L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

Embed Size (px)

Citation preview

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    1/45

    Particle acceleration &relativistic astrophysics in the lab

    G

    oLP/IF

    PN

    Institu

    to

    Superior

    T

    cnico

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    2/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Acknowledgments

    S. F. Martins, F. Fiza, J. Vieira, J. Martins,M. Marti, R. A. Fonseca

    Work in collaboration with:

    F. Tsung, J. Tonge, J. May, W. B. Mori (UCLA)

    Simulation results obtained at epp and IST Clusters (IST),

    Dawson Cluster (UCLA), Franklin (NERSC), Intrepid(Argonne), and Jugene (FZ Jlich)

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    3/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Contents

    Laser e- acceleration

    Boosted frame simulations 10 PW laser

    High brilliance betatron radiation

    Gamma ray beams

    Relativistic beams for astrophysics

    Relativistic shocks

    Conclusions

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    4/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Contents

    Laser e- acceleration

    Boosted frame simulations 10 PW laser

    High brilliance betatron radiation

    Gamma ray beams

    Relativistic beams for astrophysics

    Relativistic shocks

    Conclusions

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    5/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Particle accelerators: rich science and applications

    Adapted from Tom Katsouleas (Duke)

    LargeVerified Standard Model of ParticlePhysics

    W, Z bosons

    Quarks, gluons and quark-gluonplasma

    Asymmetry of matter and anti-matter

    In pursuit of the Higgs boson

    CompactMedicine

    cancer therapy, imaging

    Industry

    lithography

    Light sources (synchrotrons)bio imaging

    condensed matter science

    International Linear Collider

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    6/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Particle accelerators

    High Energy

    HighLuminosity

    High BeamQuality

    Low Cost

    L = fN2

    /4xy

    / 0.1% 10% n yy < 1 mm mrad

    [event rate]

    [low energy spread] [low emittance]

    [1/10 of 1010!/TeV]Gradients > 100 MeV/m Efficiency > few %

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    7/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Recent achievements in laser-plasma accelerators

    Guiding in plasma channels and ~1 GeV e- beams

    Leemans et al, Nat. Phys. (2006)

    Self-guided propagation and self-injected electrons (>1 GeV)

    Hafz et al, Nat. Photonics (2008); Kneip et al, PRL (2009); Froula et al, PRL (2009);Clayton et al, submitted [1.4 GeV in 1.3 cm @ 1018 cm-3]

    Controlled all-optical injection of monoenergetic electron beams

    Faure et al, Nature (2006)

    Beam loading in nonlinear wakes

    Tzoufras et al (2008); Rechatin et al (2009)

    Intense incoherent radiation (betatron x-rays & undulator radiation)

    Rousse et al, PRL (2004); Kneip et al(submitted); Froula et al(in preparation) &H.-P Schlenvoigt et al, Nat. Phys. (2004); M. Fuchs et al, Nat. Phys. (2009)

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    8/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Recent progress has put plasma accelerationat the forefront of Science

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    9/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Tech developments have triggered recent progresses

    09 Peak laser intensity ~ 1022 W/cm2 09 Peak computing power > 1 Tflop/s

    Mourou, Tajima, Bulanov (2006) Source: top500.org

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    10/45

    New Features in v2.0

    Bessel Beams

    Binary Collision Module

    Tunnel (ADK) and Impact Ionization

    Dynamic Load Balancing PML absorbing BC

    Optimized higher order splines

    Parallel I/O (HDF5)

    Boosted frame in 1/2/3D

    osiris framework

    Massivelly Parallel, Fully RelativisticParticle-in-Cell (PIC) Code

    Visualization and Data Analysis Infrastructure

    Developed by the osiris.consortium! UCLA + IST

    OSIRIS 2.0

    Ricardo Fonseca: [email protected] Tsung:[email protected]

    http://cfp.ist.utl.pt/golp/epp/http://exodus.physics.ucla.edu/ L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    11/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    OSIRIS strong scaling up to ~300k CPUs

    ! Spatial domain decomposition! Local field solver! Minimal communication! Dynamic Load Balancing

    Optimize scalability and tap new hardwares

    New hardware features

    SIMD units

    tailored code already in production

    GPUs

    CUDA development (test PIC code)

    PowerXCell

    1

    10

    100

    104

    105

    Spe

    ed

    up

    CPUs

    JUGENEGermany

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    12/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Can LWFA reach the energy frontierwith the next generation of lasers?

    !! ! ! ! !! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! !

    !

    ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! !

    ! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

    ! ! ! ! ! ! ! ! ! ! ! ! ! !!

    !"#$%%&'()"

    *+,-.)/&0."1234

    !""#$%&'()*

    +,-'/#56(%(789+--: .;0.

    !""#$%&'()+

    +,-'/#56(%(789+--:.;0.

    !""#$%& '(),

    +,-'/#56(%(789+--:.;0.

    -".%&'()/+01!+?@/&0%$6/

    9+--:.;0.

    *2-345"67/+01

    !+?@/&0%$6/

    ,%&"5%&0..;0.

    *2(?=@AB#

    *+?=*CB#

    *+?=*CB#

    >DEFDG$%G#D$H$%#$IJ#%&B'6D5D$H

    K0"$D6)FH#D6#

    % 'GL)M

    '66%5%&'$D"G

    N;O=N&'H

    E%G%&'$D"G

    -5'#(')FH#D6#

    3PQ

    *2?

    C2?

    ,22?

    +0+22(< =*7>?=*2B#8))5D6'$D"G#

    E0(%/#;%&)F@$(0/G$#&%H0&'/)$&%"#$/6#/"I

    !%'(=)J5#%#.D$6FH'&L

    C2?

    ! ! ! ! ! ! ! ! ! ! ! ! !

    !!

    !!!!

    !

    !!!

    !!!

    !! ! ! !!!!!!!!!!!

    !!

    !!!!

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    13/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Limits to energy gain in LWFA

    E= eEzLacc

    Diffractionlaser pulse diffracts inscale ofZr (Rayleigh length) ~ few mm

    Depletionlaser pulse looses its energy to the plasma in Ldeplfor small a0, Ldepl >> Ldph ; for a0 > 1, Ldepl ~ Ldph

    TK & JMD 83

    Recenin using

    laser-p

    ticles to high e

    nergie

    to whichlinear a

    ccelerators

    1limited.

    The beat-wave ac

    celerator2

    proposedby Dawso

    n and Tajima to

    excite larg

    tude electrostat

    ic plasma waves

    which can accele

    ra

    particles.' Whe

    reas particles i

    n the beat-wave

    accel-

    erator can g

    ain onlya finite

    amount of energy

    before

    they become out

    of phasewith the

    beat wave, by i

    ntro-

    ducing aperpend

    icular magnetic

    field the partic

    les

    are deflected acros

    s the wave front

    therebypreventi

    them from outrun

    ning thewave. T

    he particles may

    b

    accelerated to a

    rbitrarily high

    energy as they r

    id

    across the wave'

    fronts like surfers

    cuttingacross

    face ofan ocean

    wave (see Fig. 1

    ).

    -B AB, z

    / yFig. 1 An

    electrontrapped

    by a pot

    ing at Vph sees

    an electric

    which accelerates

    it across

    Sugiharaand Midzu

    no3 and

    shown that class

    ical particles

    dicularly propag

    ating electros

    ted until they d

    e-trap near t

    is letter we con

    sider t

    when theE x B ve

    i.e., E> B

    comp

    Dephasingelectrons overtake accelerating structurein Ldph ~ 10 cm/n0 [1016 cm-3]

    v ~ vgroup laser

    v ~ c

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    14/45

    Blow-out regime of laser wakefield acceleration

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    15/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Match laser spot size tobubble radius

    Linear focusingforce

    Electric fields created by laser pulse

    Phenomenological theory based on physical picture

    W. Lu et al. PR-STAB (2007)

    Longitudinal

    Ezmaxa0

    kpR kpW0 = 2 a0

    Letch > Ld

    cFWHM > 2R/3Ld

    2

    3

    20

    2p

    R

    Matched laser parameters

    Transverse

    kpR 2a0

    Linear acceleratinggradient

    For maximum energy gain:trapped e- dephasing before pump depletion

    Letch c2

    0/2

    pFWHM

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    16/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    W0 =3

    2cFWHM

    np[1018 cm3] 3.71

    a30

    P[TW]

    0[m]

    0.8

    2

    FWHM[fs] 53.22

    0[m]

    0.8

    2/3

    [J]

    a20

    1/3

    Lacc[cm] 14.09[J]

    a30

    q[nC] 0.17

    0[m]

    0.8

    2/3([J] a0)

    1/3

    E[GeV] 3

    [J]

    a20

    0.8

    0[m]

    2/3

    Different regimes for the LWFA

    * S. Gordienko and A. Pukhov PoP (2005)** W. Lu et al. PR-STAB (2007)

    Main goalMaximize

    electron energy

    Efficiency

    0.52/a019%

    Typical a0 2nc/np (nc/np)

    1/5 2 3

    Maximum electron energy

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    17/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Parameter range for 250 J laser system

    Laser

    Plasma

    e- Bunch

    a0

    Spot [m]

    Duration [fs]

    Density [cm-3]

    Length [cm]

    Energy [GeV]

    Charge [nC]

    * S. Gordienko and A. Pukhov PoP (2005)** W. Lu et al. PR-STAB (2007)

    Simulationtime [days in

    512CPUs]

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    18/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Boosted Frames in LWFA simulations

    L

    aboratoryFrame Resolution gains

    Particles

    Time steps

    Total

    Time step (1 + )

    Resolution (1 + )

    Plasma

    contraction

    Total time (1 +

    )

    2(1 + )2BoostedFrame

    J.-L. Vay, PRL 98, 130405 (2007)

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    19/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    +3GeV self-injection in strongly nonlinear regimeExtreme blowout a0=53

    Laboratory frame3000x256x256 cells

    ~109 particles105 timesteps

    x2

    [m]

    ElectronEnergy[GeV]

    90

    60

    30

    0

    3

    2

    1

    0

    x1 [ m]

    806040200

    x1 [ m]

    806040200

    x1 [ m]

    806040200

    x1 [ m]

    80604020010

    -3

    10-1

    e-density[1

    .5e19cm

    ]-3

    101

    10

    1

    S.F. Martins et al, Nature Physics (2010)

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    20/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    ~300x fasterthan lab simulation

    ElectronEnergy

    Lab[GeV]

    2

    6

    10

    14

    130001250012000

    600050004000

    x2

    Boost[m]

    x1 Boost [m]

    x1

    Boost [m]

    x1

    Boost [m]

    x2

    Boost [m]

    100

    200

    300

    400

    400

    200

    200

    300

    300

    2400

    0

    1200

    Density

    e-Energy

    Lab[GeV]

    -3

    Density

    [2.7e17cm

    ]-1

    80

    40

    0

    5

    3

    1

    10

    -2

    10

    x3

    Boost [m]

    Laser

    pulse

    Accelerating

    electron beam

    +10GeV self-injection in nonlinear regimeControlled self-guided a0=5.8

    Boosted frame7000x256x256 cells

    ~109 particles3x104 timesteps

    =10

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    21/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    10

    20

    30

    40

    0 1 2 3 4 5

    Ez

    [GV/cm]

    x1

    Boost [m]

    0.1

    0.0

    -0.1

    6000400020000

    Distance [m]

    Energy[GeV]

    +40GeV with externally injected beamsChannel guided a0=2

    Boosted frame8000x128x128 cells

    ~5x108 particles2x105 timesteps

    =10

    ~300x fasterthan lab simulation

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    22/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Regime comparison and fine-tuning

    7000x256x256 cells~109 particles

    3x104 timesteps=10

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    23/45

    Particle accelerators & plasmas

    High Energy

    HighLuminosity

    High BeamQuality

    PolarizedBeams

    Low Cost

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    24/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Contents

    Laser e- acceleration

    Boosted frame simulations 10 PW laser

    High brilliance betatron radiation

    Gamma ray beams

    Relativistic beams for astrophysics

    Relativistic shocks

    Conclusions

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    25/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Applications for LWFA beams

    LINAC

    undulator

    100m

    1km

    1cm

    E > 10 GeV

    B ~ 1 T

    LightSources(FEL)

    Plasm

    abased

    Ultra shortaccelerating

    structure

    Undulator likemotion in ion

    channel

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    26/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Betatron radiation in plasma wakefield acceleration

    Ultra shortaccelerating

    structure

    S. Wang et al, PRL (April 2002)

    I ~ 1019 photons/s 0.1 % BW mm2 mrad2@ 6 keV

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    27/45

    Scaling for multi-PW lasers (300 J class lasers)

    Wigglerstrength

    CriticalFrequency

    RadiatedPower

    Radiated

    Energy

    * W. Lu et al. PR-STAB (2007)** E. Esarey et al. PRE (2002)

    3a2

    r/c

    remec22

    a2

    Ne/3

    Power lacc/c

    kpr0

    0/p

    = p/2

    kpr03/2

    p/0 0

    = r0/W0

    26([300 J])1/6(0[m]/a0)1/12

    580([300 J]/a20)1/3(0[m])

    1/60

    2.8 107([300 J])5/6(0[m])5/12a1

    /6

    0 0

    2.52([300 J])1/3a4/30

    (0[m])1/3kW

    32([300 J])2/3a5/30

    (0[m])1/6GW

    372([300 J])4/3a2 30

    (0[m])1/3J

    53 2([300 J])5/3a1/30

    (0[m])1/6mJ

    ...

    ...

    ...

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    28/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Particle tracking in OSIRIS

    Technically challenging

    Subset of ~103 particles in ~109

    Storing information for every particlenot feasible

    104 iter. " 109 part. ~ 500 TB

    Relevant physics associatedwith small subset of particles

    Record detailed 7D phase-spaceof interesting particles

    follow interestingparticles

    tag all particles

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    29/45

    >10GeV simulation for next generation lasers

    Total radiated energy ~ 80 mJ

    Typical photon energy ~ 0.1-1 MeV

    Typical # of photons ~ a few 1011

    Beam divergence ~ Kwiggler/ ~ 2 - 5 mrad

    Ebeam ~ 10 GeV

    nplasma ~ 1017 cm-3

    r0 ~ rbeam ~ 5 m

    +10 GeV blowout LWFA stage

    Radiated Power

    P =1

    12

    e2

    c34

    pr2

    02

    Typical Frequency

    c =3

    4c2r0

    2

    p

    Kwiggler ~ 52

    Full Particle Tracking & Radiation

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    30/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Collimated radiation beam for >12 GeV e- beam

    measured beam angulardivergence (/2):in x2 = 0.64 mradin x3 = 0.61 mrad

    26.5 cm 25.8 cm

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    31/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    X-rays to -rays betatron radiation

    spectral intensity at center point

    zoom

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    32/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Contents

    Laser e- acceleration

    Boosted frame simulations 10 PW laser

    High brilliance betatron radiation

    Gamma ray beams

    Relativistic beams for astrophysics

    Relativistic shocks

    Conclusions

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    33/45

    Gamma Ray Bursters

    Relativistic colliding flows present in many astro scenarios

    N. Gehrels, L. Piro and P. J. T. Leonard, Scientific American, Dec. 2002, p. 89

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    34/45

    Plasma instabilities critical to shock formation and field structure

    B-fields generated by currentfilamentation/Weibel in GRBs[Medvedev & Loeb, Gruzinov & Waxman, 99, Silva et al, 03]

    Fields in relativistic shocks

    are mediated by Weibel/current

    filamentation generated fields

    [Spiktovsky 08, Martins 09]

    Shockfront

    |B|2

    density

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    35/45

    Fields in shock Fermi acceleration B-field generation/amplification

    Ab initio Fermi acceleration

    determined by structure of the fields

    in the shock front

    [Spitkovsky 08, Martins et al, 09]

    B-field amplification in

    upstream region via non-

    resonant Bell instability[Bell 04]

    -

    -

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    36/45

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    37/45

    z [m]x [m]

    100

    100

    150

    150

    50

    50

    0

    40

    80

    y [m]

    150 0 20 40 60 8010050

    150

    100

    50

    y[m]

    150

    100

    50

    y[m]

    x [m] z [m]

    Density[2.7e17cm-3]

    3.0

    2.0

    1.0

    0.0

    MagneticField[T]

    20

    10

    0

    -10

    -20

    100

    10

    1

    Density

    Magnetic Field

    Beam is charge neutral = no blow-out

    ElectronsPositrons

    Beam filamentation and B-field generation

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    38/45

    Standard

    5x beam temperature

    10x plasma density

    2 4 6 8 10

    Distance x [cm]

    Log

    (

    10

    B

    B

    0

    2 4 6 8Distance x [10 c/ ]p

    3

    -0

    -1

    -2

    -3

    -4

    -5

    WeibelinstabilityLinear stage

    Beam length< p

    Transition from purely transverse to mixed mode

    Beam filamentation and B-field generation

    nb=nplasma

    Beam length~ p

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    39/45

    Radiation is direct evidence for scattering in Weibel turbulence

    n

    v

    t

    d2I

    dd=

    e2

    4c

    n [(n )]

    (1 n )2ei(tn.r(t)/c)

    dt

    2

    100 101 102 103 104

    Var1

    106

    107

    108

    Selected

    Va

    riables

    !/!p

    P(!)

    !!!!

    -1

    !!-2

    Synthetic radiation spectrum

    dI/d

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    40/45

    H. Takabe

    H. Takabe et al, PPCF 50, 124057 (2008)

    Formation and propagationof Weibel mediated

    collisionless shocks

    Recent developments Youichi Sakawa et al, HEDLA (2010), submitted to PRL (2009)

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    41/45

    Numerical Parameters

    x kp = 0.5 - 1.5

    z kp = 0.5 - 1.5

    Particles per cell = 64 # particles = 5x109

    # time steps = 105

    Ignitionlaser

    0 = 1m

    I0 = 5x1019 - 5x1021 Wcm-2

    plane polarized

    56 m x 16 m

    ne0 = 100 nc

    mi/me = 3672 (D+)

    Ti0 = Te0 = 100 eV

    Physical Parameters

    Laser

    Plasma

    F. Fiza et al, in preparation (2010)L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    42/45

    Magnetic field

    Electron density

    Ion phase-space

    Current filamentation instabilityleads to thermalization/slow down

    of incident beam

    reflected ions

    shock front

    hot region

    strong mass build-up/compression

    ~ 20 c/pi

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    43/45

    electron density

    vreflected ions = 0.2 cvshock= 0.1 c

    vhole boring = 0.07 c

    laser

    vshock

    vreflected ionsvhole boring

    n2

    n1

    hb =

    nc

    2ne

    Zm

    M

    I2

    1.37 1018

    1/2= 0.07*

    shock =(1 + add)

    2d 1

    1 + d + ad(2

    d 1)

    0.1n2

    n1

    =add + 1

    ad 1 3

    **

    ~ 100 c/pi

    L. O. Silva | ELI Scientific Challenges, April 26 2010

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    44/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Contents

    Laser e- acceleration

    Boosted frame simulations 10 PW laser

    High brilliance betatron radiation

    Gamma ray beams

    Relativistic beams for astrophysics

    Relativistic shocks

    Conclusions

  • 8/4/2019 L.O. Silva-Particle Acceleration & Relativistic Astrophysics in the Lab

    45/45

    L. O. Silva | ELI Scientific Challenges, April 26 2010

    Conclusions

    + 40 GeV beams with 250 J laser system

    New laser systems in the 10 PW range able to explore full range of LWFAscenarios

    From high charge multi-GeV beams to externally injected 40 GeV beams

    High brilliance gamma-ray beams from betatron radiation

    Betatron radiation generated can reach novel parameters not achievable withother machines

    Gamma-ray beams from betatron radiation with ~ 10 GeV beams

    Relativistic beams/flows for astrophysics

    Beams appropriate to probe basic processes relevant in relativisticastrophysics

    Ability to drive relativistic shocks in the laboratory