48
Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 1

Lecture 2: Geometrical Optics - Leiden Observatory€¦ · Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

  • Lecture 2: Geometrical Optics

    Outline

    1 Geometrical Approximation2 Lenses3 Mirrors4 Optical Systems5 Images and Pupils6 Aberrations

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 1

  • Ideal Optics

    ideal optics: spherical waves from any point in object space areimaged into points in image spacecorresponding points are called conjugate pointsfocal point: center of converging or diverging spherical wavefrontobject space and image space are reversible

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 2

  • Geometrical Optics

    rays are normal to locally flat wave (locations of constant phase)rays are reflected and refracted according to Fresnel equationsphase is neglected⇒ incoherent sumrays can carry polarization informationoptical system is finite⇒ diffractiongeometrical optics neglects diffraction effects: λ⇒ 0physical optics λ > 0simplicity of geometrical optics mostly outweighs limitations

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 3

  • Lenses

    Surface Shape of Perfect Lens

    lens material has index of refraction no z(r) · n + z(r) f = constantn · z(r) +

    √r2 + (f − z(r))2 = constant

    solution z(r) is hyperbola with eccentricity e = n > 1

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 4

  • Paraxial Optics

    Assumptions:1 assumption 1: Snell’s law for small angles of incidence (sinφ ≈ φ)2 assumption 2: ray hight h small so that optics curvature can be

    neglected (plane optics, (cos x ≈ 1))3 assumption 3: tanφ ≈ φ = h/f4 decent until about 10 degrees

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 5

  • Spherical Lenses

    en.wikipedia.org/wiki/File:Lens2.svg

    if two spherical surfaces have same radius, can fit them togethersurface error requirement less than λ/10grinding spherical surfaces is easy⇒ most optical surfaces arespherical

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 6

    http://en.wikipedia.org/wiki/File:Lens2.svg

  • Positive/Converging Spherical Lens Parameters

    commons.wikimedia.org/wiki/File:Lens1.svg

    center of curvature and radii with signs: R1 > 0,R2 < 0center thickness: dpositive focal length f > 0

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 7

    http://commons.wikimedia.org/wiki/File:Lens1.svg

  • Negative/Diverging Spherical Lens Parameters

    commons.wikimedia.org/wiki/File:Lens1b.svg

    note different signs of radii: R1 < 0,R2 > 0virtual focal pointnegative focal length (f < 0)

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 8

    http://commons.wikimedia.org/wiki/File:Lens1b.svg

  • General Lens Setup: Real Image

    commons.wikimedia.org/wiki/File:Lens3.svg

    object distance S1, object height h1image distance S2, image height h2axis through two centers of curvature is optical axissurface point on optical axis is the vertexchief ray through center maintains direction

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 9

    http://commons.wikimedia.org/wiki/File:Lens3.svg

  • General Lens Setup: Virtual Image

    commons.wikimedia.org/wiki/File:Lens3b.svg

    note object closer than focal length of lensvirtual image

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 10

    http://commons.wikimedia.org/wiki/File:Lens3b.svg

  • Thin Lens Approximationthin-lens equation:

    1S1

    +1

    S2= (n − 1)

    (1

    R1− 1

    R2

    )Gaussian lens formula:

    1S1

    +1

    S2=

    1f

    Finite Imagingrarely image point sources, but extended objectobject and image size are proportionalorientation of object and image are inverted(transverse) magnification perpendicular to optical axis:M = h2/h1 = −S2/S1

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 11

  • Thick Lenses

    www.newport.com/servicesupport/Tutorials/default.aspx?id=169

    basic thick lens equation 1f = (n − 1)(

    1R1− 1R2 +

    (n−1)dnR1R2

    )thin means d

  • Chromatic Aberration

    due to wavelength dependence of index of refractionhigher index in the blue⇒ shorter focal length in blue

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 13

  • Achromatic Lens

    combination of 2 lenses, different glass dispersionalso less spherical aberration

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 14

  • Mirrors

    Mirrors vs. Lensesmirrors are completely achromaticreflective over very large wavelength range (UV to radio)can be supported from the backcan be segmentedwavefront error is twice that of surface, lens is (n-1) times surfaceonly one surface to ’play’ with

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 15

  • Plane Mirrors: Fold Mirrors and Beamsplitters

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 16

  • Spherical Mirrors

    easy to manufacturefocuses light from center of curvature onto itselffocal length is half of curvature: f = R/2tip-tilt misalignment does not matterhas no optical axisdoes not image light from infinity correctly (spherical aberration)

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 17

  • Parabolic Mirrors

    want to make flat wavefront into spherical wavefrontdistance az(r) + z(r)f = const.z(r) = r2/2Rperfect image of objects at infinityhas clear optical axis

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 18

  • Conic Sections

    circle and ellipses: cuts angle < cone angleparabola: angle = cone anglehyperbola: cut along axis

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 19

  • en.wikipedia.org/wiki/Conic_constant

    Conic Constant K

    r2 − 2Rz + (1 + K )z2 = 0 forz(r = 0) = 0

    z = r2

    R1

    1+√

    1−(1+K ) r2R2

    R radius of curvatureK = −e2, e eccentricityprolate ellipsoid (K > 0)sphere (K = 0)oblate ellipsoid (0 > K > −1)parabola (K = −1)hyperbola (K < −1)all conics are almost sphericalclose to originanalytical ray intersections

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 20

    http://en.wikipedia.org/wiki/Conic_constant

  • Foci of Conic Sections

    en.wikipedia.org/wiki/File:Eccentricity.svg

    sphere has single focusellipse has two fociparabola (ellipse withe = 1) has one focus (andanother one at infinity)hyperbola (e > 1) has twofocal points

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 21

    http://en.wikipedia.org/wiki/File:Eccentricity.svg

  • Elliptical Mirrors

    have two foci at finite distancesperfectly reimage one focal point into another

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 22

  • Hyperbolic Mirrors

    have a real focus and a virtual focus (behind mirror)perfectly reimage one focal point into another

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 23

  • Optical Systems

    Overview

    combinations of several optical elements (lenses, mirrors, stops)examples: camera “lens”, microscope, telescopes, instrumentsthin-lens combinations can be treated analyticallyeffective focal length: 1f =

    1f1+ 1f2

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 24

  • Simple Thin-Lens Combinations

    distance > sum of focal lengths⇒ real image between lensesapply single-lens equation successively

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 25

  • Second Lens Adds Convergence or Divergence

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 26

  • F-number and Numerical Aperture

    Aperture

    all optical systems have a place where ’aperture’ is limitedmain mirror of telescopesaperture stop in photographic lensesaperture typically has a maximum diameteraperture size is important for diffraction effects

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 27

  • F-number

    f/2: f/4:

    describes the light-gathering ability of the lensf-number given by F = f/Dalso called focal ratio or f-ratio, written as: f/Fthe bigger F , the better the paraxial approximation worksfast system for F < 2, slow system for F > 2

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 28

  • Numerical Aperture

    en.wikipedia.org/wiki/File:Numerical_aperture.svg

    numerical aperture (NA): n sin θn index of refraction of working mediumθ half-angle of maximum cone of light that can enter or exit lensimportant for microscope objectives (n often not 1)

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 29

    http://en.wikipedia.org/wiki/File:Numerical_aperture.svg

  • Numerical Aperture in Fibers

    en.wikipedia.org/wiki/File:OF-na.svg

    acceptance cone of the fiber determined by materials

    NA = n sin θ =√

    n21 − n22n index of refraction of working medium

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 30

    http://en.wikipedia.org/wiki/File:OF-na.svg

  • Images and Pupils

    Images and Pupilsimage

    every object point comes to a focus in an image planelight in one image point comes from pupil positionsobject information is encoded in position, not in angle

    pupilall object rays are smeared out over complete aperturelight in one pupil point comes from different object positionsobject information is encoded in angle, not in position

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 31

  • Aperture and Field Stops

    aperture stop limits the amount of light reaching the imageaperture stop determines light-gathering ability of optical systemfield stop limits the image size or angle

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 32

  • Vignetting

    effective aperture stop depends on position in objectimage fades toward its edges

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 33

  • Telecentric Arrangement

    as seen from image, pupil is at infininityeasy: lens is its focal length away from pupil (image)magnification does not change with focus positionsray cones for all image points have the same orientation

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 34

  • Aberrations

    Spot Diagrams and Wavefronts

    plane of least confusion is location where image of point sourcehas smallest diameterspot diagram: shows ray locations in plane of least confusionspot diagrams are closely connected with wavefrontsaberrations are deviations from spherical wavefront

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 35

  • Spherical Aberration of Spherical Lens

    Made with Touch Optical Design

    different focal lengths of paraxial and marginal rayslongitudinal spherical aberration along optical axistransverse (or lateral) spherical aberration in image planemuch more pronounced for short focal ratiosfoci from paraxial beams are further away than marginal raysspot diagram shows central area with fainter disk around it

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 36

  • Minimizing Spherical Aberrations

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 37

  • Spherical Aberration Spots and Waves

    spot diagram shows central area with fainter disk around itwavefront has peak and turned-up edges

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 38

  • Aspheric Lens

    conic constant K = −1−√

    n makes perfect lensdifficult to manufacturebut possible these days

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 39

  • HST

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 40

  • Coma

    typically seen for object points away from optical axisleads to ’tails’ on stars

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 41

  • Coma Spots and Waves

    parabolic mirror with perfect on-axis performancespots and wavefront for off-axis image pointswavefront is tilted in inner part

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 42

  • Astigmatism due to Tilted Glass Plate in Converging Beam

    astigmatism: focus in two orthogonal directions, but not in both atthe same timetilted glass-plate: astigmatism, spherical aberration, beam shifttilted plates: beam shifters, filters, beamsplittersdifference of two parabolae with different curvatures

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 43

  • Field Curvature

    field (Petzval) curvature: image lies on curved surfacecurvature comes from lens thickness variation across apertureproblems with flat detectors (e.g. CCDs)potential solution: field flattening lens close to focus

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 44

  • Petzval Field Flattening

    Petzval curvature only depends on index of refraction and focallength of lensesPetzval curvature is independent of lens position!field flattener also makes image much more telecentric

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 45

  • Distortion

    image is sharp but geometrically distorted(a) object(b) positive (or pincushion) distortion(c) negative (or barrel) distortion

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 46

  • Aberration Descriptions

    Seidel AberrationsLudwig von Seidel (1857)Taylor expansion of sinφ

    sinφ = φ− φ3

    3! +φ5

    5! − ...paraxial: first-order opticsSeidel optics: third-order opticsSeidel aberrations: spherical, astigmatism, coma, field curvature,distortion

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 47

  • Zernike Polynomials

    tip

    coma (0deg)

    tilt

    coma (90deg)

    focus

    trefoil (0deg)

    astigmatism(45 deg)

    trefoil (30deg)

    astigmatism0 deg

    third-orderspherical

    low orders equal Seidel aberrationsform orthonormal basis on unit circle

    Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 48