34
Lesson Overview Lesson Overview Viruses Viruses Lesson Lesson Overview Overview 20.2 Prokaryotes 20.2 Prokaryotes

Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Embed Size (px)

Citation preview

Page 1: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Lesson OverviewLesson Overview20.2 Prokaryotes20.2 Prokaryotes

Page 2: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Classifying Prokaryotes

The smallest and most abundant microorganisms on Earth are prokaryotes—unicellular organisms that lack a nucleus.

Prokaryote DNA is located in the cytoplasm.

Page 3: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Classifying ProkaryotesProkaryotes are divided into two very distinct groups:

Bacteria and Archaea.

These groups are very different from each other, and biologists consider each group as a separate domain. Eukaryotes are the third domain.

Page 4: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Bacteria The larger of the two domains of prokaryotes is the Bacteria.

Bacteria include a wide range of organisms with lifestyles so different that biologists do not agree exactly how many phyla are needed to classify this group.

Page 5: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Bacteria Bacteria live almost everywhere—in fresh water, in salt water, on land, and on and within the bodies of humans and other eukaryotes.

Escherichia coli, a typical bacterium that lives in human intestines, is shown.

Page 6: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Bacteria Bacteria are usually surrounded by a cell wall that protects the cell from injury and determines its shape.

The cell walls of bacteria contain peptidoglycan—a polymer of sugars and amino acids that surrounds the cell membrane.

Some bacteria, such as E. coli, have a second membrane outside the peptidoglycan wall that makes the cell especially resistant to damage.

Page 7: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Bacteria Some prokaryotes have flagella that they use for movement.

E. coli also have pili which serve mainly to anchor the bacterium to a surface or to other bacteria.

Page 8: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Archaea Under a microscope, archaea look very similar to bacteria. Both are equally small, lack nuclei, and have cell walls, but there are important differences.

The walls of archaea lack peptidoglycan, and their membranes contain different lipids.

The DNA sequences of key archaea genes are more like those of eukaryotes than those of bacteria.

Scientists have concluded that archaea and eukaryotes are related more closely to each other than to bacteria.

Page 9: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Archaea Many archaea live in extremely harsh environments.

One group of archaea produce methane gas and live in environments with little or no oxygen, such as thick mud and the digestive tracts of animals.

Other archaea live in extremely salty environments, such as Utah’s Great Salt Lake, or in hot springs where temperatures approach the boiling point of water.

Page 10: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Structure and FunctionHow do prokaryotes vary in their structure and function?

Page 11: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Structure and FunctionHow do prokaryotes vary in their structure and function?

Prokaryotes vary in their size and shape, in the way they move, and in the

way they obtain and release energy.

Page 12: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Size, Shape, and Movement Prokaryotes range in size from 1 to 5 micrometers, making them much smaller than most eukaryotic cells. Prokaryotes come in a variety of shapes.

Rod-shaped prokaryotes are called bacilli.

Spherical prokaryotes are called cocci.

Spiral and corkscrew-shaped prokaryotes are called spirilla.

Page 13: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Size, Shape, and Movement Prokaryotes can also be distinguished by whether they move and how they move.

Some prokaryotes do not move at all. Others are propelled by flagella. Some glide slowly along a layer of slimelike material they secrete.

Page 14: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nutrition and Metabolism Prokaryotes need a supply of chemical energy, which they store in the form of fuel molecules such as sugars.

Energy is released from these fuel molecules during cellular respiration, fermentation, or both.

Page 15: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nutrition and Metabolism Prokaryotes vary in the ways they obtain energy and the ways they release it.

Looking at the two tables on the following slides, notice that some species are able to change their method of energy capture or release depending on the conditions of their environment.

Page 16: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nutrition and Metabolism: Energy Capture

Page 17: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nutrition and Metabolism: Energy Release

Page 18: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Growth, Reproduction, and Recombination

When a prokaryote has grown so that it has nearly doubled in size, it replicates its DNA and divides in half, producing two identical cells. This type of reproduction is known as binary fission.

Page 19: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Growth, Reproduction, and Recombination

Because binary fission does not involve the exchange or recombination of genetic information, it is an asexual form of reproduction.

When conditions are favorable, prokaryotes can grow and divide at astonishing rates—some as often as once every 20 minutes!

Page 20: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Growth, Reproduction, and Recombination

When growth conditions become unfavorable, many prokaryotic cells form an endospore—a thick internal wall that encloses the DNA and a portion of the cytoplasm.

Endospores can remain dormant for months or even years.

Page 21: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Growth, Reproduction, and Recombination

The ability to form endospores makes it possible for some prokaryotes to survive very harsh conditions. The bacterium Bacillus anthracis, which causes the disease anthrax, is one such bacterium.

Page 22: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Mutation Mutations are one of the main ways prokaryotes evolve.

Mutations are random changes in DNA that occur in all organisms.

In prokaryotes, mutations are inherited by daughter cells produced by binary fission.

Page 23: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Conjugation Many prokaryotes exchange genetic information by a process called conjugation.

During conjugation, a hollow bridge forms between two bacterial cells, and genetic material, usually in the form of a plasmid, moves from one cell to the other.

Page 24: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Conjugation

Many plasmids carry genes that enable bacteria to survive in new environments or to resist antibiotics that might otherwise prove fatal.

This transfer of genetic information increases genetic diversity in populations of prokaryotes.

Page 25: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

The Importance of ProkaryotesWhat roles do prokaryotes play in the living world?

Page 26: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

The Importance of ProkaryotesWhat roles do prokaryotes play in the living world?

Prokaryotes are essential in maintaining every aspect of the ecological

balance of the living world. In addition, some species have specific uses in

human industry.

Page 27: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Decomposers Bacteria called actinomycetes are present in soil and in rotting plant material such as fallen logs, where they decompose complex organic molecules into simpler molecules.

Page 28: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Decomposers By decomposing dead organisms, prokaryotes, supply raw materials and thus help to maintain equilibrium in the environment.

Bacterial decomposers are also essential to industrial sewage treatment, helping to produce purified water and chemicals that can be used as fertilizers.

Page 29: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Producers Cyanobacteria in the genus Anabaena form filamentous chains in ponds and other aquatic environments, where they perform photosynthesis.

Page 30: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Producers Photosynthetic prokaryotes are among the most important producers on the planet.

Food chains everywhere are dependent upon prokaryotes as producers of food and biomass.

Page 31: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nitrogen Fixers All organisms need nitrogen to make proteins and other molecules.

Nitrogen gas (N2) makes up 80 percent of Earth’s atmosphere, but only a few kinds of organisms—all of them prokaryotes—can convert N2 into useful forms.

The process of nitrogen fixation converts nitrogen gas into ammonia (NH3). Ammonia can then be converted to nitrates that plants use, or attached to amino acids that all organisms use.

Nitrogen-fixing bacteria and archaea provide 90 percent of the nitrogen used by other organisms.

Page 32: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nitrogen Fixers Some plants have symbiotic relationships with nitrogen-fixing prokaryotes.

The bacterium Rhizobium grows in nodules, or knobs, on the roots of legume plants such as soybean.

The Rhizobium bacteria within these nodules convert nitrogen in the air into the nitrogen compounds essential for plant growth.

Page 33: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Nitrogen Fixers The Rhizobium bacteria often live symbiotically within nodules attached to roots of legumes, such as clover, where they convert atmospheric nitrogen into a form that is useable by plants.

Page 34: Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes

Lesson OverviewLesson Overview VirusesViruses

Human Uses of Prokaryotes Prokaryotes, especially bacteria, are used in the production of a wide variety of foods and other commercial products.

Yogurt is produced by the bacterium Lactobacillus.

Some bacteria can digest petroleum and remove human-made waste products and poisons from water.

Other bacteria are used to synthesize drugs and chemicals through the techniques of genetic engineering.

Bacteria and archaea adapted to extreme environments may be a rich source of heat-stable enzymes that can be used in medicine, food production, and industrial chemistry.