of 71 /71
Polar Coordinates Graphing in Polar Coordinates Lecture 12 Section 9.3 Polar Coordinates Section 9.4 Graphing in Polar Coordinates Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 1 / 19

Lecture 12 - Section 9.3 Polar Coordinates Section 9.4 ...jiwenhe/Math1432/lectures/lecture12.pdfSection 9.3 Polar Coordinates Section 9.4 Graphing in Polar Coordinates Jiwen He Department

  • Author
    others

  • View
    9

  • Download
    1

Embed Size (px)

Text of Lecture 12 - Section 9.3 Polar Coordinates Section 9.4...

  • Polar Coordinates Graphing in Polar Coordinates

    Lecture 12Section 9.3 Polar Coordinates

    Section 9.4 Graphing in Polar Coordinates

    Jiwen He

    Department of Mathematics, University of Houston

    [email protected]://math.uh.edu/∼jiwenhe/Math1432

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 1 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Polar Coordinate System

    The purpose of the polarcoordinates is to representcurves that have symmetryabout a point or spiralabout a point.

    Frame of Reference

    In the polar coordinate system, the frame of reference is a point Othat we call the pole and a ray that emanates from it that we callthe polar axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 2 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Polar Coordinate System

    The purpose of the polarcoordinates is to representcurves that have symmetryabout a point or spiralabout a point.

    Frame of Reference

    In the polar coordinate system, the frame of reference is a point Othat we call the pole and a ray that emanates from it that we callthe polar axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 2 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Polar Coordinate System

    The purpose of the polarcoordinates is to representcurves that have symmetryabout a point or spiralabout a point.

    Frame of Reference

    In the polar coordinate system, the frame of reference is a point Othat we call the pole and a ray that emanates from it that we callthe polar axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 2 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Polar Coordinates

    Definition

    A point is given polar coordinates [r , θ] iff it lies at a distance |r |from the pole

    a long the ray θ, if r ≥ 0, and along the ray θ + π, if r < 0.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 3 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Points in Polar Coordinates

    Points in Polar Coordinates

    O = [0, θ] for all θ.

    [r , θ] = [r , θ + 2nπ] for all integers n.

    [r ,−θ] = [r , θ + π].

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 4 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Points in Polar Coordinates

    Points in Polar Coordinates

    O = [0, θ] for all θ.

    [r , θ] = [r , θ + 2nπ] for all integers n.

    [r ,−θ] = [r , θ + π].

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 4 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Points in Polar Coordinates

    Points in Polar Coordinates

    O = [0, θ] for all θ.

    [r , θ] = [r , θ + 2nπ] for all integers n.

    [r ,−θ] = [r , θ + π].

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 4 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Points in Polar Coordinates

    Points in Polar Coordinates

    O = [0, θ] for all θ.

    [r , θ] = [r , θ + 2nπ] for all integers n.

    [r ,−θ] = [r , θ + π].

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 4 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Relation to Rectangular Coordinates

    Relation to Rectangular Coordinates

    x = r cos θ, y = r sin θ. ⇒ x2 + y2 = r2, tan θ = yx

    r =√

    x2 + y2, θ = tan−1y

    x.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 5 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Relation to Rectangular Coordinates

    Relation to Rectangular Coordinates

    x = r cos θ, y = r sin θ. ⇒ x2 + y2 = r2, tan θ = yx

    r =√

    x2 + y2, θ = tan−1y

    x.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 5 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Relation to Rectangular Coordinates

    Relation to Rectangular Coordinates

    x = r cos θ, y = r sin θ. ⇒ x2 + y2 = r2, tan θ = yx

    r =√

    x2 + y2, θ = tan−1y

    x.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 5 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Relation to Rectangular Coordinates

    Relation to Rectangular Coordinates

    x = r cos θ, y = r sin θ. ⇒ x2 + y2 = r2, tan θ = yx

    r =√

    x2 + y2, θ = tan−1y

    x.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 5 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + y2 = a2 ⇒ r2 = a2

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + y2 = a2 ⇒ r2 = a2

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + y2 = a2 ⇒ r2 = a2

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + y2 = a2 ⇒ r2 = a2

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + (y − a)2 = a2 ⇒ x2 + y2 = 2ay ⇒ r2 = 2ar sin θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + (y − a)2 = a2 ⇒ x2 + y2 = 2ay ⇒ r2 = 2ar sin θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    x2 + (y − a)2 = a2 ⇒ x2 + y2 = 2ay ⇒ r2 = 2ar sin θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    (x − a)2 + y2 = a2 ⇒ x2 + y2 = 2ax ⇒ r2 = 2ar cos θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    (x − a)2 + y2 = a2 ⇒ x2 + y2 = 2ax ⇒ r2 = 2ar cos θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Circles in Polar Coordinates

    Circles in Polar Coordinates

    In rectangular coordinates In polar coordinates

    x2 + y2 = a2 r = a

    x2 + (y − a)2 = a2 r = 2a sin θ(x − a)2 + y2 = a2 r = 2a cos θ

    (x − a)2 + y2 = a2 ⇒ x2 + y2 = 2ax ⇒ r2 = 2ar cos θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 6 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = mx ⇒ yx

    = m ⇒ tan θ = m

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = mx ⇒ yx

    = m ⇒ tan θ = m

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = mx ⇒ yx

    = m ⇒ tan θ = m

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = mx ⇒ yx

    = m ⇒ tan θ = m

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    x = a ⇒ r cos θ = a ⇒ r = a sec θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    x = a ⇒ r cos θ = a ⇒ r = a sec θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    x = a ⇒ r cos θ = a ⇒ r = a sec θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = a ⇒ r sin θ = a ⇒ r = a csc θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = a ⇒ r sin θ = a ⇒ r = a csc θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lines in Polar Coordinates

    Lines in Polar Coordinates

    In rectangular coordinates In polar coordinates

    y = mx θ = α with α = tan−1 m

    x = a r = a sec θ

    y = a r = a csc θ

    y = a ⇒ r sin θ = a ⇒ r = a csc θ

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 7 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(−θ)] = cos(−2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph⇒ symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(−θ)] = cos(−2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph⇒ symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(−θ)] = cos(−2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph⇒ symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(−θ)] = cos(−2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph⇒ symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(π − θ)] = cos(2π − 2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then[r , π − θ] ∈ graph⇒ symmetric about the y -axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(π − θ)] = cos(2π − 2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then[r , π − θ] ∈ graph⇒ symmetric about the y -axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(π − θ)] = cos(2π − 2θ) = cos 2θ⇒ if [r , θ] ∈ graph, then[r , π − θ] ∈ graph⇒ symmetric about the y -axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(π + θ)] = cos(2π + 2θ) = cos 2θ

    ⇒ if [r , θ] ∈ graph, then[r , π + θ] ∈ graph⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(π + θ)] = cos(2π + 2θ) = cos 2θ

    ⇒ if [r , θ] ∈ graph, then[r , π + θ] ∈ graph⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Symmetry

    Lemniscate (ribbon) r2 = cos 2θ

    cos[2(π + θ)] = cos(2π + 2θ) = cos 2θ

    ⇒ if [r , θ] ∈ graph, then[r , π + θ] ∈ graph⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 8 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lemniscates (Ribbons) r 2 = a sin 2θ, r 2 = a cos 2θ

    Lemniscate r2 = a sin 2θ

    sin[2(π + θ)] = sin(2π + 2θ) = sin 2θ

    ⇒ if [r , θ] ∈ graph, then [r , π + θ] ∈ graph

    ⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 9 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lemniscates (Ribbons) r 2 = a sin 2θ, r 2 = a cos 2θ

    Lemniscate r2 = a sin 2θ

    sin[2(π + θ)] = sin(2π + 2θ) = sin 2θ

    ⇒ if [r , θ] ∈ graph, then [r , π + θ] ∈ graph

    ⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 9 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lemniscates (Ribbons) r 2 = a sin 2θ, r 2 = a cos 2θ

    Lemniscate r2 = a sin 2θ

    sin[2(π + θ)] = sin(2π + 2θ) = sin 2θ

    ⇒ if [r , θ] ∈ graph, then [r , π + θ] ∈ graph

    ⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 9 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Lemniscates (Ribbons) r 2 = a sin 2θ, r 2 = a cos 2θ

    Lemniscate r2 = a sin 2θ

    sin[2(π + θ)] = sin(2π + 2θ) = sin 2θ

    ⇒ if [r , θ] ∈ graph, then [r , π + θ] ∈ graph

    ⇒ symmetric about the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 9 / 19

  • Polar Coordinates Graphing in Polar Coordinates Polar Coordinates Relation to Rectangular Coordinates Symmetry

    Quiz

    Quiz

    1. r = sec θ is sym. about (a) x-axis, (b) y -axis, (c) origin.

    2. r = 2 sin θ is a (a) line, (b) circle, (c) lemniscate.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 10 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Spiral of Archimedes r = θ, θ ≥ 0

    The curve is a nonending spiral. Here it is shown in detail fromθ = 0 to θ = 2π.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 11 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Limaçon (Snail): r = 1− 2 cos θ

    r = 0 at θ = 13π,53π; |r | is a local maximum at θ = 0, π, 2π.

    Sketch in 4 stages: [0, 13π], [13π, π], [π,

    53π], [

    53π, 2π].

    cos(−θ) = cos θ ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph ⇒symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 12 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Limaçon (Snail): r = 1− 2 cos θ

    r = 0 at θ = 13π,53π; |r | is a local maximum at θ = 0, π, 2π.

    Sketch in 4 stages: [0, 13π], [13π, π], [π,

    53π], [

    53π, 2π].

    cos(−θ) = cos θ ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph ⇒symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 12 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Limaçon (Snail): r = 1− 2 cos θ

    r = 0 at θ = 13π,53π; |r | is a local maximum at θ = 0, π, 2π.

    Sketch in 4 stages: [0, 13π], [13π, π], [π,

    53π], [

    53π, 2π].

    cos(−θ) = cos θ ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph ⇒symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 12 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Limaçon (Snail): r = 1− 2 cos θ

    r = 0 at θ = 13π,53π; |r | is a local maximum at θ = 0, π, 2π.

    Sketch in 4 stages: [0, 13π], [13π, π], [π,

    53π], [

    53π, 2π].

    cos(−θ) = cos θ ⇒ if [r , θ] ∈ graph, then [r ,−θ] ∈ graph ⇒symmetric about the x-axis.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 12 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Limaçons (Snails): r = a + b cos θ

    The general shape of the curve depends on the relative magnitudesof |a| and |b|.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 13 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Cardioids (Heart-Shaped): r = 1± cos θ, r = 1± sin θ

    Each changecos θ → sin θ → − cos θ → − sin θ

    represents a counterclockwise rotation by 12π radians.

    Rotation by 12π: r = 1 + cos(θ −12π) = 1 + sin θ.

    Rotation by 12π: r = 1 + sin(θ −12π) = 1− cos θ.

    Rotation by 12π: r = 1− cos(θ −12π) = 1− sin θ.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 14 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Cardioids (Heart-Shaped): r = 1± cos θ, r = 1± sin θ

    Each changecos θ → sin θ → − cos θ → − sin θ

    represents a counterclockwise rotation by 12π radians.

    Rotation by 12π: r = 1 + cos(θ −12π) = 1 + sin θ.

    Rotation by 12π: r = 1 + sin(θ −12π) = 1− cos θ.

    Rotation by 12π: r = 1− cos(θ −12π) = 1− sin θ.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 14 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Cardioids (Heart-Shaped): r = 1± cos θ, r = 1± sin θ

    Each changecos θ → sin θ → − cos θ → − sin θ

    represents a counterclockwise rotation by 12π radians.

    Rotation by 12π: r = 1 + cos(θ −12π) = 1 + sin θ.

    Rotation by 12π: r = 1 + sin(θ −12π) = 1− cos θ.

    Rotation by 12π: r = 1− cos(θ −12π) = 1− sin θ.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 14 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Cardioids (Heart-Shaped): r = 1± cos θ, r = 1± sin θ

    Each changecos θ → sin θ → − cos θ → − sin θ

    represents a counterclockwise rotation by 12π radians.

    Rotation by 12π: r = 1 + cos(θ −12π) = 1 + sin θ.

    Rotation by 12π: r = 1 + sin(θ −12π) = 1− cos θ.

    Rotation by 12π: r = 1− cos(θ −12π) = 1− sin θ.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 14 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Quiz

    Quiz

    3. r = sin θ is the rotation byπ

    2of:

    (a) r = cos θ, (b) r = − sin θ, (c) r = − cos θ.

    4. Today is (a) Feb. 19, (b) Feb. 20, (c) Feb. 21.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 15 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curve: r = cos 2θ

    r = 0 at θ = π4 ,3π4 ,

    5π4 ,

    7π4 ;

    |r | is a local maximum at θ = 0, π2 , π,3π2 , 2π.

    Sketch the curve in 8 stages.

    cos[2(−θ)] = cos 2θ, cos[2(π ± θ)] = cos 2θ⇒ symmetric about the x-axis, the y -axis, and the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 16 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curve: r = cos 2θ

    r = 0 at θ = π4 ,3π4 ,

    5π4 ,

    7π4 ;

    |r | is a local maximum at θ = 0, π2 , π,3π2 , 2π.

    Sketch the curve in 8 stages.

    cos[2(−θ)] = cos 2θ, cos[2(π ± θ)] = cos 2θ⇒ symmetric about the x-axis, the y -axis, and the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 16 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curve: r = cos 2θ

    r = 0 at θ = π4 ,3π4 ,

    5π4 ,

    7π4 ;

    |r | is a local maximum at θ = 0, π2 , π,3π2 , 2π.

    Sketch the curve in 8 stages.

    cos[2(−θ)] = cos 2θ, cos[2(π ± θ)] = cos 2θ⇒ symmetric about the x-axis, the y -axis, and the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 16 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curve: r = cos 2θ

    r = 0 at θ = π4 ,3π4 ,

    5π4 ,

    7π4 ;

    |r | is a local maximum at θ = 0, π2 , π,3π2 , 2π.

    Sketch the curve in 8 stages.

    cos[2(−θ)] = cos 2θ, cos[2(π ± θ)] = cos 2θ⇒ symmetric about the x-axis, the y -axis, and the origin.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 16 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curves: r = a cos nθ, r = a sin nθ

    If n is odd, there are n petals.

    If n is even, there are 2n petals.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 17 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curves: r = a cos nθ, r = a sin nθ

    If n is odd, there are n petals.

    If n is even, there are 2n petals.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 17 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Petal Curves: r = a cos nθ, r = a sin nθ

    If n is odd, there are n petals.

    If n is even, there are 2n petals.

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 17 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Intersections: r = a(1− cos θ) and r = a(1 + cos θ)

    r = a(1− cos θ) and r = a(1 + cos θ) ⇒ r = a and cos θ = 0⇒ r = a and θ = π2 + nπ ⇒ [a,

    π2 + nπ] ∈ intersection

    ⇒ n even, [a, π2 + nπ] = [a,π2 ]; n odd, [a,

    π2 + nπ] = [a,

    3π2 ]

    Two intersection points: [a, π2 ] = (0, a) and [a,3π2 ] = (0,−a).

    The intersection third point: the origin; but the two cardioidspass through the origin at different times (θ).

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 18 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Intersections: r = a(1− cos θ) and r = a(1 + cos θ)

    r = a(1− cos θ) and r = a(1 + cos θ) ⇒ r = a and cos θ = 0⇒ r = a and θ = π2 + nπ ⇒ [a,

    π2 + nπ] ∈ intersection

    ⇒ n even, [a, π2 + nπ] = [a,π2 ]; n odd, [a,

    π2 + nπ] = [a,

    3π2 ]

    Two intersection points: [a, π2 ] = (0, a) and [a,3π2 ] = (0,−a).

    The intersection third point: the origin; but the two cardioidspass through the origin at different times (θ).

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 18 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Intersections: r = a(1− cos θ) and r = a(1 + cos θ)

    r = a(1− cos θ) and r = a(1 + cos θ) ⇒ r = a and cos θ = 0⇒ r = a and θ = π2 + nπ ⇒ [a,

    π2 + nπ] ∈ intersection

    ⇒ n even, [a, π2 + nπ] = [a,π2 ]; n odd, [a,

    π2 + nπ] = [a,

    3π2 ]

    Two intersection points: [a, π2 ] = (0, a) and [a,3π2 ] = (0,−a).

    The intersection third point: the origin; but the two cardioidspass through the origin at different times (θ).

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 18 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Intersections: r = a(1− cos θ) and r = a(1 + cos θ)

    r = a(1− cos θ) and r = a(1 + cos θ) ⇒ r = a and cos θ = 0⇒ r = a and θ = π2 + nπ ⇒ [a,

    π2 + nπ] ∈ intersection

    ⇒ n even, [a, π2 + nπ] = [a,π2 ]; n odd, [a,

    π2 + nπ] = [a,

    3π2 ]

    Two intersection points: [a, π2 ] = (0, a) and [a,3π2 ] = (0,−a).

    The intersection third point: the origin; but the two cardioidspass through the origin at different times (θ).

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 18 / 19

  • Polar Coordinates Graphing in Polar Coordinates Spiral Limaçons Flowers Intersections

    Outline

    Polar CoordinatesPolar CoordinatesRelation to Rectangular CoordinatesSymmetry

    Graphing in Polar CoordinatesSpiralLimaçonsFlowersIntersections

    Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 12 February 21, 2008 19 / 19

    Polar CoordinatesPolar CoordinatesRelation to Rectangular CoordinatesSymmetry

    Graphing in Polar CoordinatesSpiralLimaçonsFlowersIntersections