low-Power Process-Level Design (Ignore here)

Low-Power Logic/Circuit-Level Design

Low-Power Algorithm/Architecture-Level Design

Low-Power System-Level Design

Conclusion

References

Page 3: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-3

Low Power Design– An Ongoing and Important Discipline

Historical figure of merit for VLSI design

Performance (circuit speed and system quality)

Chip area (circuit cost). But now,…

Power dissipation is now an important metric in VLSI

design.

No single major source for power savings across all design

levels – Required a new way of THINKING!!!

Companies lack the basic power-conscious culture and

designers need to be educated in this respect.

Overall Goal - To reduce power dissipations but

maintaining adequate throughput rate.

Page 4: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-4

Motivation - Microprocessor

Page 5: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-5

Low Power Competitive Reasons

Battery Powered Systems

Extend battery life

Reduce weight and size

High-Performance Systems

Cost

Package (chip carrier, heat sink, card slots, …)

Power Systems (supplies, distribution, regulators, …)

Fans (noise, power, reliability, area, …)

Operating cost to customer – Re-start issue.

Reliability

Failure rate increases by 4X for T @ 110C vs 70C

Size and Weight

Page 6: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-6

The Power Crisis: Portability

Expected Battery Lifetime increase

Over next 5 years: 30-40%PDA, Cellular Phone,

Notebook Computer,etc.

Page 7: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-7

A Multimedia Terminal: The Infopad

Present day battery technology (year 1990)

– 20 lbs for 10hrs

Page 8: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-8

VLSI Signal Processing System Design Space

System Level

Algorithm Level

Architecture Level

Circuit Level

Logic Level

Process Level

Power

Area

PerformanceCost

Test

Page 9: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-9

Low Power System Design Space

Power budgeting, S/H partitioning, power management, core selection

System

Algorithm

Architecture

Logic/Circuit

Process

Algorithmic reduction, data transformation, CSE, low-complexity operation

Parallelism, pipelining, re-timing, unfolding, signal ordering, glitch minimization, data representation, resource allocation, multi-clock

Logic style, arithmetic, glitch/noise minimization, re-sizing, adaptive voltage scaling, multi-Vdd, multi-Vth, multi-clock, layout, power-driven P&R

Low-power device, alternative technology, multi-Vth

Page 10: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-10

Outline

Introduction

Low-Power Process-Level Design (Ignore here)

Low-Power Logic/Circuit-Level Design

Low-Power Algorithm/Architecture-Level Design

Low-Power System-Level Design

Conclusion

References

Page 11: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-11

Where Does Power Go in CMOS?

Source of power dissipation P = Pdynamic + Pshort-circuit + Pleakage + Pstatic

Definitions:

Dynamic/switching power: P = αCV2f

Charging and discharging parasitic capacitors

α : switching activity factor

Short circuit power P = IscV

Direct path between supply rail during switching

Leakage power P = IleakageV

Reverse bias diode leakage

Sub-threshold conduction

Static power P = IstaticV

Each input node is connected to fixed stable voltage

Page 12: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-12

Dynamic Power Consumption (1/2)

Power = Energy/transition * transition rate

= CL * Vdd2 * f0->1

= CL * Vdd2 * Pb0->1 * f

= CEFF * Vdd2 * f

= Pb0->1 *CL*Vdd2 * f

CEFF = Effective Capacitance = CL * Pb0->1

Page 13: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-13

Dynamic Power Consumption (2/2)

Need to reduce Pb0->1 , CL, Vdd, and f for low power design Reduce the probability, P0 -> 1

Minimize the geometry and remove the redundancy

Reduce the power supply level

Use lowest clock frequency

Power dissipation is data dependent function of switching activity. => Pattern Dependent!

Page 14: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-14

Choice of Logic Style

Page 15: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-15

Choice of Logic Style

Power-delay product improves as voltage decreases

The “best” logic style minimizes power-delay (i.e,

energy) for a given delay constraint.

Page 16: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-16

Type of Logic Function: NOR

Example : Static-style 2-input NOR gate

Assume :

P(A=1) = ½

P(B=1) = ½

Then :

P(Out=1) = ¼

P(0→1)

= P(Out=0)*P(Out=1)

=3/4 * 1/4 = 3/16

α0->1 = 3/16

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

Truth Table of 2-Input NOR Gate

Page 17: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-17

2-Input NOR Gate Transition Probability

P1=(1-PA)(1-PB)

P0->1 =P0P1=(1-(1-PA)(1-PB))(1-PA)(1-PB)

Page 18: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-18

Type of Logic Function: XOR

Example : Static-style 2-input XOR gate

Assume :

P(A=1) = 1/2

P(B=1) = 1/2

Then :

P(Out=1) = 1/2

P(0→1)

= P(Out=0)*P(Out=1)

=1/2 * 1/2 = 1/4

α0->1 = 1/4

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

Truth Table of 2-Input XOR Gate

Page 19: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-19

2-Input XOR Gate Transition Probability

P1=PA(1-PB)+PB(1-PA)=PA+PB-2PAPB

P0->1 =P0P1=(1-(PA+PB-2PAPB))(PA+PB-2PAPB)

Page 20: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-20

Which One is Your Choice?

XOR NOR

Which one is for Low-Power design?

Page 21: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-21

Glitching Activity in CMOS Network

α0->1 can be greater than 1 due to glitching!

(x,c=0,0) (x,c=1,0)

Page 22: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-22

Glitching in a Carry Ripple Adder

Page 23: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-23

Chain vs Tree Datapath (1/2)

O1 O2 F

P1 (Chain) 1/4 1/8 1/16

P0=1-P1 (Chain) 3/4 7/8 15/16

P0->1 (Chain) 3/16 7/64 15/256

P1 (Tree) 1/4 1/4 1/16

P0=1-P1 (Tree) 3/4 3/4 15/16

P0->1 (Tree) 3/16 3/16 15/256

Chain Tree

A

B

B

CO2

O1

F

A

BF

O2

DC

O1

Page 24: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-24

Chain vs Tree Datapath (2/2)

O1 O2 F

P0->1 (Chain)/P0->1 (Tree) 1 0.58 1

α0->1 (Chain)/α0->1 (Tree) 1 0.83 1.47

Chain Tree

Which one is for Low-Power design?

A

B

B

CO2

O1

F

A

BF

O2

DC

O1

Page 25: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-25

Glitching at the Datapath Level

RegularIrregular

Two Glitches!

Page 26: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-26

How to Minimize Glitching?

Equalize Length of Timing Paths through Design!

Page 27: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-27

Data Representation (1/2)

Bit Position Bit Position

Page 28: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-28

Data Representation (2/2)

(Binary v.s. Gray Encoding)

Page 29: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-29

Outline

Introduction

Low-Power Process-Level Design (Ignore here)

Low-Power Logic/Circuit-Level Design

Low-Power Algorithm/Architecture-Level Design

Low-Power System-Level Design

Conclusion

References

Page 30: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-30

Signal Reordering Operation

Ex1. Y=AB+AC= A(B+C)

Ex2. Y=3X=X+(X<<1)

X

X

+ Y

X Y

+

X

B

C

A

Y

B

A

C

3

X<<1

+

X

Y

Page 31: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-31

Resource Sharing Can Increase Activity (1/2)

Separate Bus Structure

# of Bus Transitions Per Cycle=2(1+1/2+1/4+….)=4,Where 2 means 2 separate buses, 1 denotes the transition probability of LSB, ½ denotes the transition

probability of 2nd LSB, and etc.

Bus Sharing

Page 32: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-32

Resource Sharing Can Increase Activity (2/2)

Bit Position

Page 33: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-33

Lowering Vdd Increases Delay

Page 34: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-34

Reducing Vdd

Page 35: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-35

Architecture Trade-offs: Reference Datapath

Page 36: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-36

Parallel Datapath

Page 37: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-37

Pipelined Datapath

Page 38: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-38

Summary: A Low-Power Data Path

Architecture type Voltage Area Power

Reference Datapath (no

pip/par)

5V 1 1

Pipelined datapath 2.9V 1.3 0.37

Parallel datapath 2.9V 3.4 0.34

Pipeline-parallel datapath 2.0V 3.7 0.18

Desire to operate at lowest possible speeds (using

low supply voltages)

Use architecture optimization to compensate for

slower operation

Page 39: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-39

Computational Complexity of DCT Algorithms

Page 40: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-40

Low-Power Cache and Register Configuration

Application profiling

Trade-off between performance, power and size

Rule of thumb

Access and storage the most frequently used instructions

Avoid accessing larger cache/register

Partition cache and register

Aware of partitioning

CPU RegReg

L1 Cache L2 Cache Memory

Partition! Partition!

Page 41: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-41

Outline

Introduction

Low-Power Process-Level Design (Ignore here)

Low-Power Logic/Circuit-Level Design

Low-Power Algorithm/Architecture-Level Design

Low-Power System-Level Design

Low Power System Perspective

Low Power Applications

Conclusion

References

Page 42: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-42

Power Down Techniques

Page 43: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-43

Software versus Hardware

Advantage Disadvantage

Software •Free but not always

•High flexibility

•Ease of compatibility

•High power

consumption

•Slow in execution

•Inefficient

•Larger staff

Hardware •High speed

•Low power

•High efficiency

•Less staff

•High die cost

•Low flexibility

•Low compatibility

Page 44: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-44

Energy-Efficient Software Coding

Potential for power reduction via software

modification is relatively unexploited.

Code size and algorithmic efficiency can significantly

affect energy dissipation.

Pipelining at software level- VLIW coding style

References:

V. Tiwari et al., ”Power analysis of embedded software: a first

step towards software power minimization,” IEEE Trans. on

VLSI, vol. 2, no. 4, Dec. 1994.

J. Synder et al., “Low-power software for low-power people,”

1994 IEEE Symp. On Low Power Electronics.

Page 45: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-45

Power Hunger – Clock Network

H-Tree – design deficiencies based on Elmore delay

model.

PLL – every designer (digital or analog) should have

the knowledge of PLL.

Multiple frequencies in chips/systems – by PLL

Low main frequency, But

Jitter and noise, gain and bandwidth, pull-in and lock time,

stability …

Asynchronous => Use gated clocks, sleep mode

Page 46: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-46

Power Analysis in the Design Flow

Page 47: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-47

Applications I: Wireless Computing/Communication

Page 48: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-48

Applications II: A Portable Multimedia Terminal

Page 49: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-49

Applications III: System on Chip (SOC)

Entire system function

Logic + Memory

More than two types of

devices

Allow more freedoms in

architecture

Hardware and software

partition

Page 50: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-50

Conclusions

Low-Power and high-speed tradeoff design is an essential

requirement for many applications.

Low power impacts on the cost, size, weight, performance,

and reliability.

Reduce P0->1 , CL, Vdd, and f for low power design

across each level!!

Page 51: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-51

Reference

[1] A. Chandrakasan and R. W. Brodersen, “Minimizing power

consumption in digital CMOS circuits,” Proceedings of the

IEEE, vol. 83, no. 4, pp. 498-523, Apr. 1995.

[2] A. Chandrakasan, Architectures for Ultra Low-Power

Design, in tutorial B3 of ASP-DAC, 1995.

[3] A. Chandrakasan, Low-Voltage/Low-Power Digital Design,

in tutorial of Workshop on Low-Power Low-Volgate and RF IC

for Wireless Communication System, 1996, Taiwan.

[4] T. Sakurai, Low Power Circuit Design Methodology, in

tutorial B2 of ASP-DAC, 1995.

[5] Chapter 17 of Textbook.

Page 52: Low-Power CMOS VLSI Designviplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP...VLSI Digital Signal Processing Systems Low-Power CMOS VLSI Design Lan-Da Van (范倫達), Ph. D

VLSI Digital Signal Processing Systems

Lan-Da Van VLSI-DSP-14-52

Self-Test Exercises

STE1: Calculate the switching activity EQUATION

EXPRESSION of 2-input AND gate and simulate the

histogram of transition probability (P0->1) vs PA and PB.

STE2: Calculate the switching activity EQUATION

EXPRESSION of 3-input NAND gate.