32
MAKRON Books Capitulo 2 ,., LIMITES DE FUN<;OES a conceito de limite de uma fum.ao f e uma das ideias fundamentais que dislinguem 0 c:ilculo da algebra e da trigonomelria. No desenvolvimento do calculo no seculoXVlII, o conceito de limite foi tralado intuitivamen- te, tal como fazemos aqui na Se<;ao2.1,on de supomos que 0 valor de f(x) tende para urn cerlo numero L quando 7tende para urn numero a. au seja, quanta mais pr6ximo de- L estiver 0 valor de f(x), maispr6ximo de a estara x. a problema desta defini<;aoesta na palavrafE?:Tin~'7Um cientisla pode co~s~de- rar 0 resultado oe uma,~n~ra ao proximo de urn valor exato L quando esliver a 10-6cm de L. Urn corredor profissional pode eslar pr6ximo da meta quandoesliver a 50 melros do final. Urn aSlronomo as vezes mede a proximidade em ano-Iuz. Assim, para evilar ambigtiidade, e preciso forrnular uma defini- . <;ao de limite que naocontenha a palavra proximo. Faremos isso na Se<;ao 2.2, enun- ciando 0 que e tradicionalmenle chamado fA.fJlnir;iio E-O de limite de lima fimr;iior A defini<;ao e precisa e aplicaveI a qualquer silua<;1ioque queiramosconsiderar. Mais adian- te nesle capitulo discutiremos propnedades que possibililam calcular muilos limites de modo facil, sem apelar paraa defini<;ao E-O. lNa Ultima se<;ao utilizamos limites para defi- I nir fimr;iio continlla, urn conceito largamente ( empregado em todo 0 calcuio.

Livro Calculo 1 - swokowski 2º parte.pdf

Embed Size (px)

Citation preview

Page 1: Livro Calculo 1 - swokowski 2º parte.pdf

MAKRONBooks

Capitulo 2,.,

LIMITES DE FUN<;OES

a conceito de limite de uma fum.ao f e umadas ideias fundamentais que dislinguem 0

c:ilculo da algebra e da trigonomelria. Nodesenvolvimento do calculo no seculo XVlII,o conceito de limite foi tralado intuitivamen-te, tal como fazemos aqui na Se<;ao 2.1, on desupomos que 0 valor de f(x) tende para urncerlo numero L quando 7tende para urnnumero a. au seja, quanta mais pr6ximo de-L estiver 0 valor de f(x), mais pr6ximo de aestara x. a problema desta defini<;ao esta napalavrafE?:Tin~'7Um cientisla pode co~s~de-rar 0 resultado oe uma,~n~ra ao proximode urn valor exato L quando esliver a 10-6 cmde L. Urn corredor profissional pode eslarpr6ximo da meta quando esliver a 50 melrosdo final. Urn aSlronomo as vezes mede aproximidade em ano-Iuz. Assim, para evilarambigtiidade, e preciso forrnular uma defini- .<;ao de limite que nao contenha a palavraproximo. Faremos isso na Se<;ao 2.2, enun-ciando 0 que e tradicionalmenle chamado

fA.fJlnir;iio E-O de limite de lima fimr;iior Adefini<;ao e precisa e aplicaveI a qualquersilua<;1ioque queiramos considerar. Mais ad ian-te nesle capitulo discutiremos propnedades quepossibililam calcular muilos limites de modofacil, sem apelar para a defini<;ao E-O.

lNa Ultima se<;ao utilizamos limites para defi-

Inirfimr;iio continlla, urn conceito largamente( empregado em todo 0 calcuio.

Page 2: Livro Calculo 1 - swokowski 2º parte.pdf

2.1 INTRODUC;Ao AO CONCEITO DE LIMITE

No calculo e suas aplica<soes interessam-nos em geral valoresf(x) de uma fun<sao f que estejam proximos de urn numero a,mas que nao sejam necessariamente iguais a a. De falo, hii muiloscasos em que a nao esta no dominio de f, islo e, f(a) nao edefinida. A titulo de ilustra<sao, consideremos

Xl-uf(x)= 3x-6

com a = 2. Note que 2 nao esta no dominio de f, pois, fazendox = 2 obtemos a expressao indeterminada 0/0. A tabela seguinte,obtida com uma calculadora, reJaciona alguns valores (com oitodecimais) para x proximo de 2.

, i : : ... ~" . r. '.

x '0 ·:,,;f(x): ..• :'2,1 1,47000000

2,01 1,34670000

2,001 1,33466700

2,0001 1,33346667

2,00001 1,33334667

2,000001 1,33333467

1,91,99

1,999

1,9999

1,99999

1,999999

'.'j(;j".~"1,20333333

1,32003333

1,33200033

1,33320000

1,33332000

1,33333200

Parece que, quanta mais proximo de 2 esla x, mais proximo de~ estii f(x);' entretanto, n~o podemos ter certeza disto, porque

calculamos apenas alguns valores da fun<sao para x proximo de2. Para obtermos 'um argumenlo mais convincenle, fatoremos 0numerador e 0 denominador de f(x):

x2(x - 2)f(x) = 3(x _ 2)

Se x '" 2, podemos cancelar 0 falor comum x - 2; verificaremosque f(x) e dada por k xl. Assim, 0 grafico de f(x) e a parabola

y = ~xl com 0 ponto (2,~) omilido, conforme se ve' na Figu~a .

2.1. E evidenle que, geomelricamente, quanta mais proximo d~2 estiver x, mais proximo de ieslara f(x), conforme indicado na

tabela precedenle. .

Em geral, se uma fun<sao f e definida em todo urn inlervaloaberlo con tendo urn numero real a, exceto possivelmente noproprio a, pod em os perguntar:

1. A medida que x estii cad a vez mais proximo de a (masx '" a), 0 valor de f(x) tende para urn numero real L?

2. Podemos tornar 0 valor da fun<sao f(x) tao proximo de Lquanto queiramos, escolhendo x suficientemente proximode a (mas x '" a)?

e dizemos que 0 limite de f(x), quando x tende para a e L, ouque f(x) se aproxima de L quando x se aproxima 'de a. Podemosusar lambem a nota<;ao

f(x) -> L quando x -> a

Islo significa que 0 ponto (X, J(x» do grafico de f se aproximado ponto (a, L) quando x se aproxima de a. Usaremos asexpressoes proximo e se aproxima de maneira intuitiva. Naproxima se<;aodaremos uma defini<siio formal de limite, que evitaesta terminologia. Utilizando esta nota<sao de limite, podemosdenotar 0 resultado de nossa iluslra<sao como segue:

lim Xl - 2.l..2 = ix_23x-6 3

o quadro seguinte resume a discussao precedente e da ulnailuslra<sao grafica.

Podemos tomar f(x)laG proximo de Lquanlo quisermos,escolhendo x sufi-cientemente proximode a epr",a)

Page 3: Livro Calculo 1 - swokowski 2º parte.pdf

I y = &l!..Jx

"._~

I -1--+--I x

. Se f(x) se aproxima de um certo niimero (que nao sabemosqual seja) quando x se aproxima de a, escrevemos Iim,_.a f(x)existe.

o gnifico de f exibido no quadro anlerior ilustra apenas umaforma como f(x) pode aproximar-se de L quando x se aproximade a. ~ao exibimos u~ ponlo com a coordcnada x igual a a porque,~o utlhzar 0 conceito de limite (2.1), sempre supomos x " a; istoe,o valor f(a) da fun9io e completamenle irrelevante.Como veremosf(a) pode ser diferente de L, pode ser igual a L, ou pode mesmo naoexistir, dependendo da natureza da fun~ao J.

. ~~ nosso estudo de f(x) = (r - 2r)/(3x - 6) foi posslvelslmphflcar f(x) fatorando 0 numerador e 0 denominador. Emmuitos casos, tal simplifica~ao algebrica e impossive!. Emparlic.ular, ao considerarmos derivadas de fun~oes trigonometri-cas mais adiante, deveremos responder a seguinte pergunta:

I. senx .1m-- eXlste?x-o X

Note que fazendo x = 0 obtemos a expressao indelerminada 0/0.A tabela da pagina seguinte, oblida corn uma calculadorarel~c.iona algumas aproxima«oes de f(x) = (sen x)/x para ;proxImo a 0, onde x e ulIIlllllllero real ou a medida de urn anguloem radianos. A Figura 2.2, ao lado da tabela, e urn grMico de.f.

.-,. x· ., . f(x) = sen x.... ".,' X :

±2,0 0,454648713±I,O 0,841470985±O,5 0,958851077±O,4 0,973545856±0,3 0,985067356±O,2 0,993346654±O,1 0,998334166±O,OI 0,999983333±O,OOI 0,999999833±O,OOOI I 0,999999995

Referindo-nos a tabela ou ao grMico, chegamos 11 segllillteconjectura: .

Jim sen x = 1x-o x

Como dissemos, fizemos apenas uma conjeclura quanto 11resposta. A tabela indica que (sen xl/x eSla cada vez maispr6ximo de 1 quanto mais proximo x esla de 0; todavia, naopodemos estar absolutamente certos dislo. Poderia ser que os.valores da fun~ao se afastassem de 1 se x estivesse mais proximode 0 do que os valores indicados no quadro. Embora umacalculadora possa auxiliar-nos na suposi«ao da existencia dolimite, ela nao pode ser usada como demonstra«ao. Voltaremosa este limite na Se«ao 3.4, quando provaremos que nossasuposi«ao e correia.

E faeil achar lim, _ a f(x)se f(x) e uma expressao algebri-ca simples. Por exemplo, se f(x) = 2x -3 e a = 4, e evidente quequanto mais proximo de 4 estiver x, mais proximo de 2(4) - 3 = 5estara f(x). Isto nos da 0 primeiro limite da ilustra~ao seguinte.Os dois limites restantes podem ser oblidos da mesma maneiraintuitiva.

lim (r + 1) = (_3)2 + 1 = 9 + 1 = 10.%--3

Na ilustra«ao precedente 0 limite quando x -+ a pode ser obtidosimplesmenle substituindo-se x por a. Trata-se de uma proprie-dade que e valida para fun«oes espcciais chamadas jlmr;oescontlnuas, a serem estudadas na Se«ao 2.5. A proxima iluslra~aomoslra que esta tecnica nao e apliciivel a toda fun~ao algebricaJ. Na ilustra«ao, e importante notar que

r + x - 2 (x - 1)(x + 2)---- = 1 = x + 2, desde que x " 1.

x-I x- .

(Se X" 1, enlao x-I" 0, e e permitido cancelar 0 falor comUI1lx-I no numerador e denominador.) Segue-se que os grMicosdas eqlla~oes y = ().2 + X - 2)/(x - 1) e y = x + 2 sao os mesmosexceto parax = 1. Espeeificamenle, 0 ponto (I, 3) csla no grflficode y = x + 2, mas nao esla no griifico de y = (r + x - 2)/(x -- '1),conforme iluslrado.

Page 4: Livro Calculo 1 - swokowski 2º parte.pdf

ILUSTRA<;Ao

x' +x-2g(x)=---

x-I

se x;t 1

sex= 1

Na ilustra~o precedente, 0 limite de cada fun«ao, quandox se aproxima de 1 153, mas no primeiro caso f(l) = 3, nosegundo caso g(l) nao existe e no terceiro 11(1) = 2 •• 3.

Os dois exemplos seguintes ilustram como manipula«6esalgebricas podem ser usadas para determinar certos limites.

EXEMPLO 1

2lr-5x+2Sef(x)= 5Xf-7x-6'

o numero 2 nao esta no dominio de f,.pois, se fizermos x = 2,obteremos a expriss~o indeterminada 0/0. Fatorando-se 0 nume-rador e 0 denominador, obtemos

~- 2)(2x-1)f(x) = (x - 2)(5x + 3)

Nao podemos cancelar 0 fator x - 2 neste momento; todavia, setomarmos 0 limite f(x) quando x ~ 2, tal cancelamento 15permitido, porque, por (2.1) x •• 2 e, dai, x - 2 •• O. Assim,

I· f() I' 2x.2- 5x + 21m x = 1m 5.2 7' 6

x-2 x-2 X - x-

= lim (x - 2)(2x - 1)x-2 (x - 2)(5x + 3)

= lim 2x - 1 = 1..x-2 5x + 3 13

EXEMPLO 2

Seja f(x) =;/_93

(a) Ache Lim f(x).x-9

'(b) Esboce'o gra'fico de f e ilustre graficamente 0 limite da. parte. (~). .

(a) Note qu'e 0 n6m'ero 9 nao esta no dominio de f. Para achllro limite, modificaremos a forma de f(x) racionalizando 0

.. denominador como se segue:' .. '.

Page 5: Livro Calculo 1 - swokowski 2º parte.pdf

• 'I/tl) •• V- ,I'

(9.('~-!..,.:-:

M: 16 jf(x)I I I 111I I I-H-H-I-t-H--I->-

x-> I<-.x x9

"':1:<" (X -9)(v'X + 3)=1llI

x-9 x-9

Por (2.1),ao investigarmos 0 limite quando x -> 9, supornos quex •• 9. Logo x - 9 •• 0, e entao podemos dividir numerador edenominador por x - 9; isto e, podemos callce/ar 0 fator x - 9,o que d~

: Jim f(x) = lim (v'X + 3) ~ Y9 + 3 ~ 6..~_.__.~__._•... :.x"""'!'9 .•, • __..x_9·

(b) Se racionalizarmos 0 denominador de f(x) como em (a),veremos que 0 grafico de f e 0 mesmo que 0 gnifico daequa<;ao y = v'X + 3, excelo para 0 pOllIO (9, 6), con formeilustrado na Figura 2.3. Conforme x aproxima-se de 9, 0ponto (x, f(x» no gnifico de f aproxima-se do ponto (9,6).Note que f(x) nunca atinge efetivamente 0 valor 6; todavia,f(x) pode tomar-se tao proxinlo de 6 quanta desejarmos,bastando tomar x suficientemente proximo de 9.

Os dois proximos exemplos envolvem fun<;oesjlue nao tcmlimite quando x se aproxima de O. As solu<;oes sao intuitivas pornatureza. Demonstra<;oes rigorosas exigem a defini<;ao formalde limite, dada na proxima se<;ao.

M I· 1 - .ostre que 1m - nao eXlste.x-OX

A Figura 2.4 esbo<;a 0 gnifico de f(x) ~ 11x. Observe quepodemos fazer If(x)1 tao grande quanto quisermos, bast an doescolher x suficientemente proximo de 0 (mas ••0). Por exemplo,se quisermos f(x) = -1.000.000, escolhcremos x = -0,000001.Para f(x) = 109, escolheremos x = 10-9• Como f(x) nao tendcpara urn numero especifico L quando x se aproxima de 0, 0 limitenao existe.

M I· 1 - .ostre que 1m sen - nao eXlste.x-o X

SOLu<;:AoDetcrminemo~ primciro algumas caracteristicas do grHico dey = sen (llx). Para deterrninar os interceptos-x, nolcmos que,para todo inteiro n,

.~ 1 1sen - = 0 se e somente se - = lUI, OU X = -

x./ x nil

Yeja alguns interceptos-x: .

1 1 1 1±~, ± 2Jt' ,± 3n'''''± lOOn'

Fazendo x tender para 0, a distancia entre interceptos-x sucessi-vos diminui e, de fato, tende para O. Analogamente,

1 1sen:; = 1 se e somente se x = (n/2) + 2nll

1 1sen:; = -1 se e so mente se x = (3n/2) + 2nll '

onde n e um inteiro arbitrario. Assim, quando x tende para 0, osvalores da fun<;ao sen(l/x) oscilam entre -1 e 1, e as "ondas"

'corresponden'tes tornam-se cada vez mais "c~mpr~midas", comose vc na Figura 2.5. Logo limx_osen (llx) nao eXlste, porque osvalores funcionais nao tendem para um numero determinado Lquando x,se aproxima de O.

!(xl:sen

l I~'\~l;~~I-I-H-1\JI rh H-H-+-;~"~ ~ 1

Page 6: Livro Calculo 1 - swokowski 2º parte.pdf

/,/----------.- ''',\Limites laterais (2.2)

As vezes utilizamos \imites laterais dos tipos ilustrados noquadro a seguir:

SIGNIFICAGAo., INTUITIV A_

Podemos tomar f(x) taoproxima de L quanta qui-sermos, bastando escolher xsuficientemente proximo dea, e x < a.

y y = f(x)

f(x)i~:: :.L.-x~a x

(limiteminimo)

Podemos tomar f(x) taoproxima de L quanta qui-sermos, bastando escolher xsuficientemenle proximo dea, ex> a.

y

~Li :f(x)(limite

maximo)

Para urn limite 11 esquerda, a fun"ao f deve ser definidaem (ao menos) urn intervalo da forma (c, a), para algum numeroreal c. Para urn limite 11 direita, f deve ser definida em (a, c),para algum c. A nota"ao x - a- significa que x tende para apela esquerda, ex -'-+ a+ significa que x tende para a pela direita.

: (a) lim f(x)z-2'

(b) lim f(x)x-2~

(a) Se x > 2, entao x - 2 > 0 e, dai, f(x) = YX- 2 e urn numeroreal; ista e, f(x) e defmida. Assim,

(b) 0 limite 11esquerda nao existe porque f(x) = YX- 2 nao eurn numero real se x < 2.

(c) 0 limite nao 'existe porque f(x) = YX- 2 nao e definidaem urn intervalo aberto contendo 2.

o teorema que segue estabelece a rela"ao entre limiteslaterais e limites.

'" .i~-}(~)~::L se e 'somente- s'e liIn f(x) = L = iim j(x)__,x-a' x-a- . %_01+."

o teorema precedente (que pode ser demonstrado usando-se as defini<;6es da Se"ao 2.2) nos diz que 0 limite de f(x),quando x se aproxima de a, existe se e somente se ambos oslimites laterais direito e esquerdo existem e sao iguais.

Se f(x) = W, esboce 0 grafico de f e ache, se possivel,x

(3) lim f(x)x ....•0-

(b) lim f(x)x-o+

A fun"ao f nao e definida em x = O. Se x > 0, entao Ixl = x ef(x) = xIx = 1. Logo, para x > 0 0 grafico coincide com a retahorizontal y = 1. Se x < 0, entao Ixl = - x e f(x) = -xIx = -1.Isto nos dli a Figura 2.7. Referindo-nos ao grafico, vemos que

(a) !im f(x) =-1x-o·

(b) lim f(x) = 1x-o'

(c) Como as limites laterais 11 direita e 11 esquerda sao difer 'n-tes, decorre do Teorema (2.3) que Ilm,_J (x) nao exist·.

No proximo exemplo consideramos uma fun<;ao' definlil \por partes.

Esbace 0 grafico da fun"ao f definida por

\

3 -x se x < 1f(x) = 4 se x· 1. x?- + 1 sc x > 1

Ache 11mf(x), tim f(x), e lim J(x) ..•.....• 1" x-. l' x-- I

Page 7: Livro Calculo 1 - swokowski 2º parte.pdf

tj~.."".<~r. ~~·:.rt':A ;.~.r ..;'! ....••:·:·

SOLu<;AoA Figura 2.8 exibe 0 g~~ri~o. Os Jimites laterais sao

Jim fix) = Hm (3 -x) = 2.1'-1- . x-f

lim fix) = Hm (,r + 1) = 2x-I" x-I"

Como os limites laterais direito e esquerdo sao iguais, decorredo Teorema (2.3) que

Note que 0 valor da fun<;ao f(l) = 4 e irrelevante para adetermina<;ao do limite.

Urn gas (tal como vapor d'agua ou oxigenio) e mantido a'temperatura conslante no pistao da Figura 2.9. A medida que 0

gas e comprimido, 0 volume V decresce ate que atinja uma certapressao critica. Alem d~ssa pressao, a gas assume forma Iiquida.Use 0 grMico da Figura 2.9 para achar e interpretar.

(3) lim VP-IO!f

(b) Jim VP-1OO'

SOLu<;Ao(3) Vemos pela Figura 2.9 que, quando a pressao P em (torrs)

e baixa, a substancia e urn gas e 0 volume V (Iitros) egrande. (A defini<;ao de torr, unidade de pressao, pade serencontrada em textos de fisica.) Se P se aproxima de 100por valores inferiores a 100, V decresce e se aproxima de0,8; isto e,

lim V= 0,3.P-IOlJ'

o limite 0,3 representa 6 volume no qual a subSlancia cOlflc<;aa se transformar de liquido em gas.

(c) limp_loo nao existe, po is os timites laterais 11 direita e aesquerda em (a) e (b) sao diferentes. (Em P = 100, asformas gasosa e Iiquida coexistem em equilibrio, e asubstancia nao pode ser classificada seja como gas ou comoIiquido.)

9 Jim .!~•__ 12t+1

2 lim (x2 + 2).-3 J~ j'

4 lim(-x) - 3x--3

6 lim 100 '" :lcO.-7'7 '110lim x+2 ""-1-.-s x-4

Exercs. 11·24: Use uma simpJifica<;iioalgebricapara achar 0 Jimite, se existe.

11 Jim (x + 3~--=-il 12 lim (x + 1)(x2 + 3)x--3 (x+3)(x+ 1) .--1 x+ 1

13 lim x2 -4x-2 x-2

( ?-r15 im ----.!'-I 2? + 51' - 7

. J? - 16171~.Yk_2

19Iim(x+1If-rh-O 11

21 Jim il3

+ 8h- -2 il + 2

z-4231im ---'_-2l-2z-8

14 Jim 2~-&2+x-3.-3 x-3

16 Jim ? + 21' - 3,--3 ? + 71'+ 12

18 Jim {X -5._25x-25

241im z- 5,-sl-lOz+25

tvf:, .

Jim V=0,8..~~ P-lOO'

.-----~ 0 limite 0,8 representa 0 volume no qual a substancia come'"aJ DO !' (101'1') ~

a se transformar de gas em Ifquido.

(b) Se P > 100, a substancia e um Iiquido. Se P se aproximade 100 por valores superiores a 100, 0 volume V aumentamuito lenlamente (pois os liquidos sao quase incompress!_veis), e

x+526 J{x) = Ix + 51 ;

27 J{x) = >Ix + 6 + x; a = - 6

Exercs. 31-40: Use 0 grafico para determinar cadalimite, quando existe:

(a) limJ{x) - (b) Jim J{x)x-2- x-2'

(d) lim f(x) (e) lim fix)x-o- x-o'

Page 8: Livro Calculo 1 - swokowski 2º parte.pdf

Exercs. 41-46: Esboee 0 grafieo de f e ache eadaJimite se existe:

(c) Jim f(x)x-I·

(b) lim f(x)x-I·

41 f (x) ~ {i!- 1 se x < 14-x se x:.l

{~ se xsl42 f(x) ~3-x se x>1

43 f(x) ~ {3X -1 se x s 13-x se x>1

44. f (x) ~ {' x-II se X" 11 se x~1

4.5.J(X) J~+ 1 :~.'. lx+ 1 se.... Ii! se x<1

46 f(x) = ; se x ~ 1~.:. x-2 se x>1

41 Urn pais taxa em 15% a renda de urn individuoate $20.000 e em 20% a renda aeima daquelelimite.

x<1x~1x>1

:.' (a) Determine uma fun~iio T definida por partespara 0 imposto total sobre uma renda de xd6lares.

limr- 20,OCXf

T(x) e lim T(x}.x-20.000·

48 Uma eompanhia telefOniea debita 25 centavos.: pelo primeiro minuto de liga~iio interUrbana, e

15 centavos para eada minuto adidonal. .

(a) Determine uma fun~iio C definida por partespara 0 euslo tolal de uma liga~iio de xminutos.

(b) Se II e urn inteiro maior do que I, determine:Jim C(x) e lim C(x)

49 A pr6xima figura e urn grafieo das for~as-gexperimenladas por urn astronauta durante a de-colagem de uma nave espadal com dois lan~a-dores de foguete. (Uma for~a de 2g's e duas vezesa for~a da gravidade, 3g'~ de tres vezes a for~ada gravidade etc.) Se F(t) denota a for~a-g aDs tminutos de voo, determine e interprete

(b) Jim F(I) e lim F(t}'-3,5- '-3.5'

50 Urn paciente em urn hospital reeehe uma do~oinicial de 200 miligramas de om remedio. A 'lIdll

4 horas reeebe uma dose adieional de JOOmg. Aquantidade [(t) do remedio presentc nil eo,relltsanguine a ap6s t horas e cxibida 1111 fiB"llt.Determine e interprete Jim [(I) clint 1(1). (Yr'.!11

'-8~ ,-..8'

400

300 - ~200' N .;

i .•100 -

I - I I I I I I4 tl I' ,(, ~11 I(hll',,~)

Page 9: Livro Calculo 1 - swokowski 2º parte.pdf

Ilo:~cl·cS. 51-56: 0 limite indicado pode ser verificado1"11 IIIClOdosdcsenvolvidos posteriormente no te~to.('(llllirll 0 rcs\lllado substituindo x por ntimeros reaisIIdCljlllldos.Pur que isto naD prova a existencia doI IIdle?

. (41X1 + 9IXI)I~XI5511m --2-- - 6

x-o

[g 57 (a) Se f(x) = cos (1/x) - sen (1/x),investigue limx_ 0 f(x) fazendo primeirox = 3,1830989x 10-/1para n = 2, 3, 4 C emseguida fazendox = 3 x 10·/1para II = 2, 3, 4.

(b) Qual e 0 limite em (a)?

[g 58 (a) Se f(x) = x1/100 - 0,933, investiguelim f(x) fazendo x = 10·/1para II = 1, 2, 3.n-O+

,,1 lilll 2' - 2._ 1 39l • I x-I J

(b) Qual parece ser 0 limite ern (0), equal e 0

limite efetivo?

~.2 DEFINIQAo DE LIMITE

A Definil;iio (2.4) desta sec;ao da 0 significado preciso de limitede uma func;ao.Porque a definic;ao e apenas abstrata, comecemoscom uma i1ustrac;aofisica que po de tornar facil a compreensao.Os cientistas frequentemente estudam a maneira como quanti-dades variam, e se elas se aproximam de valores especificos sobcertas condi~6es. 0 aparelho ilustrado na Figura 2.10(i) e usadopara estudar 0 fluxo de IIquidos ou gases. Consiste em urn tuboVenturi (urn tuba cilindrico com uma constricc;ao estreita) e doismedidores que medem a pressao de urn IIquido ou gas nas partesnao-constrictas do tubo. (Outros tipos de medidores podem medira velocidade do fluxo de IIquido ou gas ao percorrer 0 tubo.)

Suponhamos que 0 Iiquido enlre no tuba pela esquerda,com uma certa velocidade. (A noc;ao de velocidade sera definidano Capitulo 3.) 0 medidor de pressao interna acusa uma medidax da pressao na parte nao-constricta do tubo. Ao passar 0 IIquidopela constri~ao, sua velocidade aumenta, e a pressao decresceate urn valor y, conforrne indicado pelo rnedidor de pressaoconstricta. Fixemos nossa atenc;ao nos dois medidores, conformeilustrado na Figura 2.l0(ii). Utilizaremos esses rnedidores paradar urn significado preciso a afirmac;ao y se aproxima de Lquando x se aproximo de a, ou simbolicamente,

(i)Prcssao Inle0l3

x

a-b[jfa~~a+b

L + •£--0

Ao utilizarmos este eq\liparnento de laborat6rio, nao espe-rarlamos que a pressao permanecesse exatamente em L por urnlongo periodo de tempo. Em lugar disso, nosso objetivo poderiaser forc;ar y a permanecer muito proximo de L restringindo x avalores pruximos de a. Emparlicular, se € (epsilon) denota urnnumero real posilivo pequeno, suponhamos que ele seja sufi-cienle para que

conforme indicado no medidor de pressao constricta na Figura2.10(ii). Urna afirmac;ao equivalente, utilizandu valores abso-lutos, e

,Se essas desigualdades san validas, dizemos que y tern toleran-Cia-E e~ L. Por exemplo, a afirmac;ao y tem tolerilncia-O,Ol emL significa IY - LI < 0,01; isto e, y esla a menos de 0,01 unidadede L. Esta tolerlincia pode ser suficientemente precisa para finsexperimenlais.

Analogamente, consideremos urn pequeno numero positivoo (delta) e definamos toleril/lcia-O em a no medidor de pressaointerna na Figura 2.10(ii). Em nosso estudo posterior de fun~6es,e importante que x '" a. Antecipanda esta restric;ao, dizemos quex tern tolerancia-o em a se

Dado E > 0 arbitrario, existe urn 0 > 0 tal que, se x tellltolerancia·b em a, entao y tern tolerlincia-E em L? Se a res postae afirmativa, escrevemos lirn y = L.

E importante nolar que, se lim,_" y = L, entao /lao illlporiaquao peque/lo seja E, podelllos sempre achor 1/111 b > 0 lal que,se x e restrito ao intervalo (0 - b, II -I- b) no rnediclor de prcssflOinterna (e x '" a), enlao y eslara no intervalo (L - E, L + e) nomedidor de pressao conslricla.

Esta c uma interprela~flo mais precisa do conceito de limiledo que a usacla na Se~;\o 2.1, onde empregamos palavras taiscomo IIIlIis proximo e se aproximo. Reforrnulando a ultimaqueslao e sua resposta CI11 termos de desigualdades, obtemos aseguinte arinnac;ao

Page 10: Livro Calculo 1 - swokowski 2º parte.pdf

Definlt;ao de {{mitede uma fungao (2.4)

:-t_.iL L .••

Definigao alternativade {{mite (2.5)

que significa, para todo I'. > 0, existe urn &> 0 tal que

se 0 < Ix - al < &,entao IY - LI < I'.

Se f(x) tem um limite quando x ten de para a, entao tallimite e ll/lico. A dernonstra<;iio e dada no principio do Apendice 11.

Ao utilizar as Defini~oes (2.4) ou (2.5), para rnostrar queIirn,_a f(x) = L, e da maxima importallcia ter presente a ordemem que cOllsideramos os lllimeros I'. e &.Devernos sernpre seguiros dois passos abaixo:Eslarnos agora a urn passo da formula"ao da defini"ao de limite

de urna fun~ao f. Basta fazermos y = f(x) na discussaoprecedente. Isto nos da a defini<;iio seguinte, que contern tarnbernas condi~oes irnpostas 11 fun"ao f.

Passo 2 Mostrar que existe urn & > 0 tal que se x terntolerancia-& em a, entao f(x) tern tolerancia-f. em L.

o nurnero & no limite nao e unico, pois, achado urn &especifico, .entao qualquer nurnero positive &1mellor do que &tarnbern satisfara as exigencias.

Antes de considerarmos exernplos, reforrnulernos a discus-sao precedente em term os do griifico da fun~ao f. Em particular,para I'. > 0 e & > 0, ternos a seguinle inlerprela"ao griifica dastolerancias, em que P(x, f(x») denota urn ponto no griifico de f.

·~~~~~§.~~T~i~ra~cia. ';. IDterpreta~iio Grafica

f(x) tern tolerancia-f. em L P(x, f(x» esta entre as retashorizontais = L ~ I'.

X tern tolerancia-& em a x esta no intervalo (a - &,a "'"&) no eixo-x, ex", a

A desigualdade 0 < I x - al < & e por vezes chamadatoledincia-& e a desigualdade If(x) - LI < f., tolerlincia-€.

Se quisermos dar 11 DefiDi~ao(2.4) uma forma que nao .contenha 0 sfmbolo de valor absoluto, basta no tar que

(i) 0 < Ix - al < &equivale a a - &< x < a + & ex •• a

(ii) If(x) - LI < I'. equivale a L - I'. < f(x) < L + I'.

A Figura 2.11 representa graficamente as desigualdades (i)e (ii) em urna reta real. Podernos reformular como segue aDefini"ao (2.4).

Os dois passos para mostrar que Iirnx_. f(x) = L podem s 'ragora interpretados graficamente como segue:

Passo 1 Para I'. > 0 arbitnirio, considere as retas hori:Gon·tais y = L ~ E (exibidas na Figura 2.12).

Passo 2 Mostre que existe urn & > 0 tal que se x cst nOintervalo aberto (a - &, a + &) ex", a, entao P(x, f(x» CSI~ 'Ill,

as retas horizontais y = L ~ I'. (isto e, dentro da rcgiao rctllll/llllrilhachurada da Figura 2.13).

Page 11: Livro Calculo 1 - swokowski 2º parte.pdf

;'

Use a Defini<;ao (2.4) para provar que lim (3x - 5) ~ 7.x~4

SOLUc;:AoFazendo, na Defini<;ao (2.4), f(x) = 3 x - 5, a = 4 e L = 7,devemos mostrar que para E > 0 arbitnirio, podemos achar urnb > 0 tal que

(*) se 0 < Ix - 41 < b, enlao 1(3x - 5) - 71 < E

Na resolu<;ao de problemas de desigualdade des Ie lipo, podemosem geral obter uma escolha adequada de b examinando aafirma<;ao de toleriincia-E. Is to conduz as seguintes desigualda-des equivalentes:

I (3x - 5) - 71 < E

I3x - 121 < E

13(x - 4) I < E

31x- 41 < E

Ix-41 <~E

(afirma<;ao de toleriincia-E)

(simplifica<;ao)

(fator comum 3)

(propriedades do valor absolulo)

(multiplica<;ao por~)

A desigualdade final acima nos da a chave necessaria. Especi-

ficamente, escolhemos b tal que b ,,; ~ E e obtemos as seguintes

desigualdades equivalentes:

la\a-o a+o

u<lx':'41 <b

0<lx-41 <1.E3

0<3lx-41 <E

° < 13x - 121 < E

0< I (3x - 5) - 71 < E

(afirma<;ao de toleriincia-b)

(escolha de b ,,;~ E)

(multiplica<;ao por 3)

(propriedades do valor absoluto)

([orma cquivalente)

o proximo exemplo ilustra como 0 proccsso gcometricoexibido nas Figuras 2.12 e 2.13 pocle scr aplicaclo a umadelerminada fun<;ao.

Consideremos 0 casu a > 0. Aplicaremos a clefini<;ao alternativa(2.5) com f(x) = x'- e L = a2• Assim, daclo E > 0 arbitrario,clevemos achar b > 0 tal que

(*) se x est a em (a - b, a + b) ex •• a, entao x'- esta em (a2 - E,02 + E).

A chave para a escolha adequada de b est a no exame dasinterpreta<;6es graficas das afirma<;6es de toleriincia. Assim, talcomo no passo 1 da pagina 67, consideremos as retas horizontaisy ~ 02 ± E. Conforme a Figura 2.14, est as retas interceptam,ografico de y = x'- em pontos com coordenadas-x ~ eva" + Eo Notemos que se x esta no intervalo aberto (~,va" + E), entao 0 ponto (X, ,y2) do grafico de f esta entre as retashorizontais. Se escolhermos urn numero positivo b menor do queva" + E - a e a -~, com a2 - E > 0, conforme i1ustrado naFigura 2.15, cntao quandoxtem toleriincia-b em a, 0 ponto (x, x'-)est a entre as retas horizontais y = a2 ± E (istoe, x'- tern tolcriincia-Eem a2). Isto prova (*). Conquanto tenhamos considerado apenaso caso a > 0, argumento semelhante e aplicaclo se a ,,;O.

Os dois pr6ximos exemplos, ja discuticlos na Se<;ao 2.1,indicam como 0 processo geometrico ilustrado na Figura 2.13pode ser usadl'l para mostrar que certos limites nao cxistcm,

Page 12: Livro Calculo 1 - swokowski 2º parte.pdf

EXEMPLO 3

M I· 1 - .ostre que un - nao eXlste.x-OX

lim.!.=Lx-oX

para algum numero 1. Consideremos urn par arbitrario de retashorizontais y = L ± E conforme iluslrado na FIgura 2.16. Cf\'TlOestamos supondo que 0 limite existe, deve ser possivel achal Llmintervalo aberto (0 - &, 0 + &) ou equivalentemente (-0, &), talque, se -0 > x > & ex •• 0, entao 0 ponto (x, l/x) do grafico esta

entre as retas horizontais. Mas como I~ Ipode tornar-se tao

grande quanto queiramos, bastando tomar x pr6ximo de 0, algunspontos do grafico estarao acima ou abaixo das linhas. Logo,nossa suposi,<ao e falsa; iSIOe, limx_o (l/x) •• L para qualquernumero L. Assim, 0 limite nao existe.

J(x)= yx

y - L + f

;::::W!. .,.,.

L 1Y = - f

-0 0 x

-1,

'.':;: ....•."

Se f(x) = kl, mostre que lim f(x) nao existe.x x-o

o gn\fico de f esla esbo,<ado na Figura 2.17. Se considerarmosqualquer par de retas horizontais y = L ± E, com 0 < E < 1, entaosempre haven! pontos do grafico que nao eslao entre essas retas.Na Figura 2.17 ilustramos 0 caso L > 0; todavia nossa prova evalida para qualquer 1. Como nao podemos achar urn 0 > 0 talque 0 passo 2 da pagina 67 seja verdadeiro, 0 limite nao existe.

o teorema seguinte afifl11a que se lima fwu;ao f tem limileposilivo qualldo x lellde para a, ell/ao f(x) e positiva em algllmintell'alo aberlo colllelldo a, com possive! exces;ao do proprio a.

;i Se Jiin:' ,. f(x) = L e L > 0, entao existe urn intervalo.' , ab~rto (;;a_ &, a + 0) contendo a tal que f(x) > 0 para todo.f!xem(a- 0, a +,&), exceto possivelmente se x = a.

Se L > 0 e fizermos E = 1 L, entao as retas horizontais y = L ±2

estao acima do eixo-x, conforme ilustrado na Figura 2.18. PelnDefini,<ao (2.5), existe urn 0 > 0 tal que, se a - & < x < a + & cx •• a entao L - E < f(x) < L + E. Como f(x) > L - EeL - E > 0,segu~-se que f(x) > 0 para esses valores de x.

Pode-se tambem provar que se f lelll 11/1/ /ill/;I' 111'111/1iltJ

quando x tellde para a, enlao exislc 11/11 illlerva 100/)1:1'111 COllI/lilt/II

a'lal que.f(x) < 0para lodox 110illlcrvlllo. cOIII/Josslvl'! '·.\I'r~ II

do proprio x = a.

Page 13: Livro Calculo 1 - swokowski 2º parte.pdf

Podem-se fonnular defini<;6es formais para limites laterais.Para 0 limite a direita x --+ a+ substilu[mos a condi<;ao0< Ix - al < 0 na Defini<;~o (2.4) por a < x < a + O. Em termosna Defini<;ao (2.5) alternativa, restringimos x a metade direila(a, a + 1\) do intervale (a .:.-1\, a + 1\). Da mesma forma, para 0limite a esquerda x --+ a- substitufmos 0 < 1x - al < 1\ em (2.4)por a - 1\ < x < a. 1510 equivale a restringir x a metade esquerda(a -1\, a) do intervalo (a - 1\, a + 1\) em (2.5).

I':•• ·•.•'N. 1-2: Expresse a cODdi~aode limite na forma(II) till I»lilli<;ao (2.4) e (b) da Defini~ao Altemativa( 'I).

11:.'·''C'N. :\·6: Expresse a condi~ao de limite lateralfll,' 1<1'mn semethante (a) 11da Defini<;ao (2.4) e(II h <IIIJ)efini<;ao Alternaliva (2.5).

":.""','.7-12: Para limx~af(x) = LeE dados, useII 1\1~lkll <IeI para achar 0 maior b, tal que seII I, al< b, entao !fIx) - LI < E.

'7 "," 4"'~_::2~ 6'•• 111. /_f - 3 '

9x2-4H J "' --- ~ -4'

,.'/,,3.r+2 '

I',~'·II'N. t.l-24: Use a Defini~ao (2.4) para pravar que" I IIt1II' ·.,isle.

Exercs. 25-30: Use " mctodo grafico ilustrado noExempJo 2 para,verificar 0 limite para'a > O.

I . ~25 lim xl ~ a2 ! 26 Jim (x2~·1) ;= a2 + 1

x-a\"

27Iimx3=a\

31 Jim k.=1I.• ~3 x-3

Exercs. 31-38: Use 0 mctodo i1uslrado nos Exem-plos 3 e 4 para mostrar que 0 limite nao existe.

331im 3x + 3x--lr<+11

35 Jim ..;x-o r

32 lim x+ 2x- -2 Ix + 21

34lim ~x- 5 ~<- 51

361im _7_x~4 x-4

39 Dc urn excillplo de \IIIIa (un<;"oI dcfinida elll ",tal que lilllx -'" Ilx) existe e li01,-. n Ilx) ••f( a).

40 Se I c a fU\I<;iiomaior inteiro (veja Exemplo 4 uaSe<;iio 1.2) e (I cO 11111 inteiro arlJitrario, Illostre quelimx_" IIx) niio ex isle.

{o se x e racional

I(x) ~ 1 se x e irracional

Mostre que Jim, ->n f( x) nfio existe para nenhumIIllmcro real II.

42 Par que nfio podcmos invcstigar lilllx 0 Vi com:luxilio da Defilli<;fio (2.4)1

2.3 TECNICAS PARA A DETERMINA<;Ao DE L1MITES

Seria excessivame~te laborioso verificar cada limite por meiodas Defini<;6es (2.4) ou (2.5). 0 objetivo desla se<;iio e introdllzirteoremas que perrnilam simplificar problemas que envolvamliroites. Antes de enllnciar 0 primeiro teorema, consideremos oslimites de duas fun<;6es muilo simples:

(i) A fun<;iio conslanle f dada por f(x) = c

(ii) A fun<;iio linear g dada pOl g(x) = x

o gnlfico de f e a reta horizontal y = e esbo<;ado na Figura2.19 para 0 caso c > O. Como

I/(x) - el = Ie - cl = 0 para lodo x

g(x) '" x.y

(X) c

x

Page 14: Livro Calculo 1 - swokowski 2º parte.pdf

e como 0 e menor que qualquer E > 0, decorre da Defini"ao (2.4)que f(x) tern 0 limite c quando x tende para a. Assim,

Constuma-se indicar estelimite dizendo que 0 limite deIUlla collstante e a pr6pria constante.

o gnHico da fun"ao linear g dada em (ii) esta esbo"ado naFigura 2.20. Quando x ten de para a, g(x) tende para a; isto e,

lim g(x) = lim x = a;(-Q' X;'Q

Pode-se deterrninar 0 limite precedente tambem por meioda Defini"ao (2.4). Indicamos estes fatos para referencia nopr6ximo teorema.

(i)!;limc=t - -- -

'<l~~~~~*f~' '';'Como veremos, os \imites do Teorema (2.7) podem servir

de base para a determlmi"ao de -limites de express6es assazcomplicadas.

Muitas fun,,6es podem ser expressas como somas, diferen-"as, produtos e quocientes de outras fun,,6es. Suponhamos asfun,,6es f e g, e L e M numeros reais. Se

o pr6ximo teorema mostra que esta expectativa e verdadeira eda resultados analogos para .produtos e quocientes.

-, _,..-,- ;\/"'>1 -. Se lim f(x) e Jim g(x) existem ambos, entao

~:r~<:~~.~uli:;;.~.,} ~.:.:/.~'

(;)l:im "rf(~) + g(x)} = \im f(~) ~ lim g(x)

Podemos enunciar como segue as propriedades do Teorema (2.8):

(i) 0 limite de uma soma e a soma dos limites.

(ii) 0 limite de urn produto e 0 produto dos limites.

(iii) 0 limite de urn quocienle e 0 quociente dos limiles, desdcque 0 limite do denominador seja diferente de zero.

(iv) 0 \imite de uma constante vezes uma fun"ao c igua'l 1\constante vezes 0 limite da fun"ao.

(v) 0 limite de uma diferen"a e a diferenca dos limitcs.

No Apendice II encontram-se provas de (i) e (iii), bascadllsna Ddini"ao (2.4). A parte (iv) do teorema decorre dirclalllclIl .da parte (ii) e do Teorema (2.7)(i):

;~ [cf(x)] = (~~Qc] b~/(x)l~c [~~~/(x)]

Para prmiar (v), podemos escrevcr

f(x) - g(x) = f(x) + (-1) g(x)

e usar, (i) e'(iv) com c = -1.

Usaremos os teoremas prcccdcnlcs pilm 'slllh'II"'(\I II

I seguinte.

Page 15: Livro Calculo 1 - swokowski 2º parte.pdf

Em vista de (i) e (iv) do Teorema (2.8):

Jim (mx + b) = Jim (mx) + Jim b

=m (limx)+bx-a

=ma+b

Pade-se provar este resultado tambem diretamente pelaDefini~iio (2.4).

ILUSTRAC;Ao

E foleil achar 0 limite do proximo exemplo aplicando-se osTeoremas (2.8) e (2.9). Para melhor avaliarmos 0 poder dessesteoremas, poderiamos tenlar verificar 0 limite usando apenas aDefini~iio (2.4).

Determine Jim 3x + 4x_25x + 7

Pelo Teorema (2.9), sabemos que os Jimiles do numerador edenominador existem. A1em disso, 0 limite do denominador ediferente de zero. Logo, pelos Teoremas (2.8)(iii) e (2.9),

Jim (3x+ 4)lim 3x + 4 =x~:--~2~__3(2) + 4 10x_25x+ 7 hm (5x+ 7) = 5(2) + 7 =17

.T-2

o Teorema (2.8) pode ser eSlendido a limites de somas,diferen~as, produtos e quocientes que envolvam um niimeroarbitrario de fun~6es. No proximo exemplo utilizamos (ii) parao produlo de Ires fun~6es (iguais).

Prove que lim);3 = aJ.x-a

Jim xl "':lim (x. x. x)x-a

= (Jimx). (Iimx). (Jimx)x-a x-a x-a

=a.a.a=aJ

o metodo usado no ExempJo 2 pode ser estendido ax· paraqualquer inteiro POSilivo n. Basta escrevermosx" como 0 produtox.x .... x. de n fatores e tomar 0 limite de cada falor. Islo nos dol(i) do pr6ximo teorema. A parte (ii) pode ser provada demaneira anolloga apelando para 0 Teorema (2.8)(ii). Outro me-todo de prova consiste em utiJizar a indu~iio matemollica (verApendice I).

; ;r~i{~._.a.f:qI1f)]"'7{xli~a fiX)] n,0" .

.:.",,:' :.d~sde·q~'e Ijrnfix) existax-a

Determine Jim (3x + 4)5.x-2

SOLUc;:AoAplicando os Teoremas (2.1O)(ii) e (2.9), temos

Page 16: Livro Calculo 1 - swokowski 2º parte.pdf

. 5

lim (3x + 4f .- [:~ (3x + 4) ]x-2

= [3(2) + 4]5

= 105 = 100.000

Determine Jim (5x3 + 3r - 6)..1'--2

lim (5)..3+ 3r - 6) = lim (5x3) + Jim (3r) - Jim (6)x--2 x--2 x--2 .1'--2

= 5 Jim (x3) + 3 lim (r) - 6x--2 x--2

= 5(_2)3 + 3(-2)2 - 6

= 5(-8)+ 3(4).- 6 = -34

o limite no ExempJo 4 eo mlmero obtido pela substitui<;ao _de x por -2 em 5x3 + 3r - 6. 0 pr6ximo teorema afuma que 0

fato e verdadeiro para todo polin6mio. ' . .

'j ,-.i ,~: .. <.: :\\~i<':"~;·"i'.:q;<~,~·':~~l~'·,~",:-.', ".',iSeI~'um#un<;aijpolinomial ~ a e urn numero real, entao

·:·····.~y,;(.1E·i\y)\:~!~;J~,/(x)=f(a): ". ., ;. .. ...:.,~.. .'): .;'.: ~:--~.,

Como f e uni~ fun~ao polinomial,

f(x) = b/ + b" _1x: -I + ... +bo

Jim f(x) = lim (b/) + Jim (b,,_,x"-') + ... + lim box-a x-a x-a x-a

= b" lim (x") + b,,_, Jim (x"-') + ... + lim box-a x-a x-a

\ .Jim q(x) = q(a)

Como q e uma fun<;ao racional, q(x) = f(x)/h(x), em que f e "sac polin6mios. Se a esta no dominie de q, enlao h(a) ;< O. Osteoremas (2.8)(iii) e (2.11) nos dao

. :~af(x) .fMhmq(x)=-J'/()=/()=q(a)

••.....• (1 1m 1 x 1 a

r 5r-2x+1x~ 4x3-7

Aplicando 0 Corolario (2.12), vem

. 5)...2 - 2x + 1 5(3)2 - 2(3) + 1:~ 4x3 - 7 = 4(3)3 - 7

45 - 6 + 1 40108 -7 = 101

o pr6ximo leorema afirma que, para raizes inlciras J ONIIvas de x, podemos determinar urn limite por substitui<; o. Nil

Apendice II encontra-se uma prova, usando a Dcfini<;f1o ( /I).

:,'1; ~¥,~~:~.2·~!J.~9jir~;t6~o·~~~itiVO, ou sc II sac 1/ ' 11111

;a),n!~H'?P,<!~l,t,l~?,}~p'~r '. ~ntao~~i3!~'Q11tf::;i:;;;');:\;:;)';);<"ii~Vi = va

,',:- x-a.. , •.. ~

Se III e /I sac inteiros positivos c {/ 0, '111 ", I'I'III~Teoremas (2.1O)(ii) e (2.13),

Jim( V'X r= (limii..)m = (va )'"x-a x-a

Page 17: Livro Calculo 1 - swokowski 2º parte.pdf

Esta fonnula de limite pode ser estendida a expoentesnegativos escrevendo-se x·r = 1/:( e utilizando 0 Teorema (2.9)(iii),

D . I'. x'" + 35etennme x~ 4 - (16/x)'

Pode:nos proceder como segue (de. as razoes):

lim (xl', + 35)x-8, xl', + 35

hmx-84 - (16/x) !im [4 - (16/x))

x-8

!im x'" + lim 35

8'~+3Y84 - (16/8)

= 4 + 6V2 = 2 + 3V24-2

.Se uma funCSaof tern. urn linJite'q~~ndJitende para a,entao ~ ".'., .:. .:'>: ~,::,~_ .. ' .". " .

',"\,.-)~.";.' n~·<;;~:<~~nf':..

.. _ ,~.~ =V'x!i:.?~,t~x),.;' ..:,~'._~: ';"T; .. ,.·~~_·~;:-:--·;~~-:'--~::/-t· ·;,·:;/:··~:.·.;·>:.:-',·,·..i~.t.~~{,':·Y-r·~:-"';'··'.~:·:··'desde que Ii 'sejauiI), inteiro posiiivo)mpar' ou n~!,cja urn'mteiropositivopa?c'jiID7(x»0: ".' .'." ~._

x-a

o teorema precedente sera demonstrado na SeCSao2.5. Parenquanto, usa-Io-emos sempre que aplicavel, para adquirir ex-periencia na detenninacsao de limites que envolvam raizes deexpressoes algebricas.

Determine Jim ~3X! - 4x + 9x-5

.. "., ,,,,.' ,,, ... :, ..,. '," ~i . " .. , .

PeiosTeorcmas(2,14) e ,(2.11), obtemos

lim {I30? - 4x + 9= ~lim 3>.-2 - 4x + 9x-s x-s

= ~~7~5--~2~O-+-9~= ~ = 4

o proximo teorema diz respeito a tres funcsoes f, h e g taisque h(x) esteja entre f(x) e g(x), ou seja, "imprensada" entref(x) e g(x), Se f e g tern urn limite comum L quando x tendepara a, entao, confonne afirma 0 teorema, h deve ter 0 mesmolimite. ",

Teorema do Sandufche (2.15) '~sJ~a'hb.hiiiJ~~%~)ih(xY:s'g(~fpa;alod~ x eni uIll..:'iIit6iValo"i1berto'conlendo a,e}{ceto possivelrnente para 0

i~~(~]\:!;j;&;;;;2,L>~i;0~").'rtl'O~~ah(x) = L. .....·,·x-a .. x-a ....... ., '. ,,- ..'.... :.,~:..

y = g(x)0,.G",'L Y = 1(x)

l-l------~-x

Se f(x) s hex) s g(x) para todo x em urn intervalo abertocontendo x, entao 0 grafico de h estara entre os graficos de f eg naquele intervalo, confonne ilustrado na Figura 2.21. Se f eg tern 0 mesmo limite L quando x tende para a, entao, pelogrMico, h tern 0 mesmo limite L. No Apendice II e dada umademonstracsao deste teorema, baseada na definicsao de limite.

Use 0 1,'eorema (2.15) para provar que

lim ),2 sen ~ = 0x-o X

1. -1 s sen ;? s 1

para todo x'" 0, Multiplicando por.r (que c pOSilivll SC .~ ••• 0),obtemos

Page 18: Livro Calculo 1 - swokowski 2º parte.pdf

IYi1~,C;

-+--+----~x

I

Esta desigualdade implica que 0 gn'ifico de y • :x? sen(l/:x?)esta entre os graficos das parabolas y = -:x? ey =:x? (veja a Figura2.22). Como

lim (-:x?) = 0 e Iim r = 0,x-o x-a

Iim :x? sen 1,= 0x-o x-

Podem-se demonstrar, para limites laterais, teoremas ana-logos aos estudados nesta se<;ao. Por exemplo,

lim.!J(x) + g(i)] = lim f(x) + (im g(x)x-a x-a z-a+

com as restri<;6es usuais sobre a existeDcia de limites e ralzesde ordem II. Val em resultados analogos para Iimites lateraisesquerdos.

Determine lim (1 + .,Ix - 2)x-2+

A Figura 2.23 e urn esbo<;o de f(x) = 1 + .,Ix - 2 ..Por meio delirnites laterais, obtemos

lim (1 + .,Ix - 2) = Jim 1 + lim "(x - 2),1'-2+ . x"-i+ .x-2+

Note que nao M limite lateral a esquerda, ou limite quandox tende para 2-, po is .,Ix - 2 nao e urn Dumero real se x < 2.

;..-L---..:

~>_1__

Seja c a velocidade da luz (aproximadamente 3,0 x loB mis, ou300.000 km/s). Pel a teoria de Einstein (teoria da relatividade), II

fOrmlll? de contra<;ao de Lorentz

especifica a rela<;ao entre (1) 0 comprimento L de urn objeto qucse move a uma velocidade v com respeito a urn observador c(2) seu comprimento Lo em repouso (ver Figura 2.24). A f6rmulaimplica que 0 com prim en to do objeto medido pelo observadore menor quando 0 objeto est a em movimento do que quandoest a em repouso. Determine e interprete limy_c' L, e cxpliquc

por que e necessario urn limite lateral esquerdo.

Assim, se a velocidade de urn objelo plld '55' "!l'IIX ""11da velocidade da luz, seu comprimenlO, II'cciido pill 11111 nil "

vador em repouso, tenderia para zero. Est· f 'S\lllacill pll' VI II

utilizado para justificar a teoria de que II v '101'1111111' tlii lill IIultima (ou absoluta) velocidade no lJllivl:ISlI; 1111 111'111, Iii IIhlllllobjeto pode adquirir Ilma vclocidade qllo Sil 11\11111nil I!PI II Ivelocidade da luz,' c.

Faz.se necessario considefnf II 111111 1111 1111 ,"qll' lilt,

porque, sc v> c, entao 1- (v /c~) n" .11\1 1111111111 II \II

Page 19: Livro Calculo 1 - swokowski 2º parte.pdf

, Ilfl ,~/" '''''' (I,'tN/it·t"" I\",I/("eo Cap. 2--'----'------------~--------

I IIII~. 1 "11: t INC OS' teo~cnias .~~- " , 4_~_ 6x + '3'1111 IIntllll" plllflil ICI'minar0 limite 20 lun 16.~ 8x' 7IllhOHlu ~lh' " x ---1/1 +.-

21 lim 2~+5x - 3x-1/2 W - 7x + 2

IIn\ I',• {I

11111 V\\

11111 ,\ • J

1111 ,1'\

I "' (" ~)~II 1111,( It 1,1)

• • J

1111, I 5• , J 'II 1.1

IIII 1

IIln \llfl I II

'I IInl ( 11, )"1

28 Jim x + 3x- -3 (l/x) + (1/3)

29 lim (L__1_)x-I x-I x-I

221im x-2x-2 r-8

, 23 J.x'..,;-2',1m ---2-

, x-2 (x-2)

~ ,

241im' ~x - -2 x' + 5x + 6

251im r +8 ,x--2 x4-16

261irn x-I6x-16VX-4

27 lim (l/x) - (112)x-2

1111111(\' 1)\J

II 1 11\ ( II 1)1'", .\

11111(-1\ 1)\1)t '/11

1111111(11' II" 7)J

6

30 Jim (vx + J)x -- 1 vx

31 I· 2vx +rn1m-4--x-16 Vi + 5

32 I' 16?J• 1m 413

x--84-x

33 lim ?? - 5x - 4x---4

\12 + 5x- 3.r'.\2 _ 1

36 Jim {jx-ax + It

III III 11111 ,, 1'\ 'I

37Iillli-v')6+1~I. -. 0 h

38 lim (1)'( ~ -1)h-O h vI +'n

'''~, •.,. ..•...;-.. ..'....~_., .,'

39 lim x' +x- 2x-I xl-I

40 I'· x2-7x+ 10;r~~ x6_64

42 Jim V3fCl'+4 ~3k + 2 'k-2

43Jirn(~+3)x-5'

4- I' -I(x - 3?:> un---, x-3x-J

46Jim x+IOx--IO'''';(-<+ 1W

47 Jim 1 + v'2t=lO.:x-5' X + 3

48 lim ~x'-16.,_,' x+ 4

Exercs. 49-52: Determine cada li-mite, se existir:

(a) limJ(x) (b) limJ(x)x-a

49 f(x)=v'5-x; a=5

50 fix) =~; a = 2

51 f(x) = ~; a = 1

52 f(x) = .?J; a = -8

Exercs. 53-56: Seja /I Urn inteiroarbitr;hio. Esboce 0 gnifico de J edetermine Jim J(x) e Jim f(x).

J:--oon- X-I1"

54 J(x) " n se n ,,;x < /I + 1 .

55 J(x) = {X sex=no sex"/I

56 J(x) = {O sex = /I1 sex" /I

Exercs. 57-60: Denoiemos por [[ ]] a fun~ao maiorinteiro, e seja n urn inteiro arbitrario. Determine

57 J(x) = [[x]]

58 J(x) = x - [[x]]

59 J(x) = -[[-x]]

60 J(x) = [[x]]- x'

Exercs. 61-64: Use 0 Teorema (2.15) para verificar 0

limite.

61 lim (x' + 1) = 1 (Sugestao: Use lim (lxl + 1) = 1.)x-a -..- x-o

62 lim Ixl = 0x-o -Ix' + 4x' + 7(Sugestao: Use f(x) = 0 e g(x) = Ixl.)

63 Jim x sen(l/x) = 0x-o(Sugestao: Use J(;) = -Ixl e g(x) = ~tl.)

64 lim x4 sell(11 ~) - 0 (Sugestao: veja Exemplo 8.)x-o

65 Se 0 " J(x) ,,; c para algum real c, prove queJimx"'o x2 J(x) = O.

66 Se Jimx-a fix) = L " 0 e limx -a g(x) = 0, proveque Jimx- a [J(x)lg(x)] nao existe. (Sugestao:Suponha que ex isle urn n6mero' M lal queJimx _ a [J(x)lg(x)] = M e considerelimx_a fix) = Jimx_a [g(x)·f(x)lg(x)].)

67 ExpJique por que

Jim (x sen 1) " (Jim .~) (Iim sen 1).x-o x \1'-0 '(-0 X

68 ExpJique por que lim (1+ x) " lim !- + lim x.x-a x x-ox x~o

69 A lei de Charles para gases afirma que se a pressaopennanece constante, enta~a reJa~o entre 0 volumeV que um gas ocupa e sua temperatura T (em "C)e dada por V = Vo(l + 2\;-1). A lemperaturaT = -273 "C e 0 zero absollltO.

(b) Por que e necessario urn Jimite 11 direita?

70 De acordo com a teoria da relatividade, 0 compri-mento de urn objeto depende de' sua veJocidade v(veja 0 Exemplo 10). Einstein tambem provou quea massa m de urn objelo esta relacionada com vpela formula.

mom = VI _ (v2/c")'

(b) Por que e necessario urn limite 11 esquerda?

71 Uma lenle coovexa tern dislancia focal J cm. Seurn objeto esla coJocado a p cm da lenle, entao adistancia q cm da imagem 11 lente esta relacionadacom p e J pela eqlla~ao da lente

1 1 1-+-=-P q f

Conforme a figura "baixo, p deve ser maior doque f para que os raios sejam convergentes.

(a) Investigue lin} q.p~f'

(b) Que acontece com a inmgem quando p ..• J+?

, . 'i-f-+-r...!

!...- p--~:'~--q--,..:

Page 20: Livro Calculo 1 - swokowski 2º parte.pdf

72 A figura exibe urn vidro de aumento simples,consist indo em uma Jente convexa. 0 objelo a serarnpJiado esta posicion ado de modo que suadistiincia p em rela"iio a lente seja menor do quea distiincia focalf. A ampJia"iio linear Mea raziiodo tamanho da imagem para 0 tamanho do objeto.Por meio de triiingulos· semelhantes, obtemosM = q/p, onde q e a distiincia entre a imagem e aJente.

(b) Investigue Jim M e expJique 0 que estap-f

acontecendo ao tamanho da imagem quandop-r.

..,'L .•..

..~:::.::::::::::::::.

Imagem Objet;;"

(a) Determine Jim M e expJique por que se lomap-O'

necessario urn limite a direita.L-jP-::

'~----q----~

Ao investigannos limx_._ fix) ou limx-':.' f(x), pode ocorrer

que, ao tender x para a, 0 valor f(x) da fum;iio ou aumente semlimite, ou decresc;a sem limite. Como ilustrac;ao consideremos

. 1f(x)=-

x-2

A Figura 2.25esboc;a 0 grafico de f. Pode-se mostrar, comono Exemplo 3 das Sec;6es 2.1 e 2.2, que

I. 1 - .1m--2 nao eXIstex_2X-

Veja alguns valores funcionais de x pr6ximos de 2, comx> 2:

2,1 2,01 2,001 2,00001

J(x) 10 100 1.000 10.000

2,00001 2,000001

100.000 1.000'.000

Quando x se aproxima de 2 pel a direita, f(x) aumenta semlimite, no sentidode que 'podemos tomar f(x) arbitrariamentegrande, escolhendo x suficielllemente p~6xim~ de 2 e' x > 2.

Denolamos este fato escrevendo

11·Jim x _ 2 = 00, ou x _ 2·-" 00 quando x -.. 2+

x-2'

o simbolo 00 (infinito) nao representa urn numero real. Eapenas uma notac;ao para denotar 0 comportamento de. ·certasfunc;6es. Assim, embora digamos que quando x se aproxima de2 pela direira, 1/(x-2) se aproxima de 00 (ou tende para 00), ou

que 0 limite de 1/(x-2) e igual a 00, nao eslamos dizendo que1/(x-2) esteja cad a vez mais pr6ximo de urn numero real, ouque Jim

x_z+ [1/(x - 2)] existe.

o simbolo _00 (menos infinito) e usado de modo analogopara indicar que f(x) decresce sem limite (tomando valoresnegativos muito grandes) quando x se aproxima de urn numeroreal. Assim, para f(x) = 1/(x-2) (veja a Figura 2.25) escrevemos

1 1 _Jim -- = -00 ou -- -+ 00 quando x -.. 2x-2' x-2 'x-2

A FigllTa 2.26contem graficos (parciais) tipicos de funC;6csarbilrarias que tendem para 00 ou _00 de varias maneiras.Consideramos a positivo, mas podemos ler tambem a :s O.

[(x) ~ - quandox ~ a-

J

Consideraremos tambem Jimites bi-Iaterais illlstrallos lit

Figura 2.27. A rela x = a nas Figuras 2.26 c 2.27 C'hflll\lIt111

assintota vertical do grafico de f.

(i) lirnf(x) =00, ouf(x)~ooquandox-H (ii) limJ(x)=-oo, ouJ(x)-)x-t1J .1 ....• Q

\~a:

Page 21: Livro Calculo 1 - swokowski 2º parte.pdf

II (\) ( -2)'

y

Note que, para que f(x) tenda para ·00 quando x tende paraa; ambos os limites a direita e a .esquerda devem ser -00. Paraque f(x) tenda para ....00, ambos os Iimites latera is devem ser-00. Se 0 limite de f(x), de urn lado de a, e 00 e do outro ladode a e....oo(Figura 2.25), dizemos que 0 lim J(x) niio exisle.

E possivel estudar muitas fun<;6es algebricas que tendempara 00 ou -00 raciocinando intuitivamente, como nos exemplosseguintes. No final desta sec;ao daremos uma definic;ao formalque pode ser utilizada para demonstrac;6es rigorosas.

Determine !~2(x ~ 2)2' se existir.

Se x esta proximo de 2 mas x " 2, entao (x - 2? e positivo eproximo de zero. Logo, l/~ - 2)2 e grande e positivo. Comopodemos fazer l/(x - 2)2 arbitrariamente grande eseolhendo xsufieientemente proximo de 2, vemos que 0 limite e igual a 00.

Assim, 0 limite nao existe.

. A Figura 2.28 esboc;a 0 griifico de y = !I(x - 2f Aretax = 2 e assintota vertical do griifico.

(a) Se x est a proximo de 4 e x < 4, entao x - 4 esta proximode 0 e e negativo, e

lim __ 1__ = _00

x_.4.(X - 4)3

. If(x)= J

(x-4)y

l~. . . x

R

CV

(b) Se x est a proximo de 4 ex> 4, entao x - 4 e urn numeropositivo pequeno e; dai, 1/(x - 4? e urn numero positivogrande. Assim,

1lim (x _ 4)3 = 00

x-4+

lim ( ~4)3 nao existex-4 X

o gnlfico de y = !I(x - 4)3 est a esboc;ado na Figura 2.29. Aretax = 4 e uma assintota vertical.

Certas formulas que· representam quantidades fisicas po-dem conduzir a limites que envolvam infinito. Obviamente, umaquantidade fisiea nao pode tender para infinito, mas uma analisede uma situa<;ao hipotetica em que tal fato pudesse ocorrer, podesugerir usos para outras quantidades relacionadas. Considere,por exemplo, a lei de Ohm na teoria da eletricidade, que afimlaque! = VIR, onde Rea resistencia (em ohms) de urn condutor,Ve a diferen<;a de pOlencial (em volts) atraves do condutor e Ie a correnle (em amperes) que passa pelo condutor (veja a Figura2.30). A resistencia de certas ligas tende para zero quando atemperatura se aproxima do zero absoluto (aproximadamente-273 'C), e a liga se toma urn supercondutor de eletricidade. Sea voltagem Ve fixa, entao, para esse supercondutor,

. . V .hm! =hm -=00

R-O' R_O-R

isto e, a corrente aumenta sem limite. Os supercondulorespermitem que grandes correntes sejam usadas em usinas gera-doras au motores. Eles tern tambem aplicac;6es no transporteterrestre a alta velocidade, no qual 0 forte campo magneticoproduzido por magnetos supercondutores permitem que os trenslevitem, nao havendo essencialmente fric<;ao enlre as rodas e ostrilhos. Possivelmente a utiliza<;ao mais importante para ossupercondutores esta nos circuitos para computadorcs, porqucesses circuilos produzem pouquissimo calor.

Consideremos a seguir fun<;6es cujos valores Icnd '111 p:1I11

urn numero L quando Ixl sc toma muito grande. $cja

If(x)!" 2 +-. x

Page 22: Livro Calculo 1 - swokowski 2º parte.pdf

If(x) = 2+

x

o grafico de f consta na Figura 2.31. Na tabela seguinterelacionamos alguns valores de f(x) para x grande.

x 100 1.000 10.000 100.000 1.000.00001(-1

. f(x). 2,01 2,001 2,0001 2,00001 2,000001

Podemos tornar f(x) tao pr6ximo de 2 quanto quisermos,escolhendo x suficientemente grande. Denota-se este fato por

Mais uma vez lembramos que 00 nao e urn numero real e,assim, nenhuma variavel x jamais pode ser substitufda por 00. Aterminologiax se aproxima de 00, ou x tende para 00, nao significaque x fique cada vez mais proximo de algum numero real.Intuitivamente, imaginamos x crescendo sem limite, ou tomandovalores arbitrariamente gran des.

Se x decresce sem limile - isto e, se x tom a valoresnegativos muilo grandes - entao, conforme indicado na pon,aodo terceiro quadrante do grafico da Figura 2.31, 2 + (l/x)novamenle se aproxima de 2, 'e escrevemos

Hm (2 +.!) = 2X--«I x.

Antes de considerarmos exemplos adicionais, fo.nnulemosdefini<;6es para tais limites que envolvem infinilo, usandololerancia-e. para f(x) em L. Quando consideramos lim f(x) L

x-ana Se<;ao 2.2, impusemos If(x) - LI < e. sempre que x eslivessepr6ximo de a ex", a. Na situa<;ao presenle, queremosIf(x) - LI < E quando x e suficientemente grande, islo e, maiordo que qualquer numero positivo M qado. Islo resulta nadefini<;ao seguinte, em que supomos f definida em urn intervaloinfinito (c, (0) para urn numero real c.

y= L + E

Ly= L-E

Se limx_. j(x) = L dizenios que 0 limite de f(x), quando

x tende para 00, e L, ou que f(x) tende para L quando x tendepara 00. Costumamos escrever

E possivel dar uma int'erprela<;ao gr3fica de Jim f(x) = L.x-~

Consideremos duas retas horizontais y = L ± e. (Figura 2.32).De acordo com a Defini<;ao (2.16), se x 6 maior do que algumnumero positivo M, 0 ponto P(x, f(x» no gr3fico esla entre essasduas retas horizontais. Intuitivamente sabemos que 0 grafico def fica cada vez mais pr6ximo da reta y = L, li medida que x cresce.Areta y = L e chamada assfntota horizontal do grafico de f.Conforme iJustrado na Figura 2.32, um grtifico pode interceptoruma ass!nlOta horizontal. Areta y = 2 na Figura 2.31 e umaassfntota horizontal para 0 grafico de f(x) = 2 + (l/x).

Na Figura 2.32 0 gr3fico de f lende para a assfnlota y = Lpor baixo - isto e, com f(x) < L. Urn gr3fico pode lambemtender para y = L por cima - ou seja, com f(x) > L - ou aindade outras maneiras, com f(x) lornando-se alternadamente maiordo que L e menor do que L, quando x -- 00.

A proxima defini<;ao aborda 0 caso em que x e grandenegativamente. Admitiremos f definida em urn intervalo infinito(-eo, c) para algum real c.

Page 23: Livro Calculo 1 - swokowski 2º parte.pdf

Se lim f(x) = L, dizemos que. 0 limite de f(x), quando x

lende para --oo;'€:L, ou que f(x) tende para L quando x tendepara -co.'

A Figura 2.33 iJuslra a Definit;ao (2.17). Se considerarmosretas horizontais y = L ± e, entao todo ponto P(x, f(x» do graficoestara entre essas retas se x for menor que certo numero negativoN. Areta y = L e uma assintata horizontal para 0 grafico de f.

Podem-se estabelecer teoremas analogos aas da Set;ao 2.3,para limites que envolvam 0 infinito. Em particular, 0 Teorema(2.8) relativo a Iimites de somas, produtos e quocientes everdadeiro para x ....•co ou x ....•-co. Analogamente, 0 Teorema

(2.14) sobre 0 limite de VJ(X'j vale se x ....•co ou x --> -co. Pode-semostrar tambem que

No Apendice II encontra-se uma prova do pr6ximo teore-ma, usando a Defini~ao (2.16).

~;b~r~~::n~~e~~:.~;~:~a;;~~s,~:i~;~,f~~~,~~~~~.?O~~~~.'0'':;." ;':\:';"~.' '. ,.,". ":.r-'-f"~::.:~~::'"'.:;'::".. :'_:.

.. :0 ; •.••.. ,:. ·c·'. .;.' c"'.. 'c,' Hm t = 0 e limt= 0,

X_OIl X .%--(1') X

desde que ~ seja se~p~e d~fillido.

o Teorema (2.18) e litil para 0 estudo de limites de fun~oesracionais. Especificamente,para achar lim,_~ f(x) ou limx_.~f(x) para lima fl/l/(;oO racional f, primeiro dividimos nllmeradore denominador de f(x) por ),", em que n e a mais alIa potcnciade x qlle aparece no denom'illOdor, e em seguida aplicamos osteoremas sobre limites. Esta tecnica e iluslrada nos Ires pr6ximosexemplos.

EXEMPLO 3

. I' 2r-5DctermIne 1m 3? 2z--= .l-+X+

A mais alia polencia de x no denominador e 2. Logo, pela regraCIllII! iilda 110 parflgrafo prccedcnte, dividimos numerador ed '1I011lilllldorpar .\' . aplicamos os teorcmas sobrc·limitcs. Assim,

lim (2-?)x-~

=--------

Jim 2-lim ~z--oo X_-4:J

= Iim3+1im .!.+lim ~x-.....::m x_-ooX X--3)

U-5Determine Jim 3x' + x + 2x-=

Como a mais alta pOlencia de x no denominador e 4, primcirodividimas numerador e denominador por x', obten~o

Page 24: Livro Calculo 1 - swokowski 2º parte.pdf

2i3-5Determine lim 3,il + x + 2

Como a mais alta potencia de x no denominador e 2, primeirodividimos numerador e denominador por x2, obtendo

Como cada termo da forma c/xX tende para 0 quando x -> 00,

vemos que

Jim (2x - 2) = 00 ez-~ ,il

EXEMPLO 6

~ ...:Se f(x) = 4x + 3 ,determme

f(x) = "'9,,2 + 2 _ 3x = 1-4x+3 4x 4

Isto sugere que !~f(x) =~. Para uma demonslra<;ao rigorosa,

pod em os escrev. r

v',il (9 + ~)

I· "'9r + 2 I· _lITI--- = 1m 4x+3

z-~ 4x + 3 z-~

#1/9 + 1,r=Iim .

z-~ 4x+3

Se x e positivo, entao # =x, e dividindo por x 0numerador e 0 denominador da ultima fra<;ao, obtemos

I. "'9,,2 + 2Im---

z-~ 4x+3

(b) Se x egrande e negativo, entao # = -x. Seguinclo osmesmo passos cia parte (a), obtemos

. V97+2hm---z __ ~4x+3

~I· ,il

= 1m ----z--~ 4x+3

(-4";9 + '4.

=Iim xz--~ 4x+3

-v'9+~I· x

= 1m . 3z--~ 4x+-

x

Podemos tambem consiclerar 0 caso em 'Ill tanto. ('011111

f(x) tendem para 00 0..1 -00. Por exemplo, a igilalcllld·

.. Jim f(x)Q O?x __ oo

significa que f(x) aumenta sern limite qllalldn •. d l'f' II'limite, como seria 0 caso para J(x) = ,il.

Page 25: Livro Calculo 1 - swokowski 2º parte.pdf

~k~-/~~--~--;

/I 1\ (I + b .

Os lipos dc limite envolvendo 00 ocorrcm nas aplica<;iics.A tilulo de i1uslra<;lio, pode-se enunciar a lei da gravila<;liouniversal de Newton como: Toda parlieu/a no universo alrailoda oulra part£eu/a eOIlluma [on;a proporciona/ ao produlo desuas massas e inversamenle proporciona/ ao quadrado dadistancia enlre as parlieu/as. Em simbolos

em que F e a for<;a que alua em cad a particula, Ill) e 1Il2 slio asmassas das parllculas, rea dislancia entre elas e G e umaconslante gravitacionaL Supondo IIll e /Il2 conslantes, obtemos

I 1Il)1Il2lim F = Jim G -. 2- = 0r-OO x-oo r

Islo nos diz que a medida que a dislancia entre as particulasaumenla sem limite, a for<;a de atra<;ao lende para O. Teorica-men Ie, sempre ha alguma atra<;lio; enlrclanto, se r e muitogrande, a atra<;lio ja nlio po de ser medida com 0 equipamento dclaborat6rio convencional.

Concluiremos esla se<;lio dando uma defini<;lio formal delim [(x) = 00. A principal diferen<;a em rela<;lio ao nosso tra-

balbo na Se<;lio2.2 e que, em lugar de mostrar que If(x) - LI < E

sempre que x esta pr6ximo de a, considcramos qualquer numerogrande posilivo M e mostramos que f(x) > M semprc que x estapr6ximo de a.

signlfica que; para cadaM > 0, ex isle urn fl > 0 lal que

se 0 < Ix-a 1< fl, entaoJ(x) >M

Para uma interprela<;ao griifica da Defini<;lio (2.19), consi-deremos uma rela horizontal arbitnlria y = M, conformeFigura2.34. Se Jim j(x) = 00, entao sempre que x esta em urn intervalo

conveniente (a - fl, a + fl) ex.,. a, os pontos do grafico de festao acima da reta horizontal.

Para definir lim f(x) = -00 basta alterar a Defini<;ao (2.19),

substituindo M > 0 por N < 0 e f(x) > M por f(x) < N. Nestecaso, consideramos uma rela horizontal arbitraria y = N (com Nnegativo), e 0 gr3fico de f estara abaixo desta reta sempre quex estiver em urn intervalo conveniente (a - fl, a + fl) ex.,. a.

Exercs.l·10: Para af(x) dada, expresse cada urn dosseguintes limites como "', _00 ou NE (nao existe):

1 f(x)=~; a=4x-4

2 5f(x) = 4~x; a=4

3 8 5f(x) = (2<+ 5)3 ; a~--

2

4-4 3

f(x) = 7x+3 ; a =--7

5 f(x) = (x ~~8)2; a =-S

63X2 9

f(x) ~ (2x _ 9)2 ; a=-2

7 2~f(x)=--; a --1X2-x-2

19 f(x) = x(X-3)2;

-110 f(x) = (x+ If;

14 lim (3x + 4) (x - 1)x--~ (2<+ 7) (x+ 2)

151im 2~ - 3x __ ~4.~+5x

16 lim 2~ - x + 3.~+ 1

171im -x3+2xx-.e 2~-3

181im X2 + 2x __ <xx-1

19 Jim 2-X2x __ oox+3

221im 4x-3;(->_7:>,/2- + 1

Exercs. 25·26: Investigue 0 limite, fazendox ~ 10" para /I = 1, 2, 3 e 4.

[925 Jim l tan (~ _ l)x-1Xl X 2 x

26 Jim ..;x sen lx-oo' x

Exercs. 27·36: Ache as assintotas verticais e hori·zontais do gnifico de f.

27f(x)=_I-~-4

2~29 f(x) = :;.T.;:l

131 f(x) = x3 + ~ _ 6x

33 f(x)=~+3x+~X" + 2r - 3

35f(x)=~~-16

5x28 f(x) = 4-X2

30 f(x) = }-~

.r-+ 1

32 f(x) = .~ -x16 -X2

34 f(x)=~-5xX" - 25

Exercs. 37·40: Vma fun<;aof satisfaz as condic;6esindicadas. Esboce urn grafico de f, supondo que elenao corte uma assintota horizontal.

Jim f(x) = - 00;

x-3-Jim f(x) = 00

x_Jt

lim f(x) = 00; Jim f(x) ~ - 00

x-2- x_2t

lim f(x) = 00; lim f(x) = 00:

x-)- :c-3'

lim I(x) - - 00 lim I(x). 00;

x- - I ),'-.- I'

Page 26: Livro Calculo 1 - swokowski 2º parte.pdf

40 lim f(x)=3; lim f(x)=3;x--iX:

Jim f(x) = 00; Jim f(x) - - 00;

x-I x-f·

lim f{x) = _00; lim f{x) = 00x--2- x- -2+ ../

(b) EstabeJe~a uma f6rmula para a concentra~aoc (/) de sal (em kJlt) ap6s / minutos.

(c) Que ocorre a c (/) por urn longo perfodo de. tempo?

Urn problema importante na pesca e predizera popula~ao procriadora adulta do pr6ximoano (recrutas) para urn nurnero S presente-mente em desova. Para certas especies (comoo arenque do Mar do Norte) e a rela~iio entreReS e dada por R = as! (S + b), com a e bconstantes positivas. Que acontece quando 0

numero de procriadores aumenta?

41 Vma concentra~ao de agua saJgada na base de50 g de sal por litro de agua corre para urn tanqueque contem inicialmente 50 Iitros de agua pura.

(a) Se 0 fluxo de agua salgada para 0 tanque ede 5 It por rninuto, determine 0 volumeV (/) de agua e a quantidadc A (I) de sal notanque ap6s / rninutos.

2.5 FUNGOES CONTINUAS

Na Jinguagem .9uotiQia~a dizemos que 0 tempo e continuo, umavez que ele decoITe de maneira ininterrupta. 0 tempo nao salta,digamos, de Ih para Ihlminda tarde, deixando urn lapse de urnminuto. Deixando-se cair mn objeto de urn balao, encaramos seumovimento subseqiiente como continuo. Se a altitude inicial ede 500 metros, 0 objeto passa por todas as altitudes entre 500 me 0 ill antes de atingir 0 solo.

Em mateimitica usamos a expressao fum;iio continua ern-urn 'sentido semelhante. Intuitivamente, consideramos contipuauma fun~ao cujo gniflco nao tern interrup~6es. A titulo dei1ustra~ao, nenhum dos gnificos da Figura 2.35 represent a umafun~ao continua no ponto c.

I

(I) (ii) (ill) / (Iv)y y y y

y = J(x)

y = J(x) ""- '\Zl.----..-------./

c ,x xx x c c

Figura 2.35-(

Note que, em (i), f(c) nao e definida. Em (ii), f (e) edefinida, mas lirnz_c r(x) •• fee). Em (iil) Iimz_c f(x) nao existe.

Em (iv) f(c) nao e definida 'e, alem disso, lirnx_cf(x) - 00. 0grafico de uma fun~ao f nlio sera de nenhum dos tipos acimase f satisfizer as tres coIidi~6es relacionadas na' proxima

. definj~ao.

Qefin/fBa (2.20) ~- .-

~:t·~,!~ri:;,;;:';·'~}i':,'"~,,.~::··-,,:, . !)' ; : .•:.:.,:Ui:jlafuIi~ao f e contmua em urn numero e se satlsfaz as·W!seID!i~tes.eOndi~6es: .

:":1'~i~;~}~~)'~ ~efinida .... " '. ':~:'~, ,

Ao utilizar est a defini~ao para mostrar que uma fun~ao fe continua em e, basta verificar a terceira condi~ao, porque seJim f(x) = fee), entao fee) deve ser definida e tambem :~J(x)x-cdeve existir; ou seja, as duas primeiras condi~6cs estao satisfeitasautomaticamente.

Intuitivamente sabemos que a condi~ao (iii) implica que, 11medida que x se torn a proximo de e, 0 valor f(x) da fun~ao setorna proximo de fee). Mais precisamente, podemos faze~ f(x)tao pr6ximo de f(e) quanto quisermos, escolhendo x suficlente-mente proximo de e.

Se uma (ou mais) das tres condi~6es da Defini~ao (2.20)nao for(em) satisfeita(s), dizemos que f e descontinua em c, ouque {tern uma descontinuidade em e. Cert~s t~pos de desc?n-tinuidades tern nomes especiais. As descontlnUidades em (I) e(ii) da Figura 2.35 sao deseonrinuidades relQo.ri.~~ porquepodemos remove-his definindo adequadame.nte 0 valor f(c) .. Adescontinuidade em (iii) e do tip~o, asslm chamada devldo11 aparencia do gnifico. Se f(x) tende para 00 ou -.00 qu~ndo xteride para e de urn ou de outro lado, como em (IV), dlZellloSque f tern uma ~t.~~~~ em e.

Na i1ustra~ao seguinte reconsideraremos algumas fun~6csespeclficas ja abordadas nas Sec~6es 2.1 e 2.2.

Nenhuma, pais para lodoHm J(x) = c + 2 = f(c)z-c

Page 27: Livro Calculo 1 - swokowski 2º parte.pdf

/llfl I ,Iii 1/'1/' ,"" (,"'/)1I/'_Hr_il_' A__"a_Ii_/i_ca__ C~ap_._2 _

I• 1,\,)_-

x

sex,", !

sex=!

c = ! pois gel) e indefinido(descontinuidade removivel)

c = 0 po is h(O) nao existee tambem Hm hex) DaD existex-o(desconlinuidade infinita)

c = 0 pois p(O) e indefmidoe lambem Hm p(x) nao existex-o(descontinuidade tipo saito)

o proximo leorema afirma que as fum;6es polinomiais eas fum;6es racionais (quocientes de polinomios) sac cont(nuasem todos os pontos de seus dominios.

(i) Utri~·.fun<;ao polinomial j e eonlinuapara lodo

··rF!5roreal.c:;; "'-'.' ,,;,c~~,,'t"(':;';

.(ii) Umlfuiii;ao raclonal q~'fice coniiIi'iJa e~iodc:i'""nuoi~r? eiccetonos numeros e tais que' g(e).= O.

__- ;::-::::.:=[)EMON_STRAl;AO ~

(i) Se-f e uma fun<;ao polinomial e c urn numero rea!, enlao,pelo Teorema (2.11), limx_j(x) = fee). Logo f e contrnua

em todo ponto real.

(ii) Se gee) '" 0, enlao c est a no dominio de q = fIg e, peloTeorema (2.12), limx_c q(x) = q(c); isto e, q e continua em c.

EXEMPLO 1

Se f(x) ~ Ix I mostre que f e continua em to do numero real e.

o grafico de j esla esbo<;ado na Figura 2.36. Se x> 0, entaof(x) = x. Se x < 0, enlao f(x) = -x. Como x e -x sao polinomios,decorre do Teorema (2.21) (i) que f e continua para tod(j rea!diferente de zero. Resta mostrar que f e eonlinua em 0. Os limiteslaterais de f(x) em ° sao

lim Ix I= lim x = ° e'x-o· x-o·

lim Ix I= Jim (- x) = °x-.o~ x_ov

OI1lUus lilllites Jaterais direito e esquerdo sao iguais,decarre. do Teorerna (2.3), que

lilll Ix 1- 0 -I ° 1- J(O).x _ •. II

x1_ I . . .Sc J'(x) - - delcrnune as deseonunUidades de f.

_' +x~ - 2(

C0ll10 J C lllmi fun<;ao raciona!, segue-se do Teorema (2.21) queas (micas dcsconlinuidades ocorrem nos zeros do denominador.\-, + x2 - 2x. Falorando, oblemos

Igualando a zero cad a fator, vemos que as descontinuidadesde f sao 0, -2 e 1.

Page 28: Livro Calculo 1 - swokowski 2º parte.pdf

Se uma fun~ao f e continua em todo ponto de urn intervaloaberto (a, b), dizemos que f e continua no intervalo (a, b). Damesma forma, uma fun~ao e continua em urn intervalo infinitodo tipo (a,oo) ou (-co, b) se e continua em todo ponto dointervalo. A proxima defini~ao inclui 0 caso de urn intervalofechado.

Se a fun~ao f tern urn limite 11direita, ou urn limite 11esquerda do tipo indicado na Defini~ao (2.22), dizemos que f econtinua a direita em a ou que f e continua a esquerda emb, respectivamente.

Se f{x) = ";9 - r, esboce 0 grafico de f e prove que f e continuano intervalo fechado [-3,3].

o griifico de r +T = 9 e urn cfrculo com centro na origem eraio 3. Resolvendo em rela~ao a y, temos y = ±~ e dai 0

griifico de y =";9 - reo semicfrculo superior (veja a Figura2.37).

Se -3 < c < 3, entao, com auxflio do Teorema (2.14),obtemos

Logo, f e continua em c pela Defini~ao (2.20). Resta apenasverificar os extremos do intervalo [-3, 3] utilizando limiteslatera is como segue:

Jim f{x) = lim ~ = ~ = 0 = f{-3)x--3· x--3'

Jim j(x)=lim ~ =v9-9 =0=j(3)x-3- z-)-

Assim, f e continua 11direita em -3 e continua 11esquerda em3. Pela Defini~ao (2.22), f e continua em [-3,3].

Estritamente falando, a fun~o f do Exemplo 3 e descontinuaem tod~ ponto c exterior ao intervalo [-3,3], porque f{c) naoe urn numero real se x < -3 ou x > 3. Todavia, nao e costumeusar a expressao descontinua em c se c esta em urn intervaloaberto no qual f nao 6 definida.

Podemos tambem definir outros tipos de intervalo. Porexemplo, f 6 continua em [a, b) ou [a 00) se e continua em todonumero maior do que a no intervalo e, a16m diso, e continua 11direita em a. Para intervalos da forma {a, b]ou (-oo, b], exigimoscontinuidade para todo numero inferior a b no intervalo etambem continuidade 11esquerda em b. '

Utilizando fatos en unci ados no Teorema (2.8), pode-seprovar 0 seguinte:

, Se j egsaoc,ontinuas em c,entao san tamMm continuasem ~:.:.!: .. :··DJ:;,~~.H.JJ,D,8

:~C~!Jr~~~t:~,~r~{k (ii) ii dif~ren~f';: g~~;;;c~~l";.;~ii!~·1{j~T,'C:bt{>j;t/iJ'}y(iii):9 produ(o. fg~J.' fIl),.", ~:, .,'" "':,,' ,e..•,:',.:: ..., "

.,' .","'"

;i:(ry),'(fq~9dente'flg;~desde que g(c) •• 0

'lim {f + g) (x) = lim [f(x) + g(x)]x-c

= f(c) + g(c)

~ (f+g) (c)

Ista iJrova que f + g 6 continua em c:' A~ pa';tes (ii).(i'~),demonstradas de maneira aniiloga.

Page 29: Livro Calculo 1 - swokowski 2º parte.pdf

Se f e g sao coDtinuas em urn intervalo, entao f + g,f- g e fg sao continuas no intervalo. Se, alem disso, gee) •• 0para todo e no intervalo, fIg e tambem continua no intervalo.

Esses resultados podem ser estendidos a mais de duasfum;6es, is to e, somas, diferen<;as, produtos ou quoeientes,envolvendo urn numero arbitriirio de fun<;6es continuas SaDtambem continuos (desde que nao ocorram zeros no denomi-nador).

~Se k(x) = 3x4 + 5.r + l' prove que k e continua no intervalo

[-3, 3].

Sejam f(x) = '1/9 - r- e g(x) = 3x4 + 5.r + 1. Pelo Exemplo 3, fe continua em [-3,3], e pelo Teorema (2.21) g e continua paratodo numero real. Alem disso, g(e) •• 0 para todo e em [-3,3].Logo, pelo Teorema (2.23) (iv), 0 quociente k = fIg e continuoem .[-3,3)

No Apendice 11 encontra-se uma demonstra<;ao do proximoresultado sobre 0 limite de uma fun<;ao composta fog.

A demonstra<;ao de outros teoremas constitui a principalutiliza<;ao do Teorema (2.24). A titulo de ilustra<;ao, utilizemoso Teorema (2.24) para provar 0 Teorema (2.14) da Se<;ao 2.3,em que supomos que lim g(x) e as ralzes enesimas indicadas

,Jimygw = V'lim. p(x).J:-c _ ..

Teorema do valorintermediario (2.26)

; Seja f(x) = Yx. Aplicando 0 Teorema (2.24), que afirma que

!~cf(g(x)) = f (~~ g(X))

!im Vgrxr = "tim g(x)x-c

A ~a.rt~ (i) do pr~ximo t~orema decorre do Teorema (2.24)e da deflDl<;ao de fun<;ao contmua. A parte (ii) e um reenunciadode (i) utilizando a fun<;ao composta fog.

Se k(x) = 13.r - 7x - 121, mostre que k e continua para todonumero real.

f(x) = Ix I e g(x) = 3x2 - 7x - 12,

entao k(x) = f(g(x)) = (f 0 g) (x). Como f e g SaDcontinuas (vejaExemplo 1 e (i) do Teorema (2.21)), segue-se de (ii) do Tcorcl11a(2.25) que a fun<;ao composta k = fog e continua em e.

A demonstra<;ao da propriedade seguinle das fun<;6cscontinuas pode ser encontrada em textos de calculo maisavan<;ados.

Se f e continua em:·urn intervalo fcchado [a, b] c SC 1\1 6umnumero entre f(a) e f(b), entao cxistc ao mCllos 11111

niJmero e em [a, b) tal que fee) = IV•

Page 30: Livro Calculo 1 - swokowski 2º parte.pdf

y

ftb) o",o±l'. w

w 1--

f(a) --, !f(C) iI' ,I: :

o teorema do valor interrnediario afirrna que, quando xvaria de a a b, a flllll;iia eantinua f tama todos os va/ores entref(a) e f(b). Se considerarmos 0 grafico da fun<;ao continua f .como ininterrupto, dos ponlos a (a, f(a») a (b, f(b», conformei1ustrado na Figura 2.38, entao, para qualquer numero w entref(a) e f(b), a reta horizontal com intercepto-y igual a winterceptara 0 grafico em pelo menos urn ponto P. A coordena-da-x e de P e urn numero tal que fee) = w.

Uma conseqiiencia do teorema do valor intermediario e quese f(a) e f(b) tern sinais opostos, entao existe urn numero e enlrea e b la/ que fee) = 0; islo e, f lem um zero em e. Assim, se 0ponto (a, f(a» do gnifico de uma fun<;ao continua esla abaixodo eixo-x e 0 ponto (b, f(b» esta acima do eixo-x, ou vice-versa,entao 0 grafico corta 0 eixo-x em um ponto (e,O), paraa < e < b.

f(l) = 1 + 2 - 6 + 2 - 3 =-4

f(2) = 32 + 32 - 48 + 4 - 3 = 17

Como f(l) e f(2) tern sinals opostos, segue-se do teorema dovalor inlerrnediario que fee) = 0 para ao menos urn numero reale entre 1e 2.

o Exemplo 6 ilustra urn esquema para a localiza<;ao dezeros reais de urn polin6mio. Utilizando urn metoda de apraxi-mar;6es sueessivas podemos aproximar cada zero com qualquergrau de precisao, bastando enquadra,lo em intervalos cada vezmenores.

Outra conseqiiencia util do teorema do valor inlerrnediarioe a seguinte. 0 intervalo ali referido pode ser fechado, aberto,semi-aberlo ou infinito.

~: ':~: ;<l..:::;j.,~~!r:/~::!~.~:;..~:.;'.~..';\i -,"':l,~-:'. '.(; :.' !'~If~:~,~:.r.,:: ~.-'~ ; ~~-;~.,~';, ,,;.:~~::'~';... : -.'~';',:' '''~;''':'.',Se uma,:fun<;ao,c f;·e., contmua e nao, tern. zeros em' urn

'i!iiervai6;''Ciit~o':o\J!{f(x)';;'6 ~u'j(~j-;;6pira:"'tQ'do"x" nb"'... intervalo,.;,',;·, ' , ····<··',:"\ih<:'

A conclusao do teorema afirrna que, sob a hip6lese dada, f(x)tem 0 mesmo sinal em todo 0 intervalo, Se est a conclusao fossefa/sa, entao haveria numeros, Xl e X2 no intervalo tais que

f(xl) > 0 e f(x

2) < O. Pel as observa<;6es precedentes, isto, por sua

vez, implicaria fee) = 0 para algum e enlrexl e X2' conlrariamente

11 hip6tese. Assim, a conclusao deve ser ver.dadeira.

No Capitulo 4 aplicaremos 0 Teorema (2.27) 11derivada deuma fun<;ao f para deterrninar a maneira como f(x) varia emdiversos intervalos.

Exercs. 1-10: E dado 0 gn\fico de uma fun~ao f·Classifique as descontinuidades de f como removi-veis, tipo saIto, ou infinitas.

Page 31: Livro Calculo 1 - swokowski 2º parte.pdf

J'I-f-~~

x

Exercs. 11-18: Classifique as descontinuidades def como removlveis, tipo saito, ou infinitas.

11 J. (x) = {Xl - 1 se. . 4 -x se

x< 1x;,l

12 f(X)={x3 se x:s:13-x se x>l

13 f(X)=W+31 se X" -2se x =-2

14 f(x) = {~X- 11 se x"lsc x=l

15 f(x) = {~2+1 ~~

x + 1 se

x<lx=lx>l

16 f (x) = {~Xl ~~x - 2 se

x<lx=lx>l

[Q] 18 f(x) = scn (.,2 -,1)(x-1)-

19 f(x)=v2x-5 +3x;

20 f(x) = ~Xl+2;

121 f(x)=3..?+7-_~;v -x

~22 f(x)=--;2<+ 1

Exercs. 23-30: Explique por que f nao e contInuaem u.

23 f(x)=_3_;x+2

24 f(x)=_l_;x-l

.r-9 se x ••325 f(x)- ;-3

se x=3

r-9 se X" -326 f(x) = ;+3

se x =-3

27 f(x) =.{1 se X" 3o se X= 3

{k::ll se x •• 3

28 f(x) = x-31 se x = 3

{

sen x se[Q]29 f(x) = x

o se

{

I - cos x se x •• 0[Q]30 f(x) = --x- a = 0

1 se x=O

Exercs. 31-34: Determine todos os mumeros para osquais [e descontinua.

331 f(x) Xl+x-6

33 f (x) = .2..::l...Xl +x-2

532 [(x) = x2 _ 4x _ 12

x-434 f(x) - -Xl---x---1-2

Exercs. 35-38: Mostre que f e contInua no intervalodado.

1[4,8); 38 f(x) = ~1; (1, 3)

36 f(x) = v16 -x; (-00,16)

Exercs. 39-54: Ache todos os valores para os quaisf e continua.

39 f(x) = ~x-52x"-x-3

. x42 f(x) =-rr==

'Ix-4

. x-I43 f(x)=_~. vXl-l

44 f (x) = ~,.!--.,vI _x2

45 [(x)=~x+9

46 [(x) = /x- + 1

547 f(x) = ;,? -Xl

4x-748 f(x): (x + 3)(Xl+ 2x- 8)

VT9V25749 f{x) = x-4

50 f{x) = v9-xvx-6

152 f{x) = cot:?

Exercs. 55-58: Verifique 0 teorema do valor inter-rnediario (2.26) para f no intervalo indicado (a, b)rnostrando que se f{a):s: IV:S: f(b), cntao f{c) = IV

para algurn c em (a, b].

55 f{x)-x3+1; [-1,2]

56 f{x) - -x3' [0,2]

57 f(x) = Xl - x; [1,3]

58 f{x)=2x-Xl' [-2,-1]

\~e f{x) - x3 - 5x2 + 7x - 9, use 0 teorema do va-lor intermediario (2.26) para provar que cxistcurn nurncro real a lal que f(a) = 100.

60 Prove que a equa~ao x5 - 3X' - 2Xl- x + 1 ~ 0tern uma solu~iio entre 0 e 1.

[Q] 61 Em modelos de queda livre, costuma-se supor quea acelera~'iio gravitacional g e a conslantc9,8 m/seg2• Na verda de, g varia com a aliilllcic.Se El e a latitude (em graus), cntao:

Page 32: Livro Calculo 1 - swokowski 2º parte.pdf

Use 0 leorema do valor intermediario para mos-trar que g ~ 9,8 em algum ponto entre as Jati-tudes 35" e 40·.

1£]62 A temperatura T (em .C) na qual a agua fervee dada aproximadamente pela formula

:3 lim (2): - v'4r + x)x--2

7 Jim x4 -16x-2 r-x-2

9. 1hm .1

x-o· vx

. &3-111hm -2 1

x--l/2 :(-

(/n\. 3-x~_~,13-xl

15 lim (a + 1t)4 - a4

h-O It

17 Jim V x+3x--3 ~+27

6 -7x(3 + 2>:)'

4 Jim (x-v'16-xl)x-4-

8 Jim 1x-3' x-3

10lim :(1/x) - (1/5)x-5

14 Jim ..fX - Vi.%-2 x-2

16 Jim (2 + Itt3- T3

k-O It

18 Jim (v'5 - 2>:- xl)x-5/2-

19 Jim (2): - 5)(3x + I) 20 lim 2>: + 11(x+7)(4x-9) x-oo v'X+T

21 lim 6-7x(3 + 2>:)4

231im ~x_2I3,4-9r

22 Jim x-IOOv'xl + 100

24 Jim _ 5X~3.%-3/5

onde It e a altitude (em metros, adma do nive!do mar). Use 0 teorema do valor intennediariopara mostrar que a agua ferve a 9S·C a uma al-titude entre 4.000 e 4.500 metros.

Exercs. 27-32: Esboce 0 grafico da func;aof definidapor partes e, para 0 valor a indicado, determine cadalimite, se existir.

{3X

27 f(x) = xlse xs 2se x> 2

se x s 2se x> 2

29 f(x) = {2 \xse x< -3

. v'x + 2 se x;,-3

30 f(X)={~se xs-3

4+x se x>-3

31 f(X)=fse x<1se x=1 a=1

4-xl se x>1

r+x se x ••O

32 f(x)~ ~ a~Ose x=O

33 Use a Definic;ao (2.4) p~ra provar queIim

x_6 (5x-21)=9

34 Seja f definida como segue

{I se x e radonal

f(x) = -I se x e irracional

Moslre que Jim f (x) nao-existe para nenhum numero

Exercs. 35-38: Ache todos os numeros para os quaisf e des~_ontinua.

35 f(x)J~-161.r - 16

36 f(x)=_I-x2 -16

37 f (x) = xl - x - 2xl - 2t

Exercs. 39-42: Ache todos os numeros para os quaisf e continua.

39 f(x) = 2>:4 - ~ + 1

40 f(x) = v'(2 +x)(3 -x)

v'9 - xl

41f(x)=x4_16

..fX42 f(x) = xl -1

43 f(x)=v'5X+9; a=8

44 f(x) = V -4; a ~ 27