LinAlg-Chapter2 part1 s1.ppt

Embed Size (px)

Citation preview

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    1/27

    Chapter 2 part12.1 2.2 2.3

    Matrices

    Linear Algebra

    S 1

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    2/27

    Ch2_2

    2.1 Ad dit ion, Scalar Mu lt ip l icat ion, and Mult ip l icat ion o f Matr ices

    Definition

    Amatrix is a rectangular array of numbers.

    The numbers in the array are called the elementsof the matrix.

    letter.capitalDenoted by: A,B,

    11 12 1

    21 22 2

    1 2

    m

    m

    n n nm

    a a a

    a a aA

    a a a

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    3/27

    Ch2 3

    2.1 Ad dit ion, Scalar Mu lt ip l icat ion, and Mult ip l icat ion o f Matr ices

    aij: the element of matrix Ain row.. and column

    we say it is in the ..

    The sizeof a matrix = number of ... number of ... = .

    If n=m the matrix is said to be a .. matrix with size = ...or .

    A matrix that has one row is called a matrix. A matrix that has one columnis called a ..matrix.

    For a square nnmatrixA, the main diagonalis: .

    We can denote the matrix by ..

    Note:

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    4/27

    Ch2_4

    Definition

    Two matrices are equalif:

    1) ..

    2) ..

    Example 1

    2 5

    3 0

    1) ................

    2) ............... .3) .............. .

    A

    A size is

    A is a matrixis the main diagonal

    3 1 7 11 2 2 4

    0 0 3 1

    ' .........

    B

    it s size is

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    5/27

    Ch2_5

    Addition of Matrices

    Definition

    IfAandBbe matrices of the .. then the

    sumA+B=C will be of the .. size and

    If

    LetAbe a matrix and k be a scalar. The scalar multipleofAby

    k , denoted will be the same size asA.

    The matrix (-1)A= -A called the of A.LetAandBof the same size then:A-B= A+(-B)=Cand:

    ..................A size B size A B

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    6/27

    Ch2_6

    Example 2

    .7245

    and,813652

    ,320741

    Let

    CBA

    DetermineA+B, 3A ,A+ C , A-B

    Solution

    3

    (3

    (1)

    (2)

    )

    (4)

    A

    A

    A B

    C

    A B

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    7/27Ch2_7

    Definition

    A. matrix all of its elements are zero. If the zero

    matrixis of a square size nn it will be denoted by .

    0ij0

    n

    Theorem2.2:

    Let A,B,C bematrices, be scalars.

    Assume that the size of the matrices are such that the operations

    can be performed, let 0 be the zero matrix.

    Propert ies of matr ix addit ion and s calar mu lt ip l icat ion :

    1 2,k k

    1) ............

    2) ...............

    3) 0 0 ........

    A B

    A B C

    A A

    1

    1 2

    1 2

    4) .............

    5) .............

    6) ................

    k A B

    k k C

    k k A

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    8/27Ch2_8

    2 3 5A B C

    Example 3

    Compute the linear combination: for:

    1 3 3 7 0 2, ,

    4 5 2 1 3 1A B C

    Solut ion

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    9/27Ch2_9

    Mult ip l icat ion o f Matr ices

    Definition

    1) If the number of .. in A= the number of .. inB.

    The productABthen exists.

    LetA: ..matrix,B: .matrix,

    The product matrix C=AB is a .matrix.

    2) If the number of .in A the number of ..inB

    then The product AB ..

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    10/27Ch2_10

    11 12 1 11 12 1

    21 22 2 21 22 2

    1 2 1 2

    11 12 1 11 12 1

    21 22 2 21 22 2

    1 2 1 2

    ,

    m k

    m k

    n n nm m m mk

    m k

    m k

    n n nm m m mk

    a a a b b b

    a a a b b bif A B

    a a a b b b

    a a a b b b

    a a a b b bA B

    a a a b b b

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    11/27Ch2_11

    ..............................................ij

    If AB C

    then c

    Note:

    Examp le 4

    Let C=AB, Determine c23.

    105237

    and4312

    BA

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    12/27Ch2_12

    Example 5

    3 1 2 7 2

    Let , Determine , .4 1 5 6 3A B AB BA

    Solut ion

    Note.In general,

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    13/27

    Ch2_13

    Definition

    1) A ..matrixis a matrix in which all the elements are zeros.

    2) A ..matrixis a square matrix in which all the

    elements ...

    3) An ..matrixis a diagonal matrix in which every

    element in the main diagonal is .

    matrixzero

    000

    000000

    mn0

    11

    22

    0 0

    0 0

    0 0

    ................. matrix A

    nn

    a

    aA

    a

    1 0 0

    0 1 0

    0 0 1

    ............... matrix

    nI

    Special Matrices

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    14/27

    Ch2_14

    Theorem 2.1

    LetAbe mnmatrix and Omnbe the zero mnmatrix. LetBbe

    an n

    nsquare matrix. OnandInbe the zero and identity n

    nmatrices. Then:

    1) A+ Omn= Omn+A= .

    2) BOn= OnB= 3) BIn=InB=

    Examp le 6

    .4312

    and854312

    Let

    BA

    23 ...............A O

    2 .................BO

    2 ...........BI

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    15/27

    Ch2_15

    LetA,B, andCbe matrices and kbe a scalar. Assume that the size of

    the matrices are such that the operations can be performed.

    Properties of Matr ix Mul tipli cation

    1.A(BC) = . Associative property of multiplication

    2.A(B+ C) = Distributive property of multiplication

    3. (A+B)C= Distributive property of multiplication

    4.AIn=InA= (whereInis the identity matrix)

    5. k(AB) = = Note:ABBA in general. Multiplication of matrices is not

    commutative.

    Theorem 2.2 -2

    2.2 A lgebraic Propert ies of Matr ix Operat ions

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    16/27

    Ch2_16

    Example 7

    .

    0

    14

    and,

    201

    310,

    13

    21Let

    CBA ComputeABC.

    Solut ion

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    17/27

    Ch2_17

    In algebra we know that the following cancellation laws apply.

    If ab= acand a 0 then ..Ifpq= 0 then ..or .

    However the corresponding results are not true for matrices.

    AB=AC.thatB= C.

    PQ= Othat P= Oor Q= O.

    Note:

    Examp le 81 2 1 2 3 8

    (1) Consider the matrices , , and .2 4 2 1 3 2

    Observe that .................................., but ................

    A B C

    1 0 0 0(2) Consider the matrices , and .

    0 0 0 1

    Observe that ........................, but ........................

    P Q

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    18/27

    Ch2_18

    Powers of Matrices

    Theorem 2.3

    IfAis an nn square matrix andrandsare nonnegative

    integers, then1. ArAs= .

    2. (Ar)s= .

    3. A0= (by definition)

    Defini t ion

    IfAis a squarematrix and kis a positive integer, then

    ...........................kA

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    19/27

    Ch2_19

    Example 9

    .compute,

    01

    21If 4AA

    Solution

    Example 10 Simplify the following matrix expression.

    ABBABABBAA 57)2(3)2( 22

    Solution

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    20/27

    Ch2_20

    Idempo tent and Nilpotent Matr ices

    Defini t ion

    A square matrixAis said to be:

    .if ..

    .if there is a positive integerps.t .

    The least integerpsuch thatAp=0 is called the

    . of the matrix.

    3 6

    (1) 1 2A

    Example 11

    3 9(2)

    1 3B

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    21/27

    Ch2_21

    2.3 Symmetr ic Matr ices

    Definition

    The..of a matrixA, denoted , is the matrixwhose .. are the . of the given matrixA.

    Example 12

    .431and,654721

    ,0872

    CBA

    i.e., : : ..............tA m n A

    Determine thetransposeof the following matrices:

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    22/27

    Ch2_22

    Theorem :Propert ies of Transpose

    LetAandBbe matrices and kbe a scalar. Assume that the sizes

    of the matrices are such that the operations can be performed.

    1. (A+B)t= ... Transpose of a sum

    2. (kA)t= ... Transpose of a scalar multiple

    3. (AB)t= ... Transpose of a product

    4. (At)t= ...

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    23/27

    Ch2_23

    Symmetr ic Matr ix

    1 0 2 40 ....... 4

    2 5 0 7 3 9

    , 1 7 ....... ,5 4 2 3 2 3...... 8 3

    4 9 3 6

    match

    match

    Definition

    Let A be a square matrix:

    1) If ...then A called...matrix.

    2) If ...then A called...matrix.

    Example 13 symmetric matrices

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    24/27

    Ch2_24

    Example 14

    Proof

    Let AandBbe symmetric matrices of the same size.

    C = aA+bB, a,b are scalars. Provethat C is symmetric.

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    25/27

    Ch2_25

    Example 15

    Proof

    Let AandBbe symmetric matrices of the same size.

    Prove that the productABis symmetric if and only ifAB=BA.

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    26/27

    Ch2_26

    Example 16

    Proof

    Let Abe a symmetric matrix. Prove thatA2is symmetric.

  • 8/10/2019 LinAlg-Chapter2 part1 s1.ppt

    27/27

    Ch2 27

    Definition

    Let A be a square matrix. The of A denoted by ..isthe .of A.

    LetAandBbe matrices and kbe a scalar. Assume that the sizesof the matrices are such that the operations can be performed.

    1. tr(A + B) = ..

    2. tr(kA) = .

    3. tr(AB) =

    4. tr(At) = ..

    Theorem :Propert ies of Trace .