Litar – Litar Elektrik

  • Published on
    27-Jun-2015

  • View
    262

  • Download
    8

Embed Size (px)

Transcript

<p>Litar Litar ElektrikLitar Sesiri dan Selari.</p> <p>Litar SesiriCiri ciri. Litar perintang sesiri adalah litar yang menyambungkan perintang secara berderetan. Nilai arus sama bagi semua perintang dalam litar ini. Nilai voltan berbeza bagi setiap perintang.</p> <p> Pengiraan bagi nilai keseluruhan perintang dalam litar sesiri dalah seperti berikut: Rj = R1 + R2 + R3 + Arus adalah sama di keseluruhan bahagian litar. Litar ini juga dikenali sebagai litar pembahagi voltan. Voltan pada setiap perintang boleh dikira melalui rumus berikut:</p> <p>R1 V1 ! v Vj R1 R2 R3</p> <p>@</p> <p>V2 !13</p> <p>2</p> <p>2</p> <p>v Vj3</p> <p>V3 !1</p> <p>2</p> <p>v Vj3</p> <p>Voltan jumlah, Vj Voltan keseluruhan di dalam litar. Hasil tambah voltan pada setiapVoltan keseluruhan di dalam litar. Hasil tambah voltan pada setia perintang. Vj = V1 + V2 + V3 + </p> <p>Contoh soalan1. Tentukan nilai rintangan keseluruhan bagi litar di bawah dan tentukan nilai voltan pada setiap perintang.</p> <p>2.</p> <p>Tentukan nilai rintangan keseluruhan bagi litar di bawah dan tentukan nilai voltan pada setiap perintang.</p> <p>Tentukan nilai Voltan bekalan bagi litar di bawah:</p> <p>Tentukan nilai rintangan R3 dan voltan pada perintang R3 bagi litar di bawah:</p> <p>Tentukan nilai V2 bagi litar di bawah:</p> <p>Tentukan nilai voltan V4 bagi litar berikut:</p> <p>Litar Selari Litar selari adalah litar yang menyambungkan perintang merentasi suatu punca voltan. Suatu litar yang menyediakan lebih dari satu laluan arus yang digelar sebagai cabang.</p> <p> Arus bagi setiap cabang/rintangan adalah tidak sama.</p> <p>Pengiraan1. Rintangan.</p> <p>1 1 1 ! ... R j R1 R2</p> <p>Rj !</p> <p>1 1 1 ... R1 R2</p> <p>2.</p> <p>Voltan jumlah/keseluruhan.</p> <p>Vj = V1 = V2 = V3 = 3. Arus</p> <p> Rj I1 ! v I j R 1</p> <p>@</p> <p> Rj I2 ! v I j R 2</p> <p>@</p> <p> Rj I3 ! v I j R 3</p> <p>Contoh soalan1. Tentukan nilai Rj bagi litar di bawah:jaw = 14.29</p> <p>2.</p> <p>Tentukan nilai Rj.</p> <p>jaw = 330.66</p> <p>3.</p> <p>Nilai voltan bekalan litar di bawah:</p> <p>Jaw: Vs= 833.58V</p> <p>4.</p> <p>Tentukan arus, IT, I1, I2, I3</p> <p>Jaw: IT= 2.75A, I1 = 1.5A, I2 = 0.59A, I3 = 0.67A</p> <p>5.</p> <p>Tentukan nilai R3</p> <p>Jaw: R3 = 3.21</p> <p>Hukum KirchoffHukum Arus Kirchoff. Menyatakan, pada sebarang titik persimpangan @ nod di dalam litar elektrik, jumlah arus yang memasuki titik itu sama dengan arus yang keluar.</p> <p>Pers: Imasuk = Ikeluar I3 = I1 + I2</p> <p>ContohTentukan nilai I2. Imasuk = Ikeluar I3 = I1 + I2 6A = 2A + I2 6A 2A = I2 4A = I2</p> <p>ContohTentukan I4</p> <p>Hukum Voltan Kirchoff. Menyatakan, dalam satu litar tertutup, hasil tambah bagi voltan pada setiap bahagian litar itu adalah sama dengan paduan daya gerak elektrik di dalam litar itu. Jumlah voltan punca adalah sama dengan hasil tambah jumlah voltan yang susut pada beban.</p> <p>Vj = V1 + V2 + V3</p> <p>ContohDengan menggunakan hukum voltan kirchoff, tentukan V2V1 + V2 + V3 = Vj 9.8V + V2 + 2.6V = 20V V2 = 20V 9.8V 2.6V V2 = 7.6V</p> <p>ContohDengan menggunakan Hukum Voltan Kirchoff, tentukan Arus bagi litar di bawah dan voltan bagi setiap perintang.</p>