58

Click here to load reader

Living Polymerization

Embed Size (px)

Citation preview

Page 1: Living Polymerization

LIVING POLYMERIZATION

Page 2: Living Polymerization

Polymers in everday use

• Mechanical properties

• New applications

• Personal care products

• Pharmaceutical Applications

• BASF, Unilever, Geltex, Avecia, etc

Page 3: Living Polymerization

Control over Polymer architecture

• Graft Copolymers

• Star copolymers

• Dendrimers

• Non covalent crosslinking

• Branching

• Narrow MWD

• Blocks

Page 4: Living Polymerization

Control

Molecular Weight(Chain Length and Polydispersity)

Chain Architecture(Block, Comb, etc)

Functionality

Rate / Exotherm

XY

Macromonomer

Telechelic

Block

Graft

Page 5: Living Polymerization

Test for Living Polymerisation

0 20 40 60 80 100

Mn

% Conversion

kp[Pol*]

ln [M

] 0/[M

]

time

Page 6: Living Polymerization

Living Polymerisation

Anionic

Cationic

•Ring Opening

Page 7: Living Polymerization

Living Polymerisation

• Rate of termination 0

• Rate of Initiation > Rate of Propagation

• PDi (Mw/Mn) = 1 + 1/DP

Page 8: Living Polymerization

Living systems*constant number of polymer chains*no permanent chain stopping reactions*dormant and active state *control of chain-growth*narrow MWD (Poisson)*<Mn> vs. monomer conversion is linear

Page 9: Living Polymerization

Living Polymerisation

No Termination No Chain Transfer

INITIATION

I* + M IM* ki

PROPAGATION

IM* + M IMM* kp1

IMn* + M IMnM* kpn

Page 10: Living Polymerization

Rate of Initiation = ki[I][M]

Rate of Propagation = kp[M*][M]

[M*] = [I]

Integration leads to,

ln[M]0/[M] = kp[M*]t

As the rate of termination = 0

[M*] is constant

Thus a plot of ln[M]0/[M] vs t is linear

Page 11: Living Polymerization

D e g r e e o f P o l y m e r i s a t i o n = D p n

i . e .

D p

D p n = [ M ] / [ I ] @ 1 0 0 % c o n v e r s i o n

M n = D p n x M 0

( M 0 = m a s s o f t h e r e p e a t u n i t )

T h u s a p l o t o f M n v s % C o n v e r s i o n i s l i n e a r f o ra l i v i n g p o l y m e r i s a t i o n

Page 12: Living Polymerization

If Rate of initiation (Ri) or > Rate ofPropagation (Rp)

and both Ri and Rp > Rate of termination (Rt)

(Ideally Rt = 0)

Then

PDi (MWD, Mn/Mw) is narrow and a Poissondistribution.

PDi = 1+1/[DPn]

e.g. For a polymer with DPn = 100, PDi = 1.01

Page 13: Living Polymerization
Page 14: Living Polymerization

Living Polymerization

Conversion

Mn

Mn=[M]0

[I]0

Conv.Mm

• Mn

• Structure

Page 15: Living Polymerization

Radical reactions

P1 P2+

P1 P2

P1 P2+

P M P M

P S P S

P Px PxP

+

+

+

+

+

+

?

Page 16: Living Polymerization

Free Radical Polymerisation

Widely used industrially

Advantages:

- Very Robust Technique

- Wide range of monomers and functionality’sAlmost anything with a double bond

- Wide range of operating conditions

- Aqueous Media: Emulsion polymerisation

Disadvantages

Highly non-selective reactionNon-trivial product control

Page 17: Living Polymerization

Living and Controlled Polymerisations

• Living systems– constant number of polymer chains– no permanent chain stopping reactions– dormant and active state – control of chain-growth– narrow MWD (Poisson)

– <Mn> vs. monomer conversion is linear

Page 18: Living Polymerization

R-X + M(n) R* + M(n+1)-X

X = Cl, Br

R* can propagate or terminate

K. Matyjaszewski: Macromolecules 1997, 30, p7697; 7042; 7034; 7348; 8161; 7692; 6507,6513, 6398 JACS 1997, 119, p674V Percec: Macromolecules 1997, 30, p6705, 8526M Sawamoto: Macromolecules 1997, 30, p2244, 2249Teyssie: Macromolecules 1997, 30, p7631, Haddleton: Macromolecules 1997, 30, p2190

Page 19: Living Polymerization

Suppressing radical termination

Rt/Rp =kt [P•]2/kp[M][P•]

=kt[P•]/kp[M]

ATRP MechanismATRP Mechanism

CuBr/L + Br P CuBr2/L+ P

Page 20: Living Polymerization

Cu

MLigand

Page 21: Living Polymerization

ATRP Systems

Metal Ligand Initiator

CuBr, CuCl Bipyridine

Multidentate amine

RuBr2 PPh3 + Al(OiPr)3

FeBr2 PPh3

NiBr2 PPh3

PdBr2 PPh3

X

X

O

O

X

O

O

SO2Cl

Page 22: Living Polymerization

Macromolecules, 30 (25), 7697 -7700, 1997.

Page 23: Living Polymerization

A: PS standard

B: PS by ATRP

C: PS by AIBN

Patten, T.E., Xia, J, Abernathy, T., Matyjaszewki, K. Science 1996, 272, 866.

A: Synthesis of polymers with controlled molecular weightA: Synthesis of polymers with controlled molecular weight

2. ATRP Applications

Page 24: Living Polymerization

Factors affecting the molecular Factors affecting the molecular weight controlweight control

• Fast initiation

• Rapid deactivation

Narrow

MWD

Page 25: Living Polymerization

SO2ClX

O

OX

O

O

X

OBr

O

O

OO

O

C-XInitiator C-Xpolymer

Initiator matches Monomer

Page 26: Living Polymerization

Rapid deactivation

1 + Kp[R-X]

Kd[CuX2]

2

Conv1

Mw

Mn=

[CuX2][P ]

[CuX][P-X]=Kd

Conv.-can not go too high

Kp - Temperature

Page 27: Living Polymerization

B: Synthesis block copolymers

Macroinitiator methodR-X +

CuX/LM X1

M2CuX/L

X

X-R-X+ M1 CuX/L XX

X

CuX/L 2M

X

AB

ABA

Page 28: Living Polymerization

C: Synthesis of star polymers

O

O

Br

O

Br

Br

O

O

O

O

O

Br

Br

O

O

O

O

Br

Br

O

O

Matyjaszewski, K., Miller, P. J. Pyun, J. Kickelbick, G. Diaamanti, Macromolecules 1999, 32, 6526

Page 29: Living Polymerization
Page 30: Living Polymerization

Macromolecules, 31 (20), 6762 -6768, 1998

Jiro Ueda, Masami Kamigaito, and Mitsuo Sawamoto

Page 31: Living Polymerization

Macromolecules, 31 (20), 6756 -6761, 1998

Hiroko Uegaki, Yuzo Kotani, Masami Kamigaito, and Mitsuo Sawamoto

Page 32: Living Polymerization

D: Hyperbranched Polymers

Cl

O

O

Br

O

O

O

O

Br

O

O

Monomer-Initiator

Page 33: Living Polymerization

A

B*

* * *

*

*

**

**

*

**

*

*

*

** *

*

*

*

*

*

*

* *

**

*

**

*

* *

*

*

*

*

**

*

*

*

*

*

*

A*

B*

A*BB*

AA

Page 34: Living Polymerization

E. Synthesis of End-functionalized Polymers

O OBr

O

O NHCl

Cl

ClO

O

ClO

HO OBr

O

St, MMA, MA

St, MMA

MA (at low conversion)

MMA

St

Page 35: Living Polymerization

Low catalystefficiency

High catalystresidual

Deep color inproduct

Purification Catalyst andligand waste

Challenges for ATRP

Page 36: Living Polymerization

Too much “catalyst” leads to problems of cost andresidual metal in products.

Rate can be accelerated;Reduction of copper(II) to copper(I) e.g. disproportionation with copper(0) - MatyjaszewskiAddition of rate enhancers e.g. acid, alcoholsUse of mildly co-ordinated solvents

However, for many applications we requireMuch lower levels of metalRecycling of metal

Acceptable rates of polymerisation

Page 37: Living Polymerization

• Catalyst supporting

Solution to the Problem ?

Page 38: Living Polymerization

Mn and PDI vs conversion in MMA polymerization by supported catalysts

PSorSi

N N

Cu

Br

0

5000

10000

15000

0 20 40 60 80

Conversion (%)

Mn

1

1.5

2

2.5

3

Mw

/Mn

Theor. Mn

Haddleton,

Chem. Commun. 1999, 99.

Page 39: Living Polymerization

Cu

Support

Catalyst

Spacer

NN

X

ClN

O

O

NH2

N

N

Crosslinked PSTYbead with 2 %chlorostyrene

PotassiumPhthalimide

DMF

N2H4

2-Pyridine carbaldehyde

Supported catalysts for ATP

Page 40: Living Polymerization

WHY?WHY?

1 + Kp[R-X]

Kd[CuX2]

2

Conv1

Mw

Mn=

Page 41: Living Polymerization

Catalyst

Concentration.Catalystresidual Color

Develop high reactive catalysts

Future development

Page 42: Living Polymerization
Page 43: Living Polymerization

Graft Copolymers

Page 44: Living Polymerization
Page 45: Living Polymerization

Brush Copolymer

Page 46: Living Polymerization
Page 47: Living Polymerization
Page 48: Living Polymerization
Page 49: Living Polymerization

Block copolymer side chains

Page 50: Living Polymerization
Page 51: Living Polymerization
Page 52: Living Polymerization

Materials2-(2-Bromoisobutyryloxy) ethyl methacrylate (BIEM)

2-(Dimethylamino) ethyl methacrylate (DMAEMA)

Hydroxylethyl methacrylate (HEMA)

Ethyl -2-bromoisobutyrate

HAuCl4,4H2O NaBH4

Potassium persulfate (KPS)

Page 53: Living Polymerization

Synthesis of PDMAEMA brushes on the surface of colloid particles by ATRP.

Page 54: Living Polymerization
Page 55: Living Polymerization
Page 56: Living Polymerization
Page 57: Living Polymerization
Page 58: Living Polymerization