Lecturenote Micro hydropower development

Embed Size (px)

Citation preview

  • 7/30/2019 Lecturenote Micro hydropower development

    1/120

    EU DELEGATION TO PAKISTAN

    LectureNotesonMHPDevelopment

    SRSP2012ByNijazLukovac

    V.1.0

    June,2012

    Funded by

    the European Union

    Member of the COWIConsortium

  • 7/30/2019 Lecturenote Micro hydropower development

    2/120

    TableofContents:

    Coursecurriculum......................................................................................................................................9

    Introduction.............................................................................................................................................10

    1. Datacollectionandacquisition...................................................................................................11

    1.1. Survey.......................................................................................................................................11

    1.1.1. Overview..................................................................................................................................11

    1.1.2. MultiplefrequencyGPS............................................................................................................12

    1.1.3. TraditionalmethodsofquickSurvey.................................................................................12

    1.2. Hydrology.................................................................................................................................16

    1.2.1. Overview..................................................................................................................................16

    1.2.2. Analyses....................................................................................................................................17

    a) Availabledischarge.....................................................................................................................17

    b) Flooddischarge...........................................................................................................................20

    1.2.3. Measurements.........................................................................................................................24

    c) Measuringweirs..........................................................................................................................25

    d) Stagedischargemethod.............................................................................................................25

    e) 'Saltgulp'method.......................................................................................................................26

    f) Bucketmethod............................................................................................................................27

    g) Floatmethod...............................................................................................................................27

    h) Currentmeters............................................................................................................................28

    i) Automatedmeasurements.........................................................................................................28

    1.3. GeologyandGeomechanics.....................................................................................................29

    1.3.1. Overview..................................................................................................................................29

    2. Basicsofhydraulics.....................................................................................................................33

    2.1. Overview.....................................................................................................................................33

    2.2. Pipelines......................................................................................................................................33

    2.3. Canals..........................................................................................................................................41

    2.4. Tyroleanintake............................................................................................................................43

    2.4.1. Intake........................................................................................................................................44

    2.4.2. Collectioncanal........................................................................................................................46

    2.4.3. Spillwayonthesill(Q1/100)........................................................................................................47

  • 7/30/2019 Lecturenote Micro hydropower development

    3/120

    2.4.4. Stillingbasin(Q1/100).................................................................................................................48

    2.4.5. Settlingbasin(Qi).....................................................................................................................50

    2.4.1. Siltoutlet(Qout).........................................................................................................................52

    2.4.2. Spillwayfromsettlingbasin(Qmax)...........................................................................................54

    2.4.3. Dutyflowoutlet(Qmin).............................................................................................................54

    3. HydropowerbasicsandHydraulicstructures.............................................................................56

    3.1. General........................................................................................................................................56

    3.2. History.........................................................................................................................................56

    3.3. Advantagesanddisadvantages...................................................................................................56

    3.4. StreamorCatchmentDevelopment...........................................................................................57

    3.5. CostoftheMHP..........................................................................................................................60

    3.6. FromwatertoWatts(again).......................................................................................................60

    3.7. Differentsizeshydropowerinstallations....................................................................................63

    3.8. Smallhydropower.......................................................................................................................64

    3.9. Energyuses.................................................................................................................................64

    3.10. Componentsofascheme............................................................................................................65

    3.10.1. Weirandintake........................................................................................................................66

    a) Sideintakewithoutweir.............................................................................................................68

    b) Sideintakewithweir...................................................................................................................68

    c) Bottomintake.............................................................................................................................71

    3.10.2. Channels...................................................................................................................................72

    3.10.3. Settlingbasin/Sandtrap..........................................................................................................73

    3.10.4. Spillways...................................................................................................................................75

    3.10.5. Forebaytank.............................................................................................................................75

    3.10.6. PenstockMaterials...................................................................................................................77

    3.10.7. Penstock...................................................................................................................................78

    d) Penstockjointing.........................................................................................................................84

    e) Buryingorsupportingthepenstock............................................................................................84

    f) PenstockAnchorBlocksdimensions...........................................................................................85

    g) Waterhammer.............................................................................................................................87

    3.10.8. Powerhouse..............................................................................................................................89

    4. Equipment...................................................................................................................................94

    4.1. Hydromechanicalequipment....................................................................................................94

  • 7/30/2019 Lecturenote Micro hydropower development

    4/120

    4.1.1. Trashracks................................................................................................................................94

    4.1.2. Rakes........................................................................................................................................95

    4.1.3. StoplogsandGates..................................................................................................................96

    4.1.4. Valves.......................................................................................................................................97

    4.1.5. Airvents...................................................................................................................................98

    4.1.6. Airvessels.................................................................................................................................99

    4.2. Electromechanicalequipment.................................................................................................100

    4.2.1. TurbineSelection....................................................................................................................100

    4.2.2. Turbinediameter....................................................................................................................103

    4.2.3. Suctionheadforreactiveturbines.........................................................................................104

    4.2.1. Pumpsasturbines..................................................................................................................104

    4.3. Electricalequipment.................................................................................................................107

    4.3.1. Generators/alternators..........................................................................................................107

    4.3.2. TransformersandSwitchgears...............................................................................................108

    4.3.3. Automationequipment..........................................................................................................109

    4.3.4. Localillumination/lighting....................................................................................................110

    4.3.5. AntiThunderGrounding........................................................................................................111

    5. DesigntoolsandDrawings........................................................................................................112

    5.1. Designtools...............................................................................................................................112

    5.2. Designphases............................................................................................................................112

    5.3. Drawings....................................................................................................................................113

    6. Monitoring................................................................................................................................114

    7. Practicalexercise.......................................................................................................................118

    8. Trainingevaluation....................................................................................................................119

    9. Literature...................................................................................................................................120

    Figures:

    Figure1UsingGPSinthefield...............................................................................................................12

    Figure2Measuringheadinsteps.........................................................................................................14

    Figure3Measuringheadinstepsusingspiritlevelmeter....................................................................14

    Figure4Measuringheadinstepsusingpocketsightinglevel..............................................................15

    Figure5Measuringheadinstepsusingclinometermethod................................................................15

    Figure6Hydrologic

    cycle.......................................................................................................................16

  • 7/30/2019 Lecturenote Micro hydropower development

    5/120

    Figure7ExampleofqspAC(=Fsl)..........................................................................................................18

    Figure8ExampletypicalMHPFDC.......................................................................................................18

    Figure9Catchmentareaboundaries....................................................................................................19

    Figure10

    Catchment

    area

    boundaries

    (3D)..........................................................................................19

    Figure11ExampleofMHPcatchmentshownon1:25000...................................................................20

    Figure12ExampleofintensitycurvesforvariousreturnperiodsforSarajevo.................................22

    Figure13Exampleofafloodhydrograph.............................................................................................24

    Figure14Flowmeasurementsusingweir.............................................................................................25

    Figure15Flowmeasurementsusingfloat............................................................................................26

    Figure16Flowmeasurementsusingdilution........................................................................................27

    Figure17Flowmeasurementsusingcurrentmeters............................................................................28

    Figure18RiverCATinaction................................................................................................................28

    Figure19ExampleoftheuseofGoogleEarthinanalysingthearea....................................................29

    Figure20Exampleofthegeologicalprofiletakenfromthegeologicalbasemap1:100000..............30

    Figure21Exampleofthegeologicalbasemap1:100000....................................................................30

    Figure22Landslides..............................................................................................................................30

    Figure23Screes.....................................................................................................................................31

    Figure24Slopestabilityresults.............................................................................................................31

    Figure253Dsitegeologicalpresentation.............................................................................................32

    Figure26n=f(R)relationshipintransitionalflowzone.......................................................................35

    Figure27 Typicalcanalsection..............................................................................................................41

    Figure28 Typicalcanalsectionwithlateralgroundslope.....................................................................41

    Figure29Criticaldepthandflowregimes.............................................................................................42

    Figure30Typicalchangesofflowregimes...........................................................................................43

    Figure31Tyroleanintake......................................................................................................................44

    Figure32Waterprofileontheintake..................................................................................................45

    Figure

    33

    Water

    profile

    on

    the

    collection

    canal...................................................................................47

  • 7/30/2019 Lecturenote Micro hydropower development

    6/120

    Figure34WaterprofilealongSB..........................................................................................................49

    Figure35WaterprofilealongSBanddownstream..............................................................................50

    Figure36Tyroleanintake drawing.....................................................................................................55

    Figure37

    Example

    of

    stream

    power

    capacity

    calculation.....................................................................59

    Figure38Typicalarrangementofmicrohydroscheme........................................................................60

    Figure39Flowdurationcurve...............................................................................................................61

    Figure40Netheaddurationcurve........................................................................................................62

    Figure41Powerdurationcurve............................................................................................................62

    Figure42Majorcomponentsofamicrohydroscheme........................................................................65

    Figure43Examplesoftemporaryintakes..........................................................................................67

    Figure44TheexampleofpermanentMHPconcreteintake.............................................................67

    Figure45Uncontrolledintake............................................................................................................68

    Figure46Examplesideintake...............................................................................................................69

    Figure47Overviewofthesideintake...................................................................................................69

    Figure48Exampleofgabionsillintake.................................................................................................70

    Figure49Examplesideintake...............................................................................................................71

    Figure50ExampleofTyrolean(bottomwithdrawal)intake................................................................72

    Figure51Typicalheadracecanalsections............................................................................................73

    Figure52Typicalsandtrap/settlingbasin..........................................................................................74

    Figure53Typicalsandtrap/settlingbasinelevationsketch...............................................................74

    Figure54Exampleofcanalsiltation.....................................................................................................75

    Figure55Typicalforebaytankdesigndrawing..................................................................................76

    Figure56Typicalforebaytankoverview...............................................................................................76

    Figure57Comparisonofpipematerials...............................................................................................78

    Figure58Penstockalignmentdesigndrawing...................................................................................79

    Figure59PenstockAnchorBlocks(ThrustBlocks)................................................................................79

    Figure

    60

    Penstock

    Anchor

    Blocks

    at

    Powerhouse................................................................................80

  • 7/30/2019 Lecturenote Micro hydropower development

    7/120

    Figure61PenstockExpansionJoints.....................................................................................................80

    Figure62PenstockSupportsspacing...................................................................................................81

    Figure63PenstockAlignmentproblems...............................................................................................81

    Figure64

    Plastic

    pipe

    laid

    on

    ground....................................................................................................81

    Figure65Plasticpipeburiedinthetrench............................................................................................82

    Figure66Penstockplacements.............................................................................................................83

    Figure67Penstockdiameteroptimisation............................................................................................84

    Figure68Penstocksupports..................................................................................................................85

    Figure69Waterhammerschematicsforsuddenclosure......................................................................88

    Figure70ResultofwaterhammercomputationforalongMHPpenstock...........................................88

    Figure71ExamplesofsimpleMHPPowerhouses.................................................................................89

    Figure72TypicalMHPPowerhouse......................................................................................................89

    Figure73FrontfaadeofaMHPPowerhouse......................................................................................90

    Figure74MHPPowerhouseTailrace..................................................................................................90

    Figure75MHPPowerhouseTailrace..................................................................................................91

    Figure76TypicalMHPPowerhousewithimpulseturbine....................................................................91

    Figure77TypicalMHPPowerhousewithreactionturbine...................................................................92

    Figure78Powerhousefoundationforarrangementwithmechanicalgovernor...................................93

    Figure79Powerhouseplandrawing......................................................................................................93

    Figure80Trashrack..............................................................................................................................94

    Figure81Trashrake..............................................................................................................................95

    Figure82Slidegates.............................................................................................................................96

    Figure83Slidegate...............................................................................................................................96

    Figure84Valves....................................................................................................................................97

    Figure85Airvent..................................................................................................................................98

    Figure86Airvessel................................................................................................................................99

    Figure

    87

    Typical

    turbine

    selection

    diagram.......................................................................................100

  • 7/30/2019 Lecturenote Micro hydropower development

    8/120

    Figure88Typicalturbinefoundationarrangements...........................................................................101

    Figure89Nsvs.Hturbinediagram......................................................................................................101

    Figure90Hvs.Nsturbinediagram(loglog).......................................................................................102

    Figure91

    Other

    turbine

    application

    charts.........................................................................................102

    Figure92Typicalturbineefficiencycurves..........................................................................................103

    Figure93Centrifugalpumpinturbinemode......................................................................................105

    Figure94Pumpasturbine..................................................................................................................105

    Figure95T15crossflowturbine parts..............................................................................................106

    Figure96T15crossflowturbine principle........................................................................................106

    Figure97Generators...........................................................................................................................107

    Figure98Transformersandswitchgears............................................................................................108

    Figure99AutomatedcontrolofMHP.................................................................................................109

    Figure100ExampleofGridconnection,electricaldistributionandsupervisionarchitectureofamicro

    hydropowerplant..................................................................................................................................110

    Figure101Powerhouselighting..........................................................................................................110

    Figure102

    Powerhouse

    grounding.....................................................................................................111

    Tables:

    Table1SCScurvenumbers....................................................................................................................22

    Table2Piperoughness..........................................................................................................................35

    Table3Importantpipematerialproperties..........................................................................................36

    Table4Canalflowcalculationsparameters.........................................................................................41

    Table5ExampleofthecalculationforTyroleanintake........................................................................45

    Table6Settlingvelocityoftheparticledependentonwatertemperature/viscosity...........................51

    Table7ExampleofPowercomputationforarunofriverMHP...........................................................63

    Table8ExampleofHydropowerclassification......................................................................................63

    Table9Typicalenergyuses...................................................................................................................64

    Table10Comparisonpenstockmaterials.............................................................................................77

    Table11Weightcomparisonbythetypeofpipe(diameter500mm,by1m)......................................78

  • 7/30/2019 Lecturenote Micro hydropower development

    9/120

    9

    Coursecurriculum1. Datacollectionandacquisition

    1.1. Basicgeodeticsurveyingrequirements.(Couldusehelphere)1.2. Basichydrologicaldatacollectionandanalysis(measurements,historical/witnessdata,

    rainfallrunoffanalysesaveragedischarge,minimumandmaximumflowrates,flow

    ratingcurve,flowdurationcurve.

    1.3. Geologic/geomechanicprospection.

    2. Basicsofhydraulics, conveyance systems (steady canalandpipe flow computation), friction

    losses,spillwaysandoutlets,introductiontounsteadyflowandtransients/waterhammer.

    3. Hydropowerbasics(withemphasisonmicrohydro),determinationofthewatercoursestream

    potential (capacity), site selection, site development,possible schemes,design optimisation

    and alternative arrangements, equipment selection, calculation of the main power

    parameters.Differencesindemanddrivenandpowerdrivenapproachtohydropower.

    4. HydraulicstructuresdescriptionofthemainhydraulicstructuresusedinMHPdevelopment:

    river diversion (sill, weir), intake, sandtrap/settling basin, headrace (power canal or pipe),

    penstock (and its supports and anchors),powerhouse, tailrace (canal)note:Merged with

    Hydropower.

    5. Hydromechanical equipment: gates, valves, trashracks, rakes, steel pipes (Pending

    appropriateexpertise)

    6. Electromechanical equipment: Turbine, generator (partly covered but still pending

    appropriateexpertise)

    7. Electrical equipment: transformers, alternators, switchgears, cabling (Pending

    appropriate

    expertise)

    8. DrawingsTheminimumfortechnicaldrawingsanddetailsforeachMHP

    9. MonitoringinstructiontocollectdatafornecessaryMonitoringoftheprogress.

    10. Practicalexercise(s)

    11. TrainingEvaluation

  • 7/30/2019 Lecturenote Micro hydropower development

    10/120

    10

    IntroductionThenorthwestpartofPakistan(KPK)isveryrichinhydropowerpotential,butitalsohassomeremote

    areas with many villages that do not have access to electricity. In principle, these are areas with

    considerabledegreeofpoverty.Withtheobjectivetoalleviatethepovertyandtohelpdevelopment

    ofthoseareas,EUDhasdecidedtograntfundsfor(amongotherthings)developmentofanumberof

    MHPsinthevillagesof7districtsoftheMalakandregion.

    PeshawarseatedNGOSarhadRuralSupportProgrammeSRSP,hassubmittedtheProjectProposal

    titledProgrammeforEconomicAdvancementandCommunityEmpowerment(PEACE).Alargepart

    ofit,nearly50%isdealingwiththesetupandimplementationof297MHPschemesintheregionover

    aperiodoffouryears.

    Under the title:TechnicalAppraisalandMonitoringofaMicroHydelProgramme inPakistan,EUDissued the ToR for an FWC assignment for a consultantwhowouldprovide technical assistance in

    relation to thesaidProposalandProject implementationwithin the first year.TheFWCassignment

    envisaged3visitstoPakistanindifferentphasesoftheProposal/Projectdevelopment.TheConsultant

    fortheFWCassignment isNijazLukovac(infarthertext:theConsultant),whomadethefirstvisitto

    Pakistan(IslamabadandPeshawar)from1st27

    thApril2012andpreparedtheReportforPhaseI.

    Meanwhile,basedonfindingsofthevisitanddiscussionswithEUD,thedecisionwasmadetoslightly

    adjusttheoriginalplanning inawaythat insteadof3thereshouldbe4visitsoftheConsultant,and

    thatpartofthesecondvisitwouldbeusedtocarryonaTrainingcourseforSRSPengineers.Thetiming

    oftheTrainingisoptimalatthebeginningoftheProjectimplementationphase.

    TheConsultanthasproposedaCoursecurriculum (Chapter0),andhasenvisaged theTrainingasan

    interactiveworkshop(s)withparticipationofcertainexternalinstructorsaswellasownSRSPsstaff.A

    partofthetrainingworkshopwouldalsobeledbytheConsultant.Inordertohavemajorlinesalong

    whichthetrainingshouldgo,thedraftofthecoursematerialhasbeenpreparedandpresentedfurther

    on. There will be a number of handouts and free software packages distributed as well. The

    workshopsaremeanttohaveadegreeofflexibilityandshouldadjust inaccordancewithneedsand

    capabilitiesof theparticipants.At theendof theworkshop,aneffortwouldbemade toturn this

    materialintoabaseforfutureSRSPMHPmanual.

  • 7/30/2019 Lecturenote Micro hydropower development

    11/120

    11

    1. Datacollectionandacquisition1.1. Survey

    1.1.1. Overview

    Whatisimportant?

    1. Essential:

    a. Determiningtheavailablehead

    b. Determininglocationsofmajorstructures(intake,sandtrap,headracecanal,forebay,

    penstock,powerhouse,tailrace)

    c. Baseforpowercalculationsandcostestimate

    2. Wouldbebeneficial:

    a. Surveyinglocalmapsatstructures

    b. longitudinalprofile

    c. characteristiccrosssections

    EssentialpartwouldbenecessaryforALLMHPsandtherestshouldberequiredatleastforMHPswith

    P>100kW.

    Each(future)MHPsiteshouldbesurveyedtoadegreethatwouldbesufficienttoprovidebasicdataandparametersforthedesign.Minimallyitshouldinclude:

    Locationanddimensionsofmainstructures:o Intake

    o Sandtrap(ifany)

    o Canal(ifany)

    o Forebay

    o Powerhouse

    Availablegrosshead

    Moredetailedsurveydatashouldalsoprovide(ifpossible):

    Moredetailedmapsaroundthestructures

    Longitudinalprofile

    Severalcrosssections

    Thosedatawouldprovideabaseforbetterdesignoptimisationandmoreaccuratecostestimate(bill

    ofquantities).

    Finally, once implemented scheme should ideally be recorded and filed in terms of the Asbuilt

    documentation. In other words, once completed, the MHP scheme should be surveyed at actual

    locationsofbuiltstructures.

  • 7/30/2019 Lecturenote Micro hydropower development

    12/120

    12

    1.1.2. MultiplefrequencyGPS

    InSRSPsProject,ithasbeenforeseentoacquireacoupleofdouble/triplefrequencyGPSSystemsthat

    canprovidequickandaccuratedatawhichcaneasilybeimportedintothesoftwareapplicationsused

    fordesign(e.g.AutoCAD).Thiskindofprocedureshouldcertainlybeemployedat leastwithlarger

    MHPs(say>100kW).DuetothelargenumberoftheMHPstobeconstructedwithin4yearsitmaybe

    impossibletousethissophisticatedsurveyingequipmentateachandeverysite.Forveryremotesites

    andverysmallMHPsitwouldstillbeacceptabletousemoretraditionalsitemethodsofmeasuring.

    Figure1UsingGPSinthefield

    1.1.3. TraditionalmethodsofquickSurvey

    Severalmethodsexistformeasurementoftheavailablehead.Somemeasurementmethodsaremore

    suitableon lowheadsites,butaretootediousand inaccurateonhighheads.Ifpossible,it iswiseto

    takeseveralseparatemeasurementsoftheheadateachsite.Advice:Alwaysplanforenoughtimeto

    allowonsitecomparisonofsurveyresults.Itisbestnottoleavethesitebeforeanalysingtheresults,

    asanypossiblemistakeswillbeeasiertocheckonsite.

    Afurtherveryimportantfactortobeawareofisthatthegrossheadisnotstrictlyaconstantbutvaries

    withtheriverflow.Astheriverfillsup,thetailwaterleveloftenrisesfasterthantheheadwaterlevel,

    thusreducingthetotalheadavailable.

    Althoughthisheadvariationismuchlessthanthevariationinflow,itcansignificantlyaffectthepower

    available,especially in lowheadschemeswhereeveryhalfmetre isessential.Toassesstheavailable

    grossheadaccuratelyheadwaterandtailwaterlevelsneedtobemeasuredforthefullrangeofriver

    flows.(SomeexamplesareillustratedinFigure2throughFigure5).

    DumpylevelsandtheodoliteTheuseofadumpylevel(orbuilder'slevel)istheconventionalmethodformeasuringheadandshould

    be used wherever time and funds allow. Such equipment should be used by experienced operators

    whoarecapableofcheckingthecalibrationofthedevice.

  • 7/30/2019 Lecturenote Micro hydropower development

    13/120

    13

    Dumpy levelsareusedwith staffs tomeasurehead ina seriesof stages.Adumpy level isadevice

    whichallowstheoperatortotakesightonastaffheldbyacolleague,knowingthatthelineofsightis

    exactlyhorizontal.Stagesareusuallylimitedbythelengthofthestafftoaheightchangeofnomore

    than3m.Aclearunobstructedviewisneeded,sowoodedsitescanbefrustratedwiththismethod.

    Dumpy levelsonly allow ahorizontal sightbut theodolite can alsomeasure vertical andhorizontalangles,givinggreaterversatilityandallowingfasterwork.

    Sightingmeters

    Handheldsightingmetersmeasuresangleofinclinationofaslope(theyareoftencalledinclinometers

    orAbneylevels).

    Theycanbeaccurate ifusedbyanexperiencedperson,but it iseasy tomakemistakesanddouble

    checking is recommended.Theyaresmallandcompact,andsometimes include range finderswhich

    savethetroubleofmeasuring lineardistance.Theerrorwilldependontheskilloftheuserandwilltypicallybebetween2and10%.

    Waterfilledtubeandpressuregauge

    Itisprobablythebestofthesimplemethodsavailable,butitdoeshaveitspitfalls.Thetwosourcesor

    errorwhichmustbeavoidedareoutofcalibrationgaugesandairbubbles inthehose.Toavoidthe

    firsterror,youshouldrecalibratethegaugebothbeforeandaftereachmajorsitesurvey.Toavoidthe

    second,youshoulduseaclearplastictubeallowingyoutoseebubbles.

    Thismethodcanbeusedonhighheadsaswellaslowones,butthechoiceofpressuregaugedepends

    ontheheadtobemeasured.

    Waterfilledtubeandrod

    Thismethod is recommended for lowhead sites. It is cheap, reasonablyaccurateandnotprone to

    errors. Inthiscase, ifmorebubblesaretrapped inonerisingsectionofthetubesthan intheother,

    thenthedifferenceinverticalheightofthesetsofbubbleswillcauseanequaldifferenceinthehead

    beingmeasured,thoughthisisusuallyinsignificant.Twoorthreeseparateattemptsmustbemadeto

    ensurethatyourfinalresultsareconsistentandreliable.Inadditiontheresultscanbecrosschecked

    againstmeasurementsmadebyanothermethod,forinstancebywaterfilledhoseandpressuregauge.

    Spiritlevelandplank

    Thismethod is identical inprincipletothewaterfilledtubeandrodmethod.Thedifference isthata

    horizontal sighting is established not by water levels but by a carpenter's spirit level placed on a

    reliablystraightplankofwoodasdescribedabove.Ongentleslopesthemethod isveryslow,buton

    steepslopes it isuseful.Markoneendofplankandturn itateachreadingtocanceltheerrors.The

    errorisaround2%.

  • 7/30/2019 Lecturenote Micro hydropower development

    14/120

    14

    MapsLargescalemapsareveryusefulforapproximateheadvalues,butarenotalwaysavailableortotally

    reliable.Forhighheadsites(>100m)1:50,000mapsbecomeusefulandarealmostalwaysavailable.

    AltimetersThese can be useful for highhead prefeasibility studies. Surveying altimeters in experienced hands

    will give errors of as little as 3% in 100 m. Atmospheric pressure variations need to be allowed for,

    however,andthismethodcannotbegenerallyrecommendedexceptforapproximatereadings.

    Figure2Measuringheadinsteps

    Figure3Measuringheadinstepsusingspiritlevelmeter

  • 7/30/2019 Lecturenote Micro hydropower development

    15/120

    15

    Figure4Measuringheadinstepsusingpocketsightinglevel

    Figure5Measuringheadinstepsusingclinometermethod

    Awaterfilledhosewithpressuregauge(manometer)canalsobelowereddowntofindoutthehead

    difference,assaidabove.

  • 7/30/2019 Lecturenote Micro hydropower development

    16/120

    16

    1.2. Hydrology

    Figure6Hydrologic

    cycle

    1.2.1. Overview

    Whatisimportant?

    1. Essential:

    a. Determiningthemeanflowrate(discharge)=availablewaterwhichisarowmaterialfor

    Hydropowergeneration.

    b. Estimatingflooddischargeinordertosafelyplacerequiredstructures

    c. Baseforpowercalculationsandcostestimate

    2. Wouldbebeneficial:

    a. Establishingwatergaugingstation(s)

    b. Determiningflowratingcurve(s)(FRC)

    c. Determiningflowdurationcurve(FDC)

    d. Determiningafloodhydrograph

    e. Determiningthedutyflowandpoweravailableflow

    EssentialpartwouldbenecessaryforALLMHPsandtherestshouldberequiredatleastforMHPswith

    P>100kW.

  • 7/30/2019 Lecturenote Micro hydropower development

    17/120

    17

    Basichydrologicaldatacollectionandanalysisincludemeasurements,historical/witnessdata,rainfall

    runoff analyses average discharge, minimum and maximum flow rates, flow rating curve, flow

    durationcurve.

    Normally, fora reliableHydrological studybasedonproper statisticalanalyses,onehas tocollect

    longtermdata series (20,30,40,50ormoreyears).However,MHP sitesarealmostalways in theunexploredareas,andsome tradeoffsshouldbemade,keeping inmind that themarginoferror

    mightbehigh.

    ThemajorhydrologicalparametersneededforMHPinstallationinclude:

    Meanflowestimation(QAV)

    TimedistributionofflowsFlowDurationCurve(FDC)

    DepthflowrelationshipFlowRatingCurve(FRC)

    Floodwaterdischargesayhundredyearflood(Q1/100)

    Floodhydrograph(e.g.SCSUnithydrograph)

    1.2.2. Analyses

    a) Availabledischarge

    Mean flow canbeobtained fromdata series,but since theyarenormallynotavailable, itcouldbe

    estimatedbasedonprecipitationdata (whicharemore readilyavailable) combinedwith catchment

    characteristicsandgeometry.

    Dependingonthecatchmentarea(AC),forgivenannualprecipitation(p),volumeofwaterthatfallson

    it,canbecalculatedas:

    V=pAC(m3)

    Allunitsshouldbeconvertedtom.Precipitation isusuallyexpressed inmillimetreswhileCatchment

    areaisexpressedinkm2,orsometimesinhectares(ha)oracres(a).

    Ifall thewater could find itsway to the streamandbedrained through it, then the flow couldbe

    calculated as ratio of the volume over the time in which that volume was discharged (annually it

    meansca.T=31.5106seconds).However,duetoevapotranspiration,aportionofthefallenwater

    neverendsup in the stream.The ratioofvolumeofwater that flows through the streamover the

    volumeofwaterbroughtbyprecipitationiscommonlycalledrunoffcoefficient.Itisdimensionlessand

    commonlymarkedas .Thus,averageflowcanroughlybeestimatedas:

    QAV= V/T(m3/s)

    Runoffcoefficientdependsontheshapeandslopeofthecatchment,typeofsoilandbedrock,extents

    andtypeofvegetationandotherfactors. Itcanrange from0.2to0.8,butmorecommonlytheyfall

    withinrangeof0.4to0.6.Ifonewantstobeonthesafetyside,thelowervaluesshouldbeadopted.

    If the largercatchment is relativelyknown, thenby itsanalysisaspecificdischargeqSP (l/s/km2)

    couldbedeterminedandbasedonit,theactualflowcouldbeestimated.Itusuallyhasaform:

    qsp = a AC+ b (l/s/km2)

  • 7/30/2019 Lecturenote Micro hydropower development

    18/120

    18

    Withreciprocaltrendvs.Area:

    Figure7Exampleofqsp AC (=Fsl)

    TodetermineratedMHPflow,amoredetailedanalysisisneeded.FDCwillgivetheinsightinhowthe

    availablevaryingflowscouldbestbeutilised.ForthatonewouldneedatleastonereliableFDCinthe

    same or nearby catchment and to make a series of simultaneous flow measurements in order to

    determine correlation relationship. In addition, to be able to use longer series from the correlating

    gauging station, one would need to form one on the profile of interest (intake) and to make FRC in

    ordertobeabletoconvertwaterstagesintoflows.

    TypicallyratedflowoftherunofriverMHPisaroundthemeanflow.Therewillbesomefloodwater

    during the year (all exceeding Qi) that would spill unutilised, and there should be some duty flow

    releasedtosustainlifeinthestreambetweentheintakeandthepowerhouse.Allthisleadstocertain

    lossof water for power generation. Typically the ratioof useful mean flow to available flow is 50

    60%.

    Figure8ExampletypicalMHPFDC

    y =-0.0046x +13.515

    R2

    =0.6196

    10.5

    11

    11.5

    12

    12.5

    13

    13.5

    0 100 200 300 400 500 600

    qsp (l/s/km 2)

    Fsl

    (km

    2)

  • 7/30/2019 Lecturenote Micro hydropower development

    19/120

    19

    Figure9Catchmentareaboundaries

    Inordertocarryonabovementionedanalysesoneshoulddeterminethecatchmentareafirst.Forthat

    somesortofmapshouldbeavailable.Forsmallcatchmentsideallyitwouldbe1:25000or1:50000or

    similar.

    Figure10Catchmentareaboundaries(3D)

  • 7/30/2019 Lecturenote Micro hydropower development

    20/120

    20

    Figure11ExampleofMHPcatchmentshownon1:25000

    b) Flooddischarge

    Remember:Thebiggestenemyofallhydraulicstructuresiswateritselfthroughitsdestructiveforces

    offloodorleakage. ofallhydraulicstructurefailureswastheactionofwater!

    The best way of determining the flood peak flow and volume is to statistically analyse the historical

    data.Forthatmethodtobereasonable,longmeasurementseriesneedtobeavailable.Theproblemis

    thatinremotesmallcatchmentssuchmeasurementsareseldomavailable.However,ifinthevicinity

    thereiswellknownstreamsforwhichsuchdataareexist,thenanattemptcouldbemadetomake

    correlationoftheunknownstreamwiththeknownone.

    This can be done through a series of simultaneous flow measurements in different hydrological

    regimes. Even a series of 45 measurements could be used, but waiting for proper hydrological

    conditionsusuallytakesuptoayear.

    The known watercourse is analysed by taking the

    highest flood hydrographs for each year (40 years or

    moreareneededforreliabledata,butevenmuchlessis

    betterthannothing).Observedfloodhydrographsareusually determined through water gauging pole or

    limnighraph(automaticwaterlevelmeter).Priortothat,

    many flow measurements had to be taken in order to

    determine correlation between flowrate and the stage

    /level. In such a way a flow rating curve (FRC) is

    determined.

    Analysed flood flows can then be determined through one of usually used statistical distributions

    (mostcommonlyLogPiersonIIIorGumbel).Thisgivesfloodswithdifferentreturnperiodsthatcanbe

    usedasDesignFloodDischarge(DFD),dependingontheimportanceofthestructureanddangertothesurroundingarea.

  • 7/30/2019 Lecturenote Micro hydropower development

    21/120

    21

    Theproblemhereisthatcorrelationbetweencatchmentsmaynotbereliableoreventhatdatafrom

    the known catchment may be dubious since it is very difficult to take measurements in flood

    conditions.ThusFRCisusuallyextrapolatedtowardshighflowsandthusnotreallyobserved.

    Anyway, in small remote catchments such data availability is unlikely ant therefore other, less

    accurate,methodsareemployed.

    Empirical formulae

    Forveryroughflood levelestimation,wheretherearenodataortheyareverypoorsomeempirical

    formulaecouldbeused,keepinginmindthattheobtainedvaluescouldbewithlargemarginoferror.

    Nevertheless,thatisstillbetterthannothing.

    Inglisformula:

    QMAX=124 AC/ (10.4+AC)

    Dickensformulae:

    QMAX=a AC0.75

    Whereais:

    11fordry/aridclimatetype

    17fornormalclimate

    23forwetclimate

    AndACiscatchmentareainkm2,whilepeakflowQMAXisinm

    3/s.

    Both formulae areneglecting thegeology, shapeand slopeof the catchment andwhether there is

    vegetationandtowhatextent.Bothformulae(andespeciallyInglis)giveratherhighflowpeaks,which

    is understandable sine high safety factor is taken into account. The values obtained are roughly

    corresponding to PMF (Probable Maximum Flood), which is too high for design of MHPs. The

    reasonableapproachwouldbetotake tooftheobtainedvalue.

    Rational method (RM)

    Iftherearegoodrainfalldatathismethodcanbeusedtobetterdeterminethepeakflood.

    Q = C i AC (m3

    /s)

    Where:

    CRunoffcoefficient(rangingfrom0.25to0.75,say0.5)

    iIntensityoftheprecipitationinmm/min

    ACCatchmentareainkm2

    However intensity drops with increase of rainfall duration and selection of the proper duration

    would depend on the size and shape of the catchment. There are many rational formulae to

    calculatethedurationT.Hereisonethatneglectstheshapeofthecatchment:

    T = 0.27 AC0,612

  • 7/30/2019 Lecturenote Micro hydropower development

    22/120

    22

    Figure12ExampleofintensitycurvesforvariousreturnperiodsforSarajevo

    Unit Hydrograph (UH)

    However,forlargerMHPsitisalwaysadvisabletoperformatleastunithydrographcomputation,say

    by using HECHMS free computer program. The program provides several methods to compute the

    UH.PerhapsthemostpopularisSCSmethod(SoilConservationService)whichrequiresaminimumof:

    Theprecipitationforadurationcorrespondingtocatchmentparameters

    Catchmentarea

    Catchmentshaperesultinginlagtime

    SCS Curve number (see Table1SCScurvenumbers)

    Table1SCScurvenumbers

    Land Use

    Description on

    Input Screen

    Description and Curve Numbers from TR-55

    Cover Description

    Curve

    Number for

    Hydrologic

    Soil Group

    Cover Type and Hydrologic Condition

    %

    Impervious

    Areas

    A B C D

    AgriculturalRow Crops - Straight Rows + Crop Residue

    Cover- Good Condition

    (1)

    64 75 82 85

    Commercial Urban Districts: Commercial and Business 85 89 92 94 95

    Forest Woods(2) - Good Condition 30 55 70 77

    Grass/Pasture Pasture, Grassland, or Range(3) - Good

    Condition39 61 74 80

    High Density

    Residential

    Residential districts by average lot size: 1/8

    acre or less65 77 85 90 92

    Industrial Urban district: Industrial 72 81 88 91 93

    Low Density

    Residential

    Residential districts by average lot size: 1/2

    acre lot25 54 70 80 85

  • 7/30/2019 Lecturenote Micro hydropower development

    23/120

    23

    Land Use

    Description on

    Input Screen

    Description and Curve Numbers from TR-55

    Cover Description

    Curve

    Number for

    Hydrologic

    Soil Group

    Cover Type and Hydrologic Condition%

    Impervious

    Areas

    A B C D

    Open Spaces

    Open Space (lawns, parks, golfcourses,

    cemeteries, etc.)(4) Fair Condition (grass

    cover 50% to 70%)

    49 69 79 84

    Parking and

    PavedSpaces

    Impervious areas: Paved parking lots, roofs,

    driveways, etc. (excluding right-of-way)100 98 98 98 98

    Residential 1/8

    acre

    Residential districts by average lot size: 1/8

    acre orless65 77 85 90 92

    Residential 1/4

    acre

    Residential districts by average lot size: 1/4

    acre38 61 75 83 87

    Residential 1/3

    acre

    Residential districts by average lot size: 1/3

    acre30 57 72 81 86

    Residential 1/2

    acre

    Residential districts by average lot size: 1/2

    acre25 54 70 80 85

    Residential 1

    acre

    Residential districts by average lot size: 1

    acre20 51 68 79 84

    Residential 2

    acres

    Residential districts by average lot size: 2

    acre12 46 65 77 82

    Water/ Wetlands 0 0 0 0 0

    Hydraulic condition isbasedon combination factors that affect infiltration and runoff, including (a)

    densityandcanopyofvegetativeareas,(b)amountofyearroundcover,(c)amountofgrassorclose

    seeded legumes, (d)percentof residueon the landsurface (good>=20%),and (e)degreeofsurface

    roughness.

    Majorcatchmentparameters,apartfromitsarea,are:

    LG=unithydrographlagtime,inhours,

    C=constant,(=26n,nisManningcoefficientrangingfrom0.03to0.07)

    N=constant(usually0.33)

    L=thelengthofthelongestwatercoursefromthepointofconcentrationtotheboundaryofthedrainagebasin,inmiles.Thepointofconcentrationisthelocationonthewatercoursewhereahydrographisdesired,

    LCA=thelengthalongthelongestwatercoursefromthepointofconcentrationtoapointoppositethecentroidofthedrainagebasin,inmiles,and

    S=theoverallslopeofthelongestwatercourse(alongL),infeetpermile.

    Lagtimeiscalculatedfrom:

    N

    CA

    GS

    LLCL

    5.0

    TimeofconcentrationTC=5/3LG(seeFigure13Exampleofafloodhydrograph)

    RelevantprecipitationdurationTP=TCx(1+TC)0.2

  • 7/30/2019 Lecturenote Micro hydropower development

    24/120

    24

    Since lagtimeisempiricallydeterminedthereareotherformulaeaswell.Somemetricformulaegive

    theLagtimeas:

    LG=1.864 AC0.39

    S0.31

    LG=0.4 Ls0.67

    (L LCA/S)0.086

    LG=2.3 (L/(S)0.5)0.66

    Incaseofdoubtusethemeanvalueofallthreeorjusttwothatgivecloserresults.

    After that, knowing precipitation, one can compute the flood hydrograph by using manual unit

    hydrographprocedureorrunningtheHECHMSprogram.

    Figure13Exampleofafloodhydrograph

    1.2.3. Measurements

    Thepurposeofahydrologystudyistopredictthevariationintheflowduringtheyear.Sincetheflow

    variesfromdaytoday,aoneoffmeasurementisoflimiteduse.Inabsenceofanyhydrological

    analysis,alongtermmeasuringsystemmaybesetup.Suchasystemisoftenusedtoreinforcethe

    hydrologicalapproachandisalsothemostreliablewayofdeterminingactualflowatasite.Oneoff

    measurementsareusefultogiveaspotcheckonhydrologicalpredictions.

    Theflowmeasuringtechniquesdescribedhereare:

    theweirmethod,

    stagecontrolmethod,

    thesaltgulpmethod,

    thebucketmethod,

    thefloatmethod,

    currentmeters.

  • 7/30/2019 Lecturenote Micro hydropower development

    25/120

    25

    c) Measuringweirs

    Aflowmeasurementweirisaweirwithanotchinitthroughwhichallthewaterinthestreamflows.

    The flowrate can be determined from a single reading of the difference in height between the

    upstreamwaterlevelandthebottomofthenotch(seeFigure14).Forreliableresults,thecrestofthe

    weirmustbekeptsharp, theoverflowshouldnotbesubmergedbytailwater andsedimentmustbe

    prevented from accumulating behind the weir. Sharp and durable crests are normally formed from

    sheetmetal,preferablybrassorstainlesssteel,asthesedonotcorrode.

    Figure14Flowmeasurementsusingweir

    Weirscanbetimber,concreteormetalandmustalwaysbeorientedatrightanglestothestreamflow.

    Sitingoftheweirshould beata pointwhere thestream isstraightandfreefromeddies.Upstream,

    thedistancebetweenthepointofmeasurementandthecrestoftheweirshouldbeatleasttwicethe

    maximumheadtobemeasured.Thereshouldbenoobstructionstoflownearthenotchandtheweir

    mustbeperfectlysealedagainstleakage.

    Temporary measuring weirs are used for shortterm or dryseasoned measurements and are usuallyconstructedfromwoodandstakedintothebankandstreambed.Sealingproblemsmaybesolvedby

    attachingalargesheetofplasticandlayingitupstreamoftheweirhelddownwithgravelorrocks.Itis

    necessarytoestimatetherangeofflowstobemeasuredbeforedesignedtheweir,toensurethatthe

    chosensizeofnotchwillbecorrect.

    The use of permanent weirs may be a useful approach for small streams, but larger streams might

    betterbemeasuredbystaging(explainedbelow).

    d) Stagedischargemethod

    Oncesetup,thismethodprovidesan instantmeasurementoftheflowatanytime.Itdependsona

    fixed relationship between the water level and the flow at a particular section of the stream. This

  • 7/30/2019 Lecturenote Micro hydropower development

    26/120

    26

    section (the contour section) is calibrated by taking readings of water levels and flow (stage and

    discharge)forafewdifferentwaterlevels,coveringtherangeofflowsofinterest,soastobuildupa

    stagedischarge curve. During calibration the flow does not have to be measured at the contour

    sectionitself.Readingscanbetakeneitherupstreamordownstreamusing,forinstance,atemporary

    weir,aslongasnowaterentersorleavesthestreaminbetween.Thestagedischargecurveshouldbe

    updated each year. Calibrated staffs are then fixed in the stream and the water level indicated

    correspondstoariverflowratewhichcanbereadoffthestagedischargecurve.

    Figure15Flowmeasurementsusingfloat

    e) 'Saltgulp'method

    The `salt gulp' method of flow measurement is adapted from dilution gauging methods with

    radioactivetracersusedforrivers.Ithasprovedeasytoaccomplish,reasonablyaccurate(error

  • 7/30/2019 Lecturenote Micro hydropower development

    27/120

    27

    Figure16Flowmeasurementsusingdilution

    Theaboveargumentassumesthatthecloudpassestheprobeinthesametimeineachcase.Butthe

    slowertheflow,thelongerthecloudtakestopasstheprobe.Thusflowisalsoinverselyproportional

    to the cloudpassing time. Detailed mathematics will not be covered here because the conductivity

    metreisusuallysuppliedwithdetailedinstructions.

    Theequipmentneededfor`saltgulp'flowmeasurementis:

    abucket, puretablesalt,

    athermometer(range0 40C),

    aconductivitymeter(range01000mS),

    anelectricalintegrator(Optional).

    f) Bucketmethod

    Thebucketmethodisasimplewayofmeasuringflowin

    very small streams. The entire flow is diverted into a

    bucketorbarrelandthetimeforthecontainertofill isrecorded. The flow rate is obtained simply by dividing

    thevolumeofthecontainerbythefillingtime.Flowsof

    upto20l/scanbemeasuredusinga200litreoilbarrel.

    g) Floatmethod

    TheprincipleofallvelocityareamethodsisthatflowQequalsthemeanvelocityVmeantimescross

    sectionalA:

    Q=AVmean(m3/s)

  • 7/30/2019 Lecturenote Micro hydropower development

    28/120

    28

    Onewayofusingthisprincipleisforthecrosssectionalprofileofastreambedtobechartedandan

    averagecrosssectionestablishedforaknownlengthofstream.Aseriesoffloats,perhapsconvenient

    piecesofwood,arethentimedoverameasuredlengthofstream.Resultsareaveragedandaflow

    velocityisobtained.Thisvelocitymustthenbereducedbyacorrectionfactorwhichestimatesthe

    meanvelocityasopposedtothesurfacevelocity.Bymultiplyingaveragedandcorrectedflowvelocity,

    thevolumeflowratecanbeestimated.

    h) Currentmeters

    Theseconsistofashaftwithapropellerorrevolvingcupsconnectedtotheend.Thepropellerisfree

    to rotate and the speed of rotation is related to the stream velocity. A simple mechanical counter

    records the number of revolutions of a propeller placed at a desired depth. By averaging readings

    takenevenlythroughoutthecrosssection,anaveragespeedcanbeobtainedwhichismoreaccurate

    thanwiththefloatmethod.

    Figure17Flowmeasurementsusingcurrentmeters

    i) Automatedmeasurements

    Therearealsosomesophisticatedpiecesofequipmentthattakeautomaticflowrateandcrosssection

    readings byjust pulling the device across the stream. These are used for larger rivers difficult to

    measurebytraditionalmethods.OnesuchdeviceiscalledRiverCATandisratherexpensive(sayabout

    $30000ormore,dependingonthytype).

    Figure18RiverCATinaction

  • 7/30/2019 Lecturenote Micro hydropower development

    29/120

    29

    1.3. GeologyandGeomechanics

    1.3.1. Overview

    Whatis

    important?

    1. Essential:

    a. Determiningthetypeofsoil

    b. Determiningthetypeofthebedrock

    c. Determiningthedepthofoverburden

    d. Lookforactualorpotentiallandslidesandscrees(slidingdebris)

    e. Roughestimationofgeotechnicalparameters(bad,poor,fair,good,excellent)

    2. Wouldbebeneficial:

    a. Makinggeologicalmapofthearea

    b. Preparingcharacteristicgeologicalprofiles

    c. Determiningactualgeotechnicalparameters(c, , ,etc.)

    EssentialpartwouldbenecessaryforALLMHPsandtherestshouldberequiredatleastforMHPswith

    P>100kW.

    Geology(geologicalconditionsandformations)canbegenerallydeterminedfromregionalgeological

    maps if available. However, for site specific conditions it is necessary to make site geological

    assessmentinsitu.

    Figure19ExampleoftheuseofGoogleEarthinanalysingthearea

  • 7/30/2019 Lecturenote Micro hydropower development

    30/120

    30

    Figure20Exampleofthegeologicalprofiletakenfromthegeologicalbasemap1:100000

    Figure21Exampleofthegeologicalbasemap1:100000

    Figure22Landslides

  • 7/30/2019 Lecturenote Micro hydropower development

    31/120

    31

    Figure23

    Screes

    Itisimportanttodeterminegeneralgeologicalsiteconditionstakingintoaccountengineeringgeology

    andhydrogeology.Itisusedforproperassessmentofthesoil/rockparametersintermsoffoundation,

    buildingmaterial,permeabilityetc.Thisgeologyislinkedto:

    Geomechanics Hydrology Structuraldesign Hydraulicdesign

    Tofindoutaboutgeotechnicalparametersandengineeronthesitecanuseapickhammer,excavatea

    testpitortrenchandbasedonexperiencemakeengineeringjudgments.Formorerequiringstructures

    (inlargerschemes),itwouldbeadvisabletousesomedrillingandtakesamplesthatwouldbeanalyses

    in the geotechnical laboratory. Obtained parameters could be used to run a number of different

    analyses.Oneofthecommonlyusedisslopestabilityanalysis:

    Figure24Slopestabilityresults

    One very good such computer program for geotechnical analyses is GEO5 by FINE, which has 22

    differentmodules(fromslopestability,tofoundation,gabionwall,gravitywalltoFEM).Eachmodule

  • 7/30/2019 Lecturenote Micro hydropower development

    32/120

    32

    costsabout$400to$600,butdiscountscanbeobtainedforasetandmultipleusers.Theprogramhas

    a free option with limited functionality. It will run only a few soil layers (and we usually dont need

    manyforMHPs)anditwilluseonlydefaultparametersoftheselectedsoiltypeandwouldnotallow

    youtochangethemtothoseobtainedfromthesite.Thisisstilluseful,sinceitgivespossibilitytouse

    standardparameterswithouttakingsamples.Thentheonlystepneededistorecognizethesoiltype

    andselectit.

    Other similar programs are GeoStudio and Slope. Figure 24 shows an output from Geostudio

    program.

    Figure253Dsitegeologicalpresentation

  • 7/30/2019 Lecturenote Micro hydropower development

    33/120

    33

    2. Basicsofhydraulics2.1. Overview

    Whatisimportant?

    1. Essential:

    a. Performingsteadystatecalculationsfor

    i. Canals(headrace,tailrace)

    ii. Pipelines,penstocks

    b. Hydrauliccalculationatintakeifany

    c. Hydraulicandsettlementcalculationatsandtrapifany

    d. HydrauliccalculationatForebay

    e. Hydrauliccalculationforspillways(atintake,sandtrapandforebay)

    f. Hydrauliccalculationforoutlets(sandtrap,forebay)

    g. Hydrauliccalculationofthestillingbasin(orapron)ifany

    2. Wouldbebeneficial:

    a. Performingunsteady(transient)computations

    i. Channelunsteadyflow

    ii. Penstockwaterhammer

    EssentialpartwouldbenecessaryforALLMHPsandtherestshouldberequiredatleastforMHPswith

    P>100kW.

    2.2. PipelinesPipelinesareusedforwaterorsewerconveyanceusuallyunderpressure,butalsowithfreeflow.They

    canbemadeofvariousmaterialssuchas:Steel,GRP,PE,castiron,concrete,wood(obsolete),vitrified

    clay(obsolete),asbestoscement(consideredenvironmentallydangerous),plasticmaterials(PVC)and

    othermaterialsforspecialpurposes(brass,copper,lead,glass,rubber,etc.).

    Hydraulics

    Mostoftheprincipleswillbegiveninthissubchapterofpipelines,andonlysomespecificissueswould

    bementionedforcanalsandtunnelsintheirrespectivesubchapters.

    Basic hydraulic problems for steady flow through pipelines can be solved by 2

    formulae:

    Continuity(massconservation):Aivi=Constant

    Bernoulli(energyconservation): 21

    2

    222

    2

    111

    22

    H

    g

    v

    g

    pZ

    g

    v

    g

    pZ

  • 7/30/2019 Lecturenote Micro hydropower development

    34/120

    34

    H isthesumofhead lossesbetweensectionsof interest.They include linearfriction lossesalong

    thepipeandlocalorminorlosses(inbends,elbows,joints,valves,contractions,expansions,etc.).

    Numerousformulaeareavailabletocomputelinearfrictionlosses.Probablythemostuniversallyused

    is DarcyWeisbach formula: g

    v

    D

    L

    fHf 2

    2

    (in USA practice HazenWilliams expression is more

    commonlyused)

    HerefisDarcysfrictioncoefficient.Differentresearchershavedetermineditsvalueinthepast.There

    arevariousexperimentallyobtainedexpressionsusedtodeterminef.

    Therearedifferentflowregimespossibleinthepipes,dependentonReynoldsnumber:

    Re=vD/orReR=vR/R=D

    /4isHydraulicradiusofthepipe.iskinematiccoefficientoffluids

    viscosity(forwater:t=20o=1.01x106m2/s,andt=10o=1.3x106m2/s)

    ForRe

  • 7/30/2019 Lecturenote Micro hydropower development

    35/120

    35

    Table2Piperoughness

    Materialandthestateofpipe (103m)

    Concreterough 13

    Concretesmooth 0.30.8

    Steel(welded)new 0.040.1

    Steel(welded)used,stained,incrusted 0.151.5Castiron 0.251.5(4)

    Moredetailedlistcanbeobtainedfromdifferenthandbooks(e.g.Davis).Asmostpracticalproblemsin

    hydraulic(civil)engineeringoccurintheregionofquadraticresistance(fullturbulence),evenmanning

    formula could be applied with reasonable accuracy. Then better known values for n can be used

    and/orconvertedtof.EquatingenergyslopeinManningandDarcyWeisbachequations:

    326.124 Dnf

    However, this could be applied only in fully developed turbulent flow as in transitional regime

    Manningnshould not be considered constant as it is there dependent on Re as well. (See following

    graphthatclearlydemonstratesthisforasetofmeasurements).

    Figure26n=f(R)relationshipintransitionalflowzone

    HazenWilliamsformula:

  • 7/30/2019 Lecturenote Micro hydropower development

    36/120

    36

    Where:

    A=Flowareaofthepipe,ft2orm2.

    C=HazenWilliamsroughnesscoefficient.

    D=Pipediameter,ft.orm.

    g=gravitationalconstant=32.174ft/s

    2

    =9.807m/s2

    .hf=Frictionlosses,ftorm.

    hm=Minorlosses,ftorm.

    k=conversionfactor=1.318(forimperialunits)=0.85(forSI)

    Km=sumofminorlosscoefficients

    P1=Upstreampressure,lb/ft2orN/m2.

    P2=Downstreampressure,lb/ft2orN/m2.

    Q=Discharge,ft3/sorm3/s.

    S=Waterdensity =62.4lb/ft(forimperialunits)=9800N/m(forSI)

    V=flowvelocityinpipe,ft/sorm/s.

    V1=upstreamvelocity,ft/sorm/s.

    V2=Downstreamvelocity,ft/sorm/s.

    Z1=Upstreamlevel,ftorm.

    Z2=Downstreamlevel,ftorm.

    Table3Importantpipematerialproperties

    Ductileiron Steel PVC PE/GRP AC

    Manningn 0.12 0.013 0.01 0.011 0.011

    HazenWilliamsC 130 100 150 140 140

    Roughness(mm) (DarcyWeisbach) 0.2591 0.04572 0.00152 0.00152 0.00152

    YoungModulusE(MPa) 100000 207000 3300 1300/73500 24000

    Coefficientoflinearexpansion (x10

    6) 11 12 54 140/5 8.1

    Poissonratio 0.25 0.3 0.45 0.45 0.3

    Minororlocallossesarecalculatedbasedonexperienceandexperiments.Somecoefficientsto

    calculatelocallossesaregivenhere:

    Entrance:sharp=0.5,rounded=0.2,bellmouth=0.05,pipestickingintoreservoir

    =1

    Suddenexpansion:

    22

    2

    11

    D

    D inregardtoinflowingvelocity.Ifexpansionisgradual

    then this coefficient would be diminished (by multiplier k

  • 7/30/2019 Lecturenote Micro hydropower development

    37/120

    37

    Elbow:

    5.3

    285.113.0

    901.0

    R

    Dor

    R

    D

    R

    Lo

    whereL isarc length,R isbend

    radius,Dispipediameter,andisdeflectionangleofthecurve.

    Valves and gates: ifopen0.05

  • 7/30/2019 Lecturenote Micro hydropower development

    38/120

    38

    stress=pD/eforunitlengthofpipe.Hereeispipeshell(wall)thickness(orequivalentthicknessoftensiontakingpart).Thicknesscouldbecalculatedfromhere if insteadoftensilestress,allowable

    tensilestress (forgivenmaterial) isused.Usualprocedurewouldbe tocompute this thickness first,

    taking into accountpressure transients. This procedure requires iterations since thepipe thickness

    affectspressurewaveceleritya,whichisrelevantfordeterminationofpressureriseH.

    Changeofheadforquickclosure/openingcanbeexpressedby:

    g

    avH 0 Zhkovskycasefullwaterhammer

    Whereaiscelerityofthepressurewave:

    e

    Dk

    eE

    D

    K

    a

    50

    10

    1

    1 4

    Forwater=1000kg/m3,bulkmodulusK20108N/m2,k=1011/E

    ForsteelE201010N/m2,k=0.5;Dispipelinediameter,eispipewallthickness.

    Forothermaterials:k=1(castiron),k=5(concrete,lead),k=10(wood,plastic)

    Openingorclosureisconsideredtobequickifitsshorterthantimeneededforpressurewaveto

    traveltotheupperreservoirandback(0T,=2L/a).

    Iftheopeningorclosuretakeslongerthanpressurechangeisdiminished:gT

    LvH 02 .Ifalongthe

    pipelinecrosssectionchanges,eachchangegeneratestransmissionandreflectionpressurewavesthat

    superimposewithoriginalonesandaffecttheresults.Forbranchingorloopingnetworksthesemust

    betakenintoaccount,andcomputationbecomesrathermorecomplicated.Ifthepumpingstations

    areplacedalongtheconveyanceitisoftendifficulttocontroltimesofopeningand(especially)

    closure,thusdifferentmeasurescanbeappliedtocontrolthedrop/riseofhead:

    Flywheelsifcoupledwiththepumptheyprovideadditionalinertiasothatpumprotatesawhile

    afterpowercutoccurs.Suitableforsmallinstallations.

    Bypassesandpressurereliefvalvesbypasswithnonreturnvalvesuckspartoftheoriginalflow

    mitigating thenegative effectsof sudden stoppage.Pressure release valves and air inlet valves

    couldbeprovidedinthepipelineasadditionoralternatively.

    Surge tanksandairvesselshave tobeplacedasclose to thepump(s)aspossible.Therefore,

    often it isnotpracticable touseopen surge tanks (for theywould require enormousheights).

    Rather,closeairvesselswithaircompressorsaremorecommonlyused.Theyconvert(orlimitin

    space)more severewaterhammereffects tomilder (and longer/slower) surge (massoscillation)

    effects.

    Airvesselsservebothforsuddenopeningandclosure.Acheckvalveshouldbeprovidedbetweenthe

    pumpandairvessel.Predeterminedextremelevelsintheairvesseltriggerthecompressedair

    delivery.

    Neglectingheadlosses,simplifiedsolutionforsuddencompleteclosure(intermsofheadchange)is:

  • 7/30/2019 Lecturenote Micro hydropower development

    39/120

    39

    t

    LV

    gAH

    gAV

    LHQHH

    0

    0

    0

    0

    00 sin

    0

    000min

    gAV

    LHQHH

    FromhereVmaxcanbecomputed:

    Vmax1.2Hmin=V0

    1.2H0

    Periodofoscillationis:

    0

    0

    2

    LV

    gAHT

    Including losses in the pipeline and (entrance into/exit from) the air vessel, computation gets

    somewhatmore complicated and isusually solvedby finitedifference equationorbyusingdesigngraphs forgiven (orassumed)head losses.Forpipelineswithchangingdiametersequivalent length

    (onediameter lengththatwouldhavesamehead lossesasoriginalpipe)canbeused insimplified

    computations.

    Ifthepipethickness(obtainedinthisway)islessthancertainstructuralminimum,thanthislatervalue

    shouldbeadopted.Structuralminimumwoulddependonmaterialusedandpipediameter(forsteel

    pipesthisshouldbe8mmormoreforlargerpipes,includingupto2mmprovisionforcorrosionand

    abrasion lossesof themassduringoperation).Suchdimensions shouldbechecked ifcanwithstand

    otherloads,andadjustedifnecessary.

    Usually temperature induced loads should be alleviated using deformable coupling elements

    (expansionjoints) that canaccommodate resultingdeformations.Due to temperature changespipe

    wouldtendtoexpand(contract)betweentwofixedpoints(anchorblocks)dependingontemperature

    differencebetweenparticularmomentandambienttemperatureduringpipeplacement.Temperature

    linearexpansioncoefficient is(m/moC).Forsteel it isabout12x106.Withoutanchors,extensionof

    thepipeslengthwouldbe:L=Ltt.Ifexpansionisdisabledbyanchorblocksreactingstresswoulddevelop:

    = EL/L,E ismodulusofelasticityofmaterial (forsteel20x1010Pa).Thesestressesand resultingforcescanbeunacceptable,andtodiminishthemspecialpipelineconstructionarrangementscanbe

    introducedeitherexpansionjointsorharpshapedpipelinedeformableparts.

    For freesurface or lowpressure pipes, loads caused by burying, backfill and surcharge are more

    important.Iftheyarenotburied,thenstructuralthicknessdependentonthematerialusedandpipes

    diameter, shouldbe adopted. For concrete pipes t=1/12D,but not less than 15 cm (D innerpipe

    diameter).

  • 7/30/2019 Lecturenote Micro hydropower development

    40/120

    40

    Theplatethicknessrequiredtoresistbucklingunderuniformexternalpressureisapproximately:

    36

    6.1 pE

    De

    Ownweightofthepipeandwaterinitmustbetakenintoaccountforcalculationoftheforcesacting

    on supports and anchorblocks. Friction, inertial,deflection (centrifugal) andother effectsmust be

    accountedfor.

    Placement considerations

    Pipescanbeburiedoropen.Botharrangementshaveadvantagesanddisadvantages.Decisionistobe

    madebasedonprojectneeds,localconditionsandthelike.

    Buriedpipes:

    Advantages Keepwater temperaturepretty constant andprotect from freezing;Ambienttemperaturesdonot imposeextra loads (savingsonexpansionjoints);Onceplaced theydo

    notconsumeextraspace;Frequentanticorrosionpaintingnotneeded

    Disadvantages difficult accessibility for maintenance; Backfill pressures; Expensive trench

    excavation,beddingmaterial,carefulbackfilling;difficultplacementlimitedspaceforwork;

    Painfuldetectionofleakageandotherproblems.

    Openpipes:

    Advantagessimpleaccessibilityformaintenance;Nobackfillpressures;Noexpensivetrench

    excavation,beddingmaterial,carefulbackfilling;Simplifiedplacementplentyof space for

    work;Easydetectionofleakageandotherproblems

    Disadvantageswater temperature affected by ambient and no protection from freezing;

    Ambienttemperaturesimposesevereextraloads(expensiveexpansionjoints);theyoccupya

    lotofvaluablespace;Frequentanticorrosionpaintingneeded;Anchorblocksandnumerous

    supports.

    Economic considerations

    Importanceofoptimizedlayout.Severalalternativesshouldbecompared.Savinginlengthand

    diameter/wallthickness(aswellaspumpingfacilities)

    Selectionofeconomicconduitsize(Pumpingstations,HPP,etc.).Incasewhenplentyofheadis

    available (nopumpingneeded,ornoHPP foreseen/feasible) then considerationofminimum

    diametermax.allowablevelocityandavailableenergyhead.

    Comparisonorcombinationwithothertypesofconveyancesifapplicable.

    Intermsofmaterialsforthepipesinhydraulicconstruction(largerscale)mostcommonaresteeland

    concrete. Asbestoscement introduced after the other two, seemed to be promising due to its

    favorableproperties(durability,easeofplacement,etc.),butlatelyitissuspectedtoberesponsiblefor

    potentiallycausingcancer,andisnolongerconsideredenvironmentfriendlymaterial.

    Steelpipesaremostlyweldednowadays,thoughothertypesofjointsarestillused.Theyarerelatively

    expensive and require protection (and maintenance) against corrosion. Otherwise, they are

  • 7/30/2019 Lecturenote Micro hydropower development

    41/120

    41

    comparatively easy to handle, they can stand extreme pressure and tension stresses, easy to make

    fittings,joints,branches,expansions,contractions,bends,andwhateverelseneeded.

    2.3. Canals

    Inasimilarmanner,theopencanalscouldbeanalyzedinordertoobtainparametersforpreliminary

    design.ForhydrauliccomputationsManningformulawasused:

    SARn

    Q 32

    1

    Fromherecrosssectionisoptimizedforvariouslateralcanalslopes.Overalloptimumwithsidesat60o

    is in most cases not technically feasible from the construction viewpoint. Therefore, as earlier

    mentionedfollowing,morecommon slopes wereused V: H=1: m(form=0, 1,1.5and 2). (Here mi =

    1/Si)

    Figure27 Typicalcanalsection

    Inordertofitthecanalintothegroundafreeboardshouldbedeterminedaswell.Traditionallythisis

    between30and120cmandusuallytakenas30cm+0.25.h(wherehisthewaterdepthinthecanalin

    cm).Alsoinamoregeneralformalateralslopeoftheterrainshouldbeconsideredinordertofitthe

    canalandcalculatethebillofquantities:

    Figure28 Typicalcanalsectionwithlateralgroundslope

    The quantities will generally increase for increased lateral terrain slope for the HJK value. In the

    present model this has been ignored and taken into account as contingencies or the lump sum for

    unforeseenworksintheformofpercentagebasedongeneralengineeringjudgmentfortheparticularsiteconditions.

    The same type of the conveyance formula, as the one for pipes, is derived for those types of

    trapezoidal canals. Instead of filling coefficient as in pipes, optimal ratio of h/B would determine a

    coefficientintheformula:

    8

    3

    S

    QnD

    Table4Canalflowcalculationsparameters

    m OPT.B/h Applicable

    0 2 1.834 m=0

  • 7/30/2019 Lecturenote Micro hydropower development

    42/120

    42

    m OPT.B/h Applicable

    1 0.84 1.81.e (0.833.m) m1

    1.5 0.62 0.592.Log(m)+0.7854 1

  • 7/30/2019 Lecturenote Micro hydropower development

    43/120

    43

    Figure30Typicalchangesofflowregimes

    2.4. Tyroleanintake

  • 7/30/2019 Lecturenote Micro hydropower development

    44/120

    44

    Figure31Tyroleanintake

    2.4.1. Intake

  • 7/30/2019 Lecturenote Micro hydropower development

    45/120

    45

    AfterP.NovakAppliedHydraulics,IHEDelft,1981.

    E

    hh

    E

    hh

    crx 11

    1 11

    Distancefromthebeginningoftheintake

    Where

    r=0.57ratiooftheintakebreadthtoriverbreadth

    c=0.45coefficient(0.40.5afterMostkov)forlongitudinaltrashrackbars.

    h1=hCRwaterdepthatthebeginning(forx=0)

    hDepthforwhichdistancefromthebeginningisdetermined

    EEnergyoftheflow

    Forallwatertobetakeninthedepthattheendwouldbeh=0,thus:

    E

    hh

    crbz

    11 1

    1

    Forexampleofthedischarge:

    Qz=0.21m3/s

    Onethird oftheareaisblockedbybarsandbytheleavesanddebris:

    Table

    5

    Example

    of

    the

    calculation

    for

    Tyrolean

    intake

    Q L q hc b

    B

    (increased) Bpot

    0.21 2.00 0.105 0.10 0.25 0.38 0.75

    0.21 2.50 0.084 0.09 0.22 0.32 0.65

    0.21 3.00 0.070 0.08 0.19 0.29 0.57

    0.21 4.00 0.053 0.065 0.16 0.24 0.47

    0.21 5.00 0.042 0.06 0.14 0.20 0.41

    Figure32Waterprofileontheintake

    h

    0.000

    0.010

    0.020

    0.030

    0.040

    0.050

    0.060

    0.070

    0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

  • 7/30/2019 Lecturenote Micro hydropower development

    46/120

    46

    Otherapproach:

    Bz= Breadthofthecanal

    Lz= Lengthofthecanal

    br= Heightoftherackc= Coefficient

    q= Unitdischarge

    hkr= Criticaldepth

    h= Depthofwaterontherack

    Dh= Freeboardofnonspillwaysection

    bpot= Neededwidth

    AfterHajdin,Sarajevo1966.

    AndafterI.Valant,Ljubljana1986.

    Data:

    Bz= 0,914xQ0,4

    Lz= 7xBz

    br= Bz/cosb

    c= 0,6x(a/d)xcos1,5b

    q= Q/Lz

    hkr= 0,476xq0,6667

    h= kxhkr

    Dh= 1,5xhkr

    bpot= 0,3386*(q/(cxmxh0,5

    )

    Qinst= 0.21 m3/s

    Slopeoftherack= 10 %

    a= 20 mm

    d= 30 mm

    m= 0.65 (forflatiron)

    k= 0.91 (forb=10o)

    Q Bz Lz b beta c qs hc h h Bpot k mu ar d0.21 0.490 3.43 0.492 0.100 0.357 0.061 0.073 0.066 0.091 0.348 0.91 0.65 15 25

    2.4.2. CollectioncanalLengthofcollectioncanalundertherackisdonebyempiricalformula:

    AfterP.NovakAppliedHydraulicsIHEDelftand1981,HydraulicStructures,London1990:

    Computationofthewatersurface

    Q 0.21

    B 0.6

    n 0.02

  • 7/30/2019 Lecturenote Micro hydropower development

    47/120

    47

    So 0.025

    hc 0.232

    L 4

    Rackheight 0.04

    Elevationoftherack 254.4

    Elevationofthecanalbeginning 253.66Elevationofthecanalend 253.56

    Scr 0.013704

    xSSQ

    Qvv

    QQg

    vvQh

    f

    0

    1

    2

    21

    211

    WhereS0bedslope, Sfenergyslope

    Figure33Waterprofileonthecollectioncanal

    2.4.3. Spillwayonthesill(Q1/100)Discharge:Q1/100=35m

    3/s

    233

    232 2 HBCHBgCQ

    Dischargecoefficient:C2=0.40,orC3=1.77

    BSpillwaybreadth

    HSpillwaydepth

    Elevationofthesill254.50mASL.

    Elevationofthespillway254.70mASL.

    Bp 4.0 BreadthofTyroleanpart

    0.000

    0.050

    0.100

    0.150

    0.200

    0.250

    0.300

    0.350

    0.400

    0.450

    0.500

    0 0.5 1 1.5 2 2.5 3 3.5 4

    h

    h+v2/2g

  • 7/30/2019 Lecturenote Micro hydropower development

    48/120

    48

    B 7.0 Breadthofthesill total

    Qsr 0.24

    DischargesQ1/100 35

    Qi 0.37

    Qmin 0.0125

    Pu 0.95 SillheightupstreamPn 1.7 Sillheightdownstream

    Hp 1.88 Heightofspillingpart

    Ht 2.08 HeightofTyroleanpart

    m 0.4 SpillwayCoefficient

    hc 1.37 Criticaldepth

    Eo 3.78 Availableenergy

    Floodwaterelevation=254.50+2.08=256.58mASL.

    Orroughly256.60mASL.

    2.4.4. Stillingbasin(Q1/100)2

    1

    2

    2

    12 yg

    qyE

    ,availableenergy

    3

    1

    2

    1

    2 8112 gy

    qyy ,conjugatedepths(y1iy2)

    Stillingbasin(SB)length:

    Lb=K(y2y1)Where4.5

  • 7/30/2019 Lecturenote Micro hydropower development

    49/120

    49

    DepthattheSBend:

    S 1.20% Bedslopedownstream

    n 0.02 Roughness(Manning)

    h 0.94 DownstreamdepthendofSB

    Fr 1.87 Froude number

    Checkup

    Manningsformula:

    SARn

    Q 32

    1

    Where:

    QDischarge

    nRoughnesscoefficient

    ACrosssectionalarea

    RHydraulicradius

    SRiverbedslope

    Graduallyvariedflow:

    2

    0

    2

    0

    11 rF

    SS

    x

    y

    Fr

    SS

    dx

    dy ff

    Where:

    SoRiverbedslope

    SfEnergyslopeFrFroudenumber

    EndofSBdepth:

    S 1.20% Downstreamslope

    n 0.028 Roughness

    h 1.37 DownstreamdepthendofSB

    Fr 1.06 Froudenumber

    Figure34

    Water

    profile

    along

    SB

    252.6

    252.8

    253

    253.2

    253.4

    253.6

    253.8

    0 1 2 3 4 5 6 7 8

    kota dna

    kota vode

  • 7/30/2019 Lecturenote Micro hydropower development

    50/120

    50

    Figure35WaterprofilealongSBanddownstream

    Waterdepthdownstream:

    bk 4.5 Riverbedbreadth

    S 1.20% Downstreamslope

    n 0.033 Roughness

    m 1.25 Sideslopes

    A 10.9 Area

    Bw 10.9 Watersurfacebreadth

    h 1.42 DepthattheendofSB

    Fr 1.02 Froudenumber

    2.4.5. Settlingbasin(Qi)

    H1= Waterdepthatthebeginning H1= k1xh0

    k1= Coefficientoftransitionv0tovT k1= 1,6xQ0,1

    BT= Settlingbasinbreadth BT= ST/H1

    LTC.= Lengthofthesettlingbasin(theoretical) LTra.= H1x(vT/u)

    LT= Lengthofthesettlingbasin(adopted) LT= 1,6xLTra.

    Exampledata:

    Discharge Qinst= 0.21 m3/s

    Depthatthebeginningoftransition h0= 0.85 m

    Breadthofthecollectioncanal b0= 0.60 m

    Adoptedflowvelocity vT= 0.3 m/s

    Adoptedsedimentfallvelocity u= 0.025 m/s

    Adoptedbedslope I= 2 %

    252.4

    252.6

    252.8

    253

    253.2

    253.4

    253.6

    253.8

    254

    0 2 4 6 8 10 12 14 16

    kota dna

    kota vode

  • 7/30/2019 Lecturenote Micro hydropower development

    51/120

    51

    Q h0 b0 v0 vT ST H1pot BT BTusv u L LT LTusv

    (m3/s) (m) (m) (m/s) (m/s) (m

    2) (m) (m) (m) (m/s) (m) (m) (m)

    0.210 0.85 0.80 0.31 0.15 1.45 1.16 1.24 1.70 0.03 6.76 10.82 11.20

    CheckupbyStokesLaw:

    Table6Settlingvelocityoftheparticledependentonwatertemperature/viscosityoC

    t 20 12 10 8 6

    A m2 1.25 1.25 1.25 1.25 1.25

    Q m3/s 0.37 0.37 0.37 0.37 0.37

    VAV m/s 0.30 0.30 0.30 0.30 0.30

    d mm 0.20 0.20 0.20 0.20 0.20

    vSET m/s 0.033 0.026 0.025 0.024 0.022

    hAV m 0.85 0.85 0.85 0.85 0.85

    L m 11.20 11.20 11.20 11.20 11.20

    TSET s 25.99 32.20 34.00 36.17 38.29

    t flow s 37.84 37.84 37.84 37.84 37.84

  • 7/30/2019 Lecturenote Micro hydropower development

    52/120

    52

    Otherapproachcanusethefollowingformulae:

    Basinlength:h/vD

  • 7/30/2019 Lecturenote Micro hydropower development

    53/120

    53

    HpHbottom 0.93

    b 0.4

    h 0.4

    A 0.16

    H 0.73

    m 0.7

    Q 0.424

    Qout=424l/s

    Timetoempty=?

    Volumeca.

    V 15.90 m3

    hmax 0.73 mD 0.4 m

    A 0.16 m2

    m 0.7

    Q 0.42 m3/s

    Timetoempty 75 s = 1.25 min

    Forpartiallyclosedgate:

    10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

    0.05 0.10 0.15 0.20 0.24 0.28 0.32 0.36 0.39 0.42

    Q=f(opening)

    Propusna mo ispusta

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

    Otvor zatvaraa

    Q(m3/s)

    y

    ydy

    c

    A

    ga

    HT

    a

    a

    H

    Hy

    H

    Hy

    a

    12

    2

    22

    11

  • 7/30/2019 Lecturenote Micro hydropower development

    54/120

    54

    2.4.2. Spillwayfromsettlingbasin(Qmax)

    After G.A.Simonjan(1960.):

    gvvLSShh f

    29,0 21012

    27,023,008,02

    2

    2

    2

    2

    B

    LhL

    B

    Lhm

    23

    22 HLgmQ

    So 0.02

    B 1.7

    n 0.02

    m 0.113

    L 3

    Hp2 0.832

    v1 0.614

    v2 0

    P 0.87

    h2 1.702

    A 2.894

    R 0.567m(Hp2) 0.113

    m= 0.08*(h2*L/B2)^20.23*((h2*L/B

    2)

    2)+0.27

    Sf2 0.013%

    h2h1=(SoSf)*L+0.9(v12v2

    2)/2g

    h1 1.635

    A 2.783

    R 0.560

    Hp1 0.765

    Sf1 0.015%

    2.4.3. Dutyflowoutlet(Qmin)Firstapproach:

    gHACQ 2

    D

    Lf

    c1

  • 7/30/2019 Lecturenote Micro hydropower development

    55/120

    55

    Where:

    fCoefficientDarcyWeisbachg

    v

    D

    LfHf

    2

    2

    .

    32

    6.124 Dnf =0,029

    sumofminorlosses(1.5)

    LPipelength

    DDiameter

    C=0.762

    Secondapproach:

    Re=vD/orReR=vR/R=D/4=157000

    ColebrookC=0.762

    Thirdapproach:

    For 3

  • 7/30/2019 Lecturenote Micro hydropower development

    56/120

    56

    3. HydropowerbasicsandHydraulicstructures3.1. General

    Thebasicprincipleofhydropower isthat ifwatercanbepiped fromacertain leveltoa lower level,

    thentheresultingwaterpressurecanbeusedtodowork.Ifthewaterpressureisallowedtomovea

    mechanical component then thatmovement involves the conversionof thepotentialenergyof the

    water intomechanicalenergy.Hydro turbines convertwaterpressure intomechanical shaftpower,

    whichcanbeusedtodriveanelectricitygenerator,agrindingmillorsomeotherusefuldevice.

    3.2. HistoryThe use of falling water as a source of energy is known for a long time. In the ancient times

    waterwheels were used already, but only at the beginning of the nineteenth century with the

    inventionofthehydroturbinetheuseofhydropowergotanewimpulse.

    Smallscalehydropowerwasthemostcommonwayofelectricitygeneratingintheearly20thcentury.

    In 1924 for example in Switzerland nearly 7000 small scale hydropower stationswere in use. The

    improvement of distribution possibilities of electricity by means of high voltage transmission lines

    causedfaintedinterestinsmallscalehydropower.

    Renewed interest in the technologyof small scalehydropower started inChina.Estimates say t