Lecture Lab2 PartA

  • Upload
    nunja

  • View
    235

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 Lecture Lab2 PartA

    1/17

    Lab2A:RobotDCMotor

    ECEN2270 ElectronicsDesignLaboratory 1

    Characterization,modeling,

    and

    simulation

  • 7/29/2019 Lecture Lab2 PartA

    2/17

    ECEN2830 ElectronicsDesignLaboratory 2

    DiscussionItems

    Labreports:

    must

    be

    uploaded

    via

    D2L

    dropbox by

    the

    deadline

    Onereportpergroup,includebothnamesonthefrontpage

    Attendanceisrequired!!!!!!!

    TakeawayfromLab1demos

    Donotrushthroughthelab;takethetimetounderstandwhatyouaredoingandwhy

    Makesure

    both

    partners

    know

    and

    understand

    all

    aspects

    of

    the

    lab;donotsplitportionsofthelabbetweenpartnerstorushthrough

    ReviewcarefullytheLectureslidesandtheLabTasks,includingthestatementsonwhattoincludeinthefinalreport

    DosotodaybeforestartofLab2tomorrow!

    ElectronicsDesignLaboratory 2ECEN2830

  • 7/29/2019 Lecture Lab2 PartA

    3/17

    ECEN2830 ElectronicsDesignLaboratory 3

    Lab2,PartA

    Broaderobjectives:

    working

    with

    aload

    Understandthephysicalbehavioroftheload:DCmotor

    DevelopinganelectricalmodelfortheDCmotorasaload

    Experimentallyfinding

    model

    parameters

    Performingdesignandsimulationusingmodels

    Hardwareimplementation,verification,andtesting

    ElectronicsDesignLaboratory 3ECEN2830

  • 7/29/2019 Lecture Lab2 PartA

    4/17

    ECEN2830 ElectronicsDesignLaboratory 4

    Robotplatform

    TwoDCmotors,eachdrivingawheel

    +

    _

    VDC

    IDC

    wheel

    64:1

    gearOptical

    encoder:

    12 pulses

    permotor

    shaft

    rotation

    DCmotor

    1 2 3 4

    1EncoderpowersupplyVCC=+710V

    2Encoderground

    3EncoderoutputpulsesA,frequencyfenc4EncoderoutputpulsesB,frequencyfenc

    DCsupply

    10

  • 7/29/2019 Lecture Lab2 PartA

    5/17

    ECEN2830 ElectronicsDesignLaboratory 5

    DCMotorbasics:TorqueT

    Diagramfrom:http://www.animations.physics.unsw.edu.au/jw/electricmotors.html

    +

    _

    VDC

    righthandrule

    IDC

    IDC

    Armature

    winding

    BlIF DC

    Force[N] Current[A]

    Vectoralignedwith

    theconductorof

    lengthl,direction

    alignedwith

    currentdirection

    Magnetic

    fluxdensity

    vector[T]

    Torque[Nm]DCkIT

    k=motorconstant[Nm/A]

  • 7/29/2019 Lecture Lab2 PartA

    6/17

    ECEN2830 ElectronicsDesignLaboratory 6

    DCMotorbasics:ElectromotiveForce(EMF)

    Diagramfrom:http://www.animations.physics.unsw.edu.au/jw/electricmotors.html

    +

    _

    VDC

    righthandrule

    IDC

    IDC dt

    dVEMF

    InducedEMF[V]

    Rateofchangeof

    magneticflux

    throughthe

    armaturewinding

    kVEMF

    Faradayslaw

    of

    induction

    Armature

    winding

    k=motorconstant[Nm/A],[V/(rad/s)]

    InducedEMF

    [V] Speed

    [rad/s]

  • 7/29/2019 Lecture Lab2 PartA

    7/17

    ECEN2830 ElectronicsDesignLaboratory 7

    DCmotorequations

    kVEMF

    Electricalmodel(armaturecircuit)

    EMFDC

    MDCMDC V

    dt

    dILIRV

    Mechanicalmodel

    loadTBdtdJT

    DCkIT

    J =momentofinertia

    B =frictioncoefficient

    extintload TTT Loadtorqueisacombinationofinternal

    gearboxloadandexternalload

  • 7/29/2019 Lecture Lab2 PartA

    8/17

    ECEN2830 ElectronicsDesignLaboratory 8

    DCmotorequivalentcircuitmodel

    +

    +

    VDC

    _

    IDCLM RM

    VEMF= k T = kIDC

    Tload1/BJ

    EMFDC

    MDCMDC V

    dt

    dILIRV

    loadTB

    dt

    dJT

    kVEMF DCkIT

    Considerhowtomeasureallcircuitparametersfromthemodel

    Requiresmeasurement

    of

    inputterminals,VDCandIDC

    frequency inrad/s useopticalencoder

    extintload TTT

    Combinedinternal

    gearandloadtorque

  • 7/29/2019 Lecture Lab2 PartA

    9/17

    ECEN2830 ElectronicsDesignLaboratory 9

    Opticalencoder

    Encoderoutputpulses,frequencyfenc

    [Hz]is

    proportionalto speed

  • 7/29/2019 Lecture Lab2 PartA

    10/17

    ECEN2830 ElectronicsDesignLaboratory 10

    Speedconversions

    n =wheelspeed,rotationsperminute[rpm]

    n/60=wheelspeed,rotationspersecond[rps]

    =wheelrotationalspeed[rad/s]=2n/60 Usedinmodelequationsnm =motorshaftspeed,nm =(gearratio)*n =64n[rpm]fenc =frequencyofencoderpulses[Hz]=12*nm/60=12*64*n/60[Hz]

    Example:wheelspeedis1

    rotationpersecond:1rps

    n =60rpm

    =2 rad/s=6.28rad/s

    nm =64*60rpm=3840rpm

    fenc =12*nm/60=768Hz

    6412

    2

    encf

  • 7/29/2019 Lecture Lab2 PartA

    11/17

    ECEN2830 ElectronicsDesignLaboratory 11

    Opticalencoder:direction

    counterclockwise

    clockwise

    Encoderpulse

    outputA

    Encoderpulse

    outputB

    Encoderpulse

    outputA

    Encoderpulse

    outputB

    InLab

    2,

    only

    one

    encoder

    pulse

    output

    is

    needed

    Optionalextracreditusesbothpulsestodeterminedirection

    A B

  • 7/29/2019 Lecture Lab2 PartA

    12/17

    ECEN2830 ElectronicsDesignLaboratory 12

    Encodercircuit

    +VCC=+5V

    GND

    PulseoutA

    Pulseout

    B

    LEDsPhoto

    transistors Logicinverters(shape

    thesensedsignalsinto

    squarewaveoutput

    pulses)

    Encoderconnector

    (encoderinternallyuses

    a+5Vpowersupply;

    externally,wecan

    supplyany

    supply

    voltagebetween7Vand

    10V)

  • 7/29/2019 Lecture Lab2 PartA

    13/17

    ECEN2830 ElectronicsDesignLaboratory 13

    DCMotorSpicemodel

    Modelparameters

    tobedetermined

    byexperiments:

    RM,k,J,B,Tint

    Internaltorqueload

    fromgearbox,Tint

    Encodermodel:

    correct

    speed

    to

    fenc frequencyconversionhasalready

    beendone,noneedtochangeanythinginthispartofthemodel

    Inputandoutput

    portsdefined

    DownloadthemodelfromtheLab2website

    Onlyeditthemodeldesignatedparameters

  • 7/29/2019 Lecture Lab2 PartA

    14/17

    ECEN2830 ElectronicsDesignLaboratory 14

    TestingSpicemodel

    ElectronicsDesignLaboratory 14

    Externalload

    torque

    Textattachedhere

    Externalload

    mustsinkto

    ground Simulationsetupto

    1. Startmotor:

    bring

    up

    VDC,

    over

    first

    1ms

    2. Pulseloadtorque:0A(noload)forfirst50ms,1Afornext50ms

    3. Stopmotor:bringdownVDCfrom100msto101ms,10Vto0V

  • 7/29/2019 Lecture Lab2 PartA

    15/17

    ECEN2830 ElectronicsDesignLaboratory 15

    MotorSimulationResults

    ElectronicsDesignLaboratory 15

    +

    +

    VDC

    _

    IDCLM RM

    VEMF= k T = kIDC

    Tload1/BJ

    EMFDC

    MDCMDC Vdt

    dILIRV loadTB

    dt

    dJT

    kVEMF DCkIT

    Considerwaveforms

    and

    model

    in

    each

    mode:

    motor

    start,

    load

    change,

    motor

    stop

    extintload TTT

  • 7/29/2019 Lecture Lab2 PartA

    16/17

    ECEN2830 ElectronicsDesignLaboratory 16

    Findingmodelparametersfromexperiments

    RM fromlockedmotortest

    kfromspeedasafunctionofvoltage,unloadedmotor

    B and

    Tint from

    internal

    losses,

    unloaded

    motor J fromatransient:considerpoweronorofftransient

    +

    +

    VDC

    _

    IDCLM RM

    VEMF= k T = kIDC

    Tload1/BJ

    EMFDC

    MDCMDC Vdt

    dILIRV loadTBdtdJT

    kVEMF DCkIT extintload TTT

  • 7/29/2019 Lecture Lab2 PartA

    17/17

    ECEN2830 ElectronicsDesignLaboratory 17

    Lab2objectives

    PartA

    MeasureDCmotorcharacteristics

    DevelopaSpicecircuitmodelfortheDCmotoranddetermine

    modelparameters

    based

    on

    experiments

    Validatethemodel:compareexperimentalandsimulationresults

    PartB

    UseDC

    motor

    Spice

    model

    to

    design

    aspeed

    sensor

    (tachometer)

    circuitthatoutputsvoltageproportionaltowheelspeed

    Build,testanddemothespeedsensorcircuit