62
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh

Lecture 5: DC & Transient Response

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 5: DC & Transient Response

Introduction to

CMOS VLSI

Design

Lecture 5:

DC & Transient Response

David Harris, Harvey Mudd College

Kartik Mohanram and Steven Levitan

University of Pittsburgh

Page 2: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 2

Outline

DC Response

Logic Levels and Noise Margins

Transient Response

Delay Estimation

Page 3: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 3

Activity

1) If the width of a transistor increases, the current will

increase decrease not change

2) If the length of a transistor increases, the current will

increase decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will

increase decrease not change

4) If the width of a transistor increases, its gate capacitance will

increase decrease not change

5) If the length of a transistor increases, its gate capacitance will

increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will

increase decrease not change

Page 4: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 4

Activity

1) If the width of a transistor increases, the current will

increase decrease not change

2) If the length of a transistor increases, the current will

increase decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will

increase decrease not change

4) If the width of a transistor increases, its gate capacitance will

increase decrease not change

5) If the length of a transistor increases, its gate capacitance will

increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will

increase decrease not change

Page 5: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 5

DC Response

DC Response: Vout vs. Vin for a gate

Ex: Inverter

– When Vin = 0 -> Vout = VDD

– When Vin = VDD -> Vout = 0

– In between, Vout depends on

transistor size and current

– By KCL, must settle such that

Idsn = |Idsp|

– We could solve equations

– But graphical solution gives more insight

Idsn

Idsp

Vout

VDD

Vin

Page 6: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 6

Transistor Operation

Current depends on region of transistor behavior

For what Vin and Vout are nMOS and pMOS in

– Cutoff?

– Linear?

– Saturation?

Page 7: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 7

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vgsn >

Vdsn <

Vgsn >

Vdsn >

Idsn

Idsp

Vout

VDD

Vin

Page 8: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 8

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp

Vout

VDD

Vin

Page 9: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 9

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp

Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 10: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 10

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn

Vin < Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Idsn

Idsp

Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 11: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 11

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vgsp <

Vdsp >

Vgsp <

Vdsp <

Idsn

Idsp

Vout

VDD

Vin

Page 12: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 12

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp

Vout

VDD

Vin

Page 13: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 13

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp

Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 14: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 14

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp

Vin > VDD + Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Idsn

Idsp

Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 15: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 15

I-V Characteristics

Make pMOS is wider than nMOS such that bn = bp

Vgsn5

Vgsn4

Vgsn3

Vgsn2

Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Page 16: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 16

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

Page 17: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 17

Load Line Analysis

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

For a given Vin:

– Plot Idsn, Idsp vs. Vout

– Vout must be where |currents| are equal in

Idsn

Idsp

Vout

VDD

Vin

Page 18: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 18

Load Line Analysis

Vin0

Vin0

Idsn

, |Idsp

|

Vout

VDD

Vin = 0

Page 19: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 19

Load Line Analysis

Vin1

Vin1I

dsn, |I

dsp|

Vout

VDD

Vin = 0.2VDD

Page 20: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 20

Load Line Analysis

Vin2

Vin2

Idsn

, |Idsp

|

Vout

VDD

Vin = 0.4VDD

Page 21: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 21

Load Line Analysis

Vin3

Vin3

Idsn

, |Idsp

|

Vout

VDD

Vin = 0.6VDD

Page 22: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 22

Load Line Analysis

Vin4

Vin4

Idsn

, |Idsp

|

Vout

VDD

Vin = 0.8VDD

Page 23: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 23

Load Line Analysis

Vin5

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

Vin = VDD

Page 24: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 24

Load Line Summary

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

Page 25: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 25

DC Transfer Curve

Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Vout

VDD

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Page 26: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 26

Operating Regions

Revisit transistor operating regions

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Region nMOS pMOS

A

B

C

D

E

Page 27: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 27

Operating Regions

Revisit transistor operating regions

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Region nMOS pMOS

A Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Page 28: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 28

Beta Ratio

If bp / bn 1, switching point will move from VDD/2

Called skewed gate

Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.5

12

10p

n

b

b

0.1p

n

b

b

Page 29: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 29

Noise Margins

How much noise can a gate input see before it does

not recognize the input?

Indeterminate

Region

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical High

Input Range

Logical Low

Input Range

Logical High

Output Range

Logical Low

Output Range

Page 30: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 30

Logic Levels

To maximize noise margins, select logic levels at

VDD

Vin

Vout

VDD

bp/b

n > 1

Vin

Vout

0

Page 31: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 31

Logic Levels

To maximize noise margins, select logic levels at

– unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL

VIH

Vtn

Unity Gain Points

Slope = -1

VDD

-

|Vtp|

bp/b

n > 1

Vin

Vout

0

Page 32: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 32

Transient Response

DC analysis tells us Vout if Vin is constant

Transient analysis tells us Vout(t) if Vin(t) changes

– Requires solving differential equations

Input is usually considered to be a step or ramp

– From 0 to VDD or vice versa

Page 33: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 33

Inverter Step Response

Ex: find step response of inverter driving load cap

0( )

(

)

)

(

o

i

ut

n

out

V t t

t

V

t

V

d

d

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 34: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 34

Inverter Step Response

Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

( )

ou

DDin

t

out

u t t V

d

d

t

t t

V t

V

V

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 35: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 35

Inverter Step Response

Ex: find step response of inverter driving load cap

0

0(

( ))

(

(

)

)

DD

Do

i

D

o t

n

ut

u

V t

u t t V

V

d

d

t

t

V

V

t

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 36: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 36

Inverter Step Response

Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

( ) DD tout

ou

ds

t DD t

nI t V V

VV V

V

t t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 37: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 37

Inverter Step Response

Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

(( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V tV t

b

b

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 38: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 38

Inverter Step Response

Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

(( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V tV t

b

b

Vout

(t)

Vin(t)

t0

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 39: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 39

Delay Definitions

tpdr:

tpdf:

tpd:

tr:

tf: fall time

Page 40: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 40

Delay Definitions

tpdr: rising propagation delay

– From input to rising output crossing VDD/2

tpdf: falling propagation delay

– From input to falling output crossing VDD/2

tpd: average propagation delay

– tpd = (tpdr + tpdf)/2

tr: rise time

– From output crossing 0.2 VDD to 0.8 VDD

tf: fall time

– From output crossing 0.8 VDD to 0.2 VDD

Page 41: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 41

Delay Definitions

tcdr: rising contamination delay

– From input to rising output crossing VDD/2

tcdf: falling contamination delay

– From input to falling output crossing VDD/2

tcd: average contamination delay

– tpd = (tcdr + tcdf)/2

Page 42: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 42

Simulated Inverter Delay

Solving differential equations by hand is too hard

SPICE simulator solves the equations numerically

– Uses more accurate I-V models too!

But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf

= 66ps tpdr

= 83psVin

Vout

Page 43: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 43

Delay Estimation

We would like to be able to easily estimate delay

– Not as accurate as simulation

– But easier to ask “What if?”

The step response usually looks like a 1st order RC response with a decaying exponential.

Use RC delay models to estimate delay

– C = total capacitance on output node

– Use effective resistance R

– So that tpd = RC

Characterize transistors by finding their effective R

– Depends on average current as gate switches

Page 44: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 44

RC Delay Models

Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance

– Unit nMOS has resistance R, capacitance C

– Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width

Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

Page 45: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 45

Example: 3-input NAND

Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances

equal to a unit inverter (R).

Page 46: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 46

Example: 3-input NAND

Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances

equal to a unit inverter (R).

Page 47: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 47

Example: 3-input NAND

Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances

equal to a unit inverter (R).

3

3

222

3

Page 48: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 48

3-input NAND Caps

Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

3

Page 49: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 49

3-input NAND Caps

Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

Page 50: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 50

3-input NAND Caps

Annotate the 3-input NAND gate with gate and

diffusion capacitance.

9C

3C

3C3

3

3

222

5C

5C

5C

Page 51: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 51

Elmore Delay

ON transistors look like resistors

Pullup or pulldown network modeled as RC ladder

Elmore delay of RC ladder

R1

R2

R3

RN

C1

C2

C3

CN

nodes

1 1 1 2 2 1 2... ...

pd i to source i

i

N N

t R C

R C R R C R R R C

Page 52: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 52

Example: 2-input NAND

Estimate worst-case rising and falling delay of 2-

input NAND driving h identical gates.

h copies

2

2

22

B

A

x

Y

Page 53: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 53

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

Page 54: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 54

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

R

(6+4h)CY

pdrt

Page 55: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 55

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

R

(6+4h)CY 6 4pdrt h RC

Page 56: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 56

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

Page 57: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 57

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

pdft (6+4h)C2CR/2

R/2x Y

Page 58: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 58

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

2 2 22 6 4

7 4

R R Rpdft C h C

h RC

(6+4h)C2CR/2

R/2x Y

Page 59: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 59

Delay Components

Delay has two parts

– Parasitic delay

• 6 or 7 RC

• Independent of load

– Effort delay

• 4h RC

• Proportional to load capacitance

Page 60: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 60

Contamination Delay

Best-case (contamination) delay can be substantially

less than propagation delay.

Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

A

x

Y

R

(6+4h)CYR

3 2cdrt h RC

Page 61: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 61

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

Isolated

Contacted

DiffusionMerged

Uncontacted

Diffusion

Shared

Contacted

Diffusion

Diffusion Capacitance

we assumed contacted diffusion on every s / d.

Good layout minimizes diffusion area

Ex: NAND3 layout shares one diffusion contact

– Reduces output capacitance by 2C

– Merged uncontacted diffusion might help too

Page 62: Lecture 5: DC & Transient Response

CMOS VLSI Design4: DC and Transient Response Slide 62

Layout Comparison

Which layout is better?

AV

DD

GND

B

Y

AV

DD

GND

B

Y