23
Looking for the Best QSAR and Docking Methods Guillermo Restrepo Laboratorio de Química Teórica, Universidad de Pamplona, Pamplona, Colombia 1

Looking for the Best QSAR and Docking Methods

  • Upload
    manju

  • View
    66

  • Download
    1

Embed Size (px)

DESCRIPTION

Looking for the Best QSAR and Docking Methods. Guillermo Restrepo Laboratorio de Química Teórica , Universidad de Pamplona, Pamplona, Colombia. Outline. Ranking How we rank Ranking problems QSAR models Docking programs Conclusions Acknowledgements. “Good”. “Bad”. 1. 2. 3. 4. 5. - PowerPoint PPT Presentation

Citation preview

Page 1: Looking for the Best QSAR and Docking Methods

1

Looking for the Best QSAR and Docking Methods

Guillermo RestrepoLaboratorio de Química Teórica, Universidad de

Pamplona, Pamplona, Colombia

Page 2: Looking for the Best QSAR and Docking Methods

2

Page 3: Looking for the Best QSAR and Docking Methods

3

Outline

o Rankingo How we ranko Ranking problemso QSAR modelso Docking programso Conclusionso Acknowledgements

Page 4: Looking for the Best QSAR and Docking Methods

4

“Good” “Bad”

Page 5: Looking for the Best QSAR and Docking Methods

5

12 3

4

5 6

We love rankings!

La romería de San Isidro, Goya

Page 6: Looking for the Best QSAR and Docking Methods

6

How do we rank?Beauty Intelligence Glamour

a 0 8 2b 9 13 12c 2 1 5d 10 14 11e 4 3 7

a

b

c

d

e

a

b

c

d

ea

b

c

d

e

Priorities

a

b

c

d

e

Subjectivities

Page 7: Looking for the Best QSAR and Docking Methods

7

q1 q2 q3

a 0 8 2b 9 13 12c 2 1 5d 10 14 11e 4 3 7

x ≥ y if all qi(x) > qi (y) or at least one attribute (qj) is higher for x while all others are equal.

Comparable

IncomparableIf at least one qj fulfills qj(x) < qj(y) while the others are opposite (qi(x) ≥ qi (y)), x and y are incomparable.

Hasse diagram

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e a

b

c

d

e

a

b

c

d

e

Total set of linear extensions

A B C D E F

Brüggemann, R.; Restrepo, G.; Voigt, K. J. Chem. Inf. Model. 2006, 46, 894-902.

Page 8: Looking for the Best QSAR and Docking Methods

8

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e a

b

c

d

e

a

b

c

d

e

A B C D E F1 2 3 4 5

a 2 2 2 0 0b 0 0 0 3 3c 4 2 0 0 0d 0 0 0 3 3e 0 2 4 0 0

r1 r2 r3 r4 r5a 0.333 0.333 0.333 0 0b 0 0 0 0.5 0.5c 0.667 0.333 0 0 0d 0 0 0 0.5 0.5e 0 0.333 0.667 0 0

Ranking probability of having n at m

pmn = rmn / |LE|

rmn: ocurrence of object n at rank m

Average rank of nAv rkn = ∑m m∙pmn

bd

e

a

c1

2

3

4

5

Min rk Av rk Max rk Vara 1 2 3 2b 4 4.5 5 1c 1 1.333 2 1d 4 4.5 5 1e 2 2.667 3 1

Restrepo, G.; Brüggemann, R.; Weckert, M.; Gerstmann, S.; Frank, H. MATCH Commun. Math. Comput. Chem. 2008, 59, 555-584.

Page 9: Looking for the Best QSAR and Docking Methods

9

Best QSAR methods

Case study:

o Mutagenicity

o 95 aromatic & heteroaromatic amines

o 13 QSAR models

o Two statistics

Page 10: Looking for the Best QSAR and Docking Methods

10

Model label Descriptors r2 s Method

Basak 1997 Topological and geometric 0.797 0.910 Linear

Basak 1998 Topological,geometric and quantum chemical 0.790 0.920 Linear

Maran 1999 #rings, γ-polarizability, HASA1 (SCF/AM1), HDSA (SCF/AM1), Etot(C-C), Etot(C-N)

0.834 0.811 Linear

Karelson 2000a

#rings, γ-polarizability, HASA1 (SCF/AM1), HDSA (SCF/AM1), Etot(C-C), Etot(C-N)

0.834 0.811 Linear

Karelson 2000b

Ic, 3κ, #H acceptor sites, max valence N, PNSA1, γ-polarizability

0.895 1.333 Non-linear

Basak 2001a Expanded set of topological, geometric and quantum chemical

0.794 0.912 Linear

Basak 2001b Expanded set of topological, geometric, quantum chemical and electrotopological

0.821 0.840 Linear

Cash 2001 Electrotopological 0.767 0.979 Linear

Toropov 2001 Graphs weighted with contributions of atomic orbitals 0.758 0.950 Linear

Vračko 2004a Topostructural, topochemical and geometric 0.793 0.840 Non-linear

Vračko 2004b Topostructural, topochemical, geometric and quantum chemical

0.793 0.840 Non-linear

Cash 2005a Electrotopological 0.760 0.950 Linear

Cash 2005b Electrotopological 0.750 0.890 Linear

Page 11: Looking for the Best QSAR and Docking Methods

11

594 linear extensions

Maran 1999Karelson 2000a

Basak 2001b

Basak 1997 Vračko 2004a,b

Basak 2001a

Karelson 2000b

Basak 1998 Cash 2005b

Cash 2005aCash 2001

Toropov 2001

o Maran 1999 & Karelson 2000a are better than 10 other models.

o It is not possible to state whether Karelson 2000b is better or worse than other models.

o There are better models than Cash 2001 & Toropov 2001.

Restrepo, G.; Basak, S. C.; Mills, D. Curr. Comput-Aid Drug. 2011, 7, 109-121.

Page 12: Looking for the Best QSAR and Docking Methods

Min rk Av rk Max rk VarBasak 1997 6 8.2424 9 3Basak 1998 4 5.0909 6 2Maran 1999 10 10.909 11 1

Karelson 2000b 1 6 11 10Basak 2001a 5 6.6667 8 3Basak 2001b 9 9.8182 10 1

Cash 2001 1 2.5455 5 4Toropov 2001 1 1.697 4 3Vracko 2004a 6 7.7576 9 3Cash 2005a 2 3.3939 5 3Cash 2005b 1 3.8788 8 7

Maran 1999Karelson 2000a

Basak 2001b

Basak 1997

Vračko 2004a,b

Basak 2001aKarelson 2000b

Basak 1998

Cash 2005bCash 2005a

Cash 2001

Toropov 20011

11

2

3

4

5

6

7

8

9

10

o Maran 1999 & Karelson 2000a and Basak 2001b are the less variable models.

o Karelson 2000b & Cash 2005b are the most variable models.

12

Page 13: Looking for the Best QSAR and Docking Methods

13

Best Docking methodsCase study:

o 10 docking programs: Dock4, DockIt, FlexX, Flo, Fred, Glide, Gold, LigFit, MOE, MVP

o 8 protein targets

o Two main characteristics:o prediction of conformations of small molecules

bound to protein targetso virtual screening of compound databases to

identify leads for a protein targetWarren, G. L.; Andrews, C. W.; Capelli, A-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. J. Med. Chem. 2006, 49, 5912-5931.

Page 14: Looking for the Best QSAR and Docking Methods

Protein-ligand conformations

Percentage of compounds for which a docked pose was found within 2 Å of the crystal structure

136 protein/ligand conformations

chk1 pdfs mrs ppard fxa gyrb hcvpDock4 7 25 19 2 10 29 0DockIt 47 25 3 7 10 0 8FlexX 73 75 39 37 40 43 0

Flo 60 88 45 80 50 0 38Fred 73 50 58 0 10 0 0Glide 67 50 74 33 40 29 8Gold 53 88 94 78 40 43 31LigFit 40 63 0 15 0 0 0MOE 0 0 0 0 0 0 0MVP 87 38 42 41 0 43 0

Kina

se

Poly

pepti

de

defo

rmila

se

Synt

heta

se

Nuc

lear

hor

mon

e re

cept

or

Serin

e pr

otea

se

Isom

eras

e

Poly

mer

ase

14

Page 15: Looking for the Best QSAR and Docking Methods

15

o There are better programs than MOE

o There is no program behaving better than the others

o Gold performs better than 4 other programs

GoldFred

Dock4

MOE

DockIt LigFit

MVP FlexX Glide Flo+

Protein-ligand conformations

12,960 linear extensions

Page 16: Looking for the Best QSAR and Docking Methods

16

Min rk Av rk Max rk VarDock4 2 3.5833 7 5DockIt 2 3.5833 7 5FlexX 4 7.75 10 6Flo+ 4 7.75 10 6Fred 2 6 10 8Glide 4 7.75 10 6Gold 5 8 10 5LigFit 2 3.5833 7 5MOE 1 1 1 0MVP 2 6 10 8

Gold

FlexX, Flo+, Glide

Fred, MVP

Dock4, DockIt, LigFit

MOE 1

2

3

4

5

6

7

8

9

10

o All programs have variable positions in the ranking, except MOE.

o The most suitable docking program to estimate protein-ligand conformations is Gold.

Page 17: Looking for the Best QSAR and Docking Methods

17

Enrichment factor for actives (≤1 μM) found at 10% of the docking-score-ordered list

chk1 fxa gyrb hcvp mrs Ecoli-pdf Strep-pdf ppardDock4 1.4 4.1 1.7 1.8 4.2 0.9 0.8 1.7DockIt 4.2 2 2 1 1 0.2 0 3.2FlexX 7 2.2 5.8 0.9 3.9 0.8 0.8 5.2Flo+ 5.6 2.7 2.3 3.4 1.7 1.5 0.8 3.6Fred 2.9 4.1 1.9 2 0.6 3.2 1.2 1.1Glide 6.3 3.4 1 1 5.3 0.6 0.4 4.8Gold 0.1 4.1 4 0 0.8 1 0.1 5.5

LigandFit 3.3 1.9 2.8 1.8 2.9 2.9 1.7 1.2MOEDock 3.9 0.6 0 0 1 2.1 0.6 0

MVP 7.2 5.8 5.3 3.6 6.4 6.7 6.9 3.9

kina

se

Serin

e pr

otea

se

Isom

eras

e

Poly

mer

ase

Synt

heta

se

Met

allo

prot

ease

Met

allo

prot

ease

Nuc

lear

hor

mon

e re

cept

or

Docking as a virtual screening tool

Page 18: Looking for the Best QSAR and Docking Methods

18

Gold

FredDock4 MOE

DockIt

LigFit

MVPFlexX Glide

Flo+

Ability to correctly identify all active chemotypes from a population of decoy molecules

o MVP works better than 6 of the other programs

o DockIt behaves worse than Flo+ and MVP

o There is no program behaving better than all the others

o Flex, Glide and Gold are the programs for which it is not possible to find a better or worse program

Docking as a virtual screening tool

259,200 linear extensions

Page 19: Looking for the Best QSAR and Docking Methods

19

Min rk Av rk Max Rk VarDock4 1 4.8125 9 8DockIt 1 3.2083 8 7FlexX 1 5.5 10 9Flo+ 2 6.4167 9 7Fred 1 4.8125 9 8Glide 1 5.5 10 9Gold 1 5.5 10 9LigFit 1 4.8125 9 8MOE 1 4.8125 9 8MVP 7 9.625 10 3

MVP

Flo+

FlexX, Glide, Gold

Dock4, Fred, LigFit, MOE

1

2

3

4

5

6

7

8

9

10

DockIt

o All programs have quite variable positions in the ranking

o The most suitable docking program to identify active chemotypes is MVP

Page 20: Looking for the Best QSAR and Docking Methods

20

Conclusions

o With 2 statistics characterising QSAR models, we found 2 best models.

o … and 2 “worse” models.

o The docking program for protein-ligand conformations with the highest probability of being the best one (21%) is Gold.

o MVP has 70% probability of being the best docking program for virtual screening searches.

Page 21: Looking for the Best QSAR and Docking Methods

21

Outlook

o Why not using more statistics for QSAR models?o Instead of ordering Alice and Bob’s models, a

work to do is to order QSAR models, e.g. linear & non-linear ones.

o Some other attributes of QSAR methods need to be introduced, e.g. related to the applicability domain.

o Computational costs and other docking programs features may be included in the study.

Page 22: Looking for the Best QSAR and Docking Methods

22

Acknowledgements

Rainer Brüggemann

Subhash C. Basak

Page 23: Looking for the Best QSAR and Docking Methods

23

Thank you!