Lec1 Overview

  • Upload
    gariyak

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 8/11/2019 Lec1 Overview

    1/36

    6.976

    High Speed Communication Circuits and Systems

    Lecture 1

    Overview of Course

    Michael Perrott

    Massachusetts Institute of Technology

    Copyright 2003 by Michael H. Perrott

  • 8/11/2019 Lec1 Overview

    2/36

    M.H. Perrott MIT OCW

    Wireless Systems

    Direct conversion architecture

    sin(wot)

    90o

    D/A

    D/A

    DigitalProcessing

    Block

    Digital

    Processing

    Block

    sin(wot)

    90o

    A/D

    A/D

    Transmit IC Receive IC

    LNA

    PowerAmp

    Transmitter issues

    - Meeting the spectral mask (LO phase noise & feedthrough,quadrature accuracy), D/A accuracy, power amp linearity

    Receiver Issues

    - Meeting SNR (Noise figure, blocking performance, channelselectivity, LO phase noise, A/D nonlinearity and noise),selectivity (filtering), and emission requirements

  • 8/11/2019 Lec1 Overview

    3/36

    M.H. Perrott MIT OCW

    Future Goals

    Low cost, low power, and small area solutions

    - New architectures and circuits! Increased spectral efficiency

    - Example: GSM cellphones (GMSK) to 8-PSK (Edge) Requires a linear power amplifier!

    Increased data rates

    - Example: 802.11b (11 Mb/s) to 802.11a (> 50 Mb/s) GFSK modulation changes to OFDM modulation

    Higher carrier frequencies

    - 802.11b (2.5 GHz) to 802.11a (5 GHz) to ? (60 GHz) New modulation formats

    - GMSK, CDMA, OFDM, pulse position modulation New application areas

  • 8/11/2019 Lec1 Overview

    4/36M.H. Perrott MIT OCW

    High Speed Data Links

    A common architecture

    DEMUX

    DigitalProcessing

    Block

    Receive IC

    AmpClock

    and Data

    Recovery

    Clock

    Distribution

    10 Gb/sData Link

    MUX Driver

    DigitalProcessing

    Block

    Transmit IC

    Clock Generation

    Transmitter Issues

    - Intersymbol interference (limited bandwidth of ICamplifiers, packaging), clock jitter, power, area

    Receiver Issue

    - Intersymbol interference (same as above), jitter fromclock and data recovery, power, area

  • 8/11/2019 Lec1 Overview

    5/36

  • 8/11/2019 Lec1 Overview

    6/36M.H. Perrott MIT OCW

    This Class

    Circuit AND system focus

    - Knowing circuit design is not enough- Knowing system theory is not enough

    Circuit stuff

    - RF issues: transmission lines and impedance transformers- High speed design techniques- Basic building blocks: amplifiers, mixers, VCOs, digitalcomponents- Nonidealities: noise and nonlinearity

    System stuff- Macromodeling and simulation- Wireless and high speed data link principles

    -System level blocks: PLLs, CDRs, transceivers

  • 8/11/2019 Lec1 Overview

    7/36M.H. Perrott MIT OCW

    The Goal Design at Circuit/System Level

    1. Design architecture with analytical models May require new circuits guess what they look like

    2. Verify architectural ideas by simulating with idealmacro-models of circuit blocks

    Guess macro-models for new circuits

    3. Add known non-idealities of circuit blocks

    (nonlinearity, noise, offsets, etc.) Go back to 1. if the architecture breaks!

    4. Design circuit blocks and get better macro-models

    Go back to 1. if you cant build the circuit! Go back to 1. if the architecture breaks!

    5. Verify as much of system as possible with SPICE

    6.Layout, extract, verify

    Do this soon for high speed systems - iteration likely!

  • 8/11/2019 Lec1 Overview

    8/36M.H. Perrott MIT OCW

    Key System Level Simulation Needs

    You need a fast simulator

    - To design new things well, you must be able to iterate- The faster the simulation, the faster you can iterate

    You need to be able to add non-idealities in a

    controlled manner

    - Fundamental issues with architectures need to beseparated from implementation issues An architecture that is fundamentally flawed should be

    quickly abandoned

    You need flexibility

    - Capable of implementing circuit blocks such as filters,VCOs, etc.

    - Capable of implementing algorithms

    - Arbitrary level of detail

  • 8/11/2019 Lec1 Overview

    9/36M.H. Perrott MIT OCW

    A Custom C++ Simulator Will Be Used - CppSim

    Blocks are implemented with C/C++ code

    - High computation speed- Complex block descriptions

    Users enter designs in graphical form using Cadence

    schematic capture

    - System analysis and transistor level analysis in thesame CAD framework

    Resulting signals are viewed in Matlab

    - Powerful post-processing and viewing capability

    Note: Hspice used for circuit level simulations

    CppSim is on Athena and freely downloadable at

    http://www-mtl.mit.edu/~perrott

  • 8/11/2019 Lec1 Overview

    10/36

    A Quick Preview of Homeworks and Projects

  • 8/11/2019 Lec1 Overview

    11/36M.H. Perrott MIT OCW

    HW1 Transmission Lines and Transformers

    High speed data link application:

    VoutC1 RL

    L1Delay = x

    Characteristic Impedance = Ro

    Ideal Transmission Line

    Ro

    Vin

    Two-Port Model

    C2

    Ei1

    Er1

    Ei2

    Er2

    dieAdjoining pinsConnector

    Controlled Impedance

    PCB trace

    package

    On-ChipDriving

    Source

    High Speed Trace (RF Connector to Chip Die)

  • 8/11/2019 Lec1 Overview

    12/36

    M.H. Perrott MIT OCW

    HW2 High Speed Amplifiers

    M4

    M1 M2

    M3

    IbiasVin+

    R1

    Vin-

    R2

    Vo+Vo-

    50

    Vin

    M1

    M2

    Ls

    Ld

    Lg

    Cbig

    Ibias = 1mA

    M3

    Vout

    CL=1pF5 k

    Zin

    x

    Broadband

    Narrowband

  • 8/11/2019 Lec1 Overview

    13/36

    M.H. Perrott MIT OCW

    HW3 Amplifier Noise and Nonlinearity

    Amplifier circuit

    ModelM1

    Ibias

    Vout

    10

    0.18

    2

    0.18

    M2

    RL

    Vin

    Cbig2

    Cbig1

    RT

    50

    Vin

    50

    50

    Nonlinearity

    Vout

    Vout = co+ c1x + c2x2+ c3x

    3

    Noise

  • 8/11/2019 Lec1 Overview

    14/36

    M.H. Perrott MIT OCW

    HW4 Low Noise Amplifiers and Mixers

    Narrowband LNA

    Passive Mixer

    Vin

    CL

    RL/2 RL/2

    RS/2 Cbig

    RS/2 Cbig

    LO

    LO LO

    LO

    Vout Vout

    0 V

    0

    Vdd

    0

    Vdd

    50

    Vin

    M1

    M2

    Ls

    Lg

    Cbig

    Ibias = 1mA

    M3

    Vout

    CL=1pF

    5 k

    Zin

    Rps

    RpgRps

    Cbig

    Ld

    Rpd

  • 8/11/2019 Lec1 Overview

    15/36

    M.H. Perrott MIT OCW

    HW5 Voltage Controlled Oscillators

    Differential CMOS

    Colpitts

    Vbias=1.2V

    M1

    Ld=4nH

    Vout

    C1=2pF

    Ibias=100 A

    C2=8pF

    Rd=10k

    M1M2

    M3

    Vout

    Ctune

    3 nH

    100/0.18

    50/0.18

    M4100/0.18

    50/0.18

    VoutVin

    1.8 V

    0 V

  • 8/11/2019 Lec1 Overview

    16/36

    M.H. Perrott MIT OCW

    Project 1 - High Speed Frequency Dividers

    High speed

    latches/registers High speed dual-modulus

    divider

    Load

    Load

    ININ

    OUT OUT

    22/3Core

    ControlQualifier

    CON

    IN OUT2

    A B

    2/3

    INA

    B

    OUT

    CON*

    8 + CON Cycles

    CON*

    CON

  • 8/11/2019 Lec1 Overview

    17/36

    M.H. Perrott MIT OCW

    HW6 Phase Locked Loop Design

    Integer-N synthesizer

    Phase noise simulation

    PFD Loop

    Filter

    ref(t) out(t)

    Divider

    T

    T

    e(t) vin(t)

    div(t)

    VCO

    N[k] = Nnom

    Icp

    out(t) = cos(2 (fo+Kvvin())d)

    vin out

    t

    s

    1 + s/(2fp)

    vph2

    Sout(f)

    foffset0

    -20 dBc/Hz/dec

    vspur = Asin(2fst)

    K2 dBc

    K1 dBc/Hz

    fpfs

  • 8/11/2019 Lec1 Overview

    18/36

    M.H. Perrott MIT OCW

    Project 2 GMSK Transmitter for Wireless Apps

    Kv = 30 MHz/V

    fo = 900 MHz

    GaussianLPFDataGenerator

    Digital I/Q Generation

    out(t)

    T

    T

    t

    Td

    t

    T

    Loop FilterReferenceFrequency

    vin(t)PFD

    N

    RF TransmitSpectrum

    0f

    fRF

    Trans.Noise

    PowerAmp

    Kph

    1 - z-1

    cos()

    sin()

    D/A

    D/A

    finst

    90o

    I

    Q

    Peak-to-PeakFrequency

    Deviation

    Td

    t

    Inst

    antaneous

    Fr

    equency

    Data Eye

    LimitAmp

    (100 MHz)

    = 1

    1 MHz

    IncludesZero-Order

    Hold

    Icp H(s)

  • 8/11/2019 Lec1 Overview

    19/36

    M.H. Perrott MIT OCW

    Project 2 Accompanying Receiver

    0

    f

    ffRF

    fRF

    ReceivedSpectrum

    ReceiverNoise

    f

    BasebandSpectrum

    cos(2fRFt)

    IR

    QR

    NR

    ReceiverNoise

    ModulationSignal

    TransmitterNoise

    S(IR+jQR)

    Trans.

    Noise LNA

    BandSelect

    Filter

    ChannelSelectFilter

    sin(2fRFt)

  • 8/11/2019 Lec1 Overview

    20/36

    Basics of Digital Communication

  • 8/11/2019 Lec1 Overview

    21/36

    M.H. Perrott MIT OCW

    Example: A High Speed Backplane Data Link

    Suppose we consider packaging issues at the receiverside (ignore transmitter packaging now for simplicity)

    Vout

    Delay = 110 ps

    Characteristic Impedance = 50

    Ideal Transmission Line100

    Vin

    Two-Port Model

    Ei1

    Er1

    Ei2

    Er2

    dieAdjoining pins

    Controlled Impedance

    PCB trace

    package

    On-Chip

    Driving

    Source

    55 0.5 pF

    M4

    M1 M2

    M3

    Ibias Vin+ Vin-

    Vo+

    100 100

    ReceiverTransmitter

    unintentional

    mismatch

    intentional

    mismatch

    0.5 pF

    1 nH

  • 8/11/2019 Lec1 Overview

    22/36

    M.H. Perrott MIT OCW

    Modulation Format

    Binary, Non-Return to Zero (NRZ), Pulse Amplitude

    Modulation (PAM)

    - Send either a zero or one in a given time interval Td- Time interval set by a low jitter clock- Ideal signal from transmitter:

    0 0.5 1 1.5 2 2.5

    x 108

    0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    in

    TIME

  • 8/11/2019 Lec1 Overview

    23/36

    M.H. Perrott MIT OCW

    Receiver Function

    Two operations- Recover clock and use it to sample data- Evaluate data to be 0 or 1 based on a slicer

    Slice

    Level

    Sampling

    Instant

    Recovered

    Clock

    Detector

    Data

    Clock

    Recovery

    Out

    Data

    Out0 1 1 111 10 0 0 0 0 0

    Recovered

    Clock

  • 8/11/2019 Lec1 Overview

    24/36

    M.H. Perrott MIT OCW

    Issue: PC Board Trace is Not an Ideal Channel

    Chip capacitance and inductance limits bandwidth

    Transmission line effects cause reflections in the

    presence of impedance mismatch

    Example: transmit at 1 Gb/s across link in previousslide (assume bondwire inductance is zero)

    - Signal at receiver termination resistor

    0 0.5 1 1.5 2 2.5

    x 108

    0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    out

    TIME

  • 8/11/2019 Lec1 Overview

    25/36

    M.H. Perrott MIT OCW

    Eye Diagram for 1 Gb/s Data Rate

    Wrap signal back onto itself every 2*Td seconds

    - Same as an oscilloscope would do Allows immediate assessment of the quality of the

    signal at the receiver (look at eye opening)

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    x 109

    0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Time (seconds)

    out

    Eye Diagram

  • 8/11/2019 Lec1 Overview

    26/36

    M.H. Perrott MIT OCW

    Relationship of Eye to Sampling Time and Slice Level

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    x 109

    0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Time (seconds)

    out

    Eye Diagram

    Slice

    Level

    Sampling

    Instant

    Horizontal portion of eye indicates sensitivity to timing

    jitter

    Vertical portion of eye indicates sensitivity to additional

    noise and ISI

  • 8/11/2019 Lec1 Overview

    27/36

    M.H. Perrott MIT OCW

    What Happens if We Increase the Data Rate?

    Limited bandwidth and reflections cause intersymbol

    interference (ISI)

    Eye diagram at 10 Gb/s for same data link

    0 1 2

    x 1010

    0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Time (seconds)

    out

    Eye Diagram

  • 8/11/2019 Lec1 Overview

    28/36

    M.H. Perrott MIT OCW

    What is the Impact of the Bondwire Inductance?

    Rule of thumb: 1 nH/mm for bondwire

    - Assume 1 nH Impact of inductance here increases bandwidth

    - less ISI occurs

    0 1 2

    x 1010

    0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Time (seconds)

    out

    Eye Diagram

  • 8/11/2019 Lec1 Overview

    29/36

    M.H. Perrott MIT OCW

    How High of a Data Rate Can The Channel Support?

    Raise it to 25 Gb/s

    However, we havent considered other issues

    - PC board trace attenuates severely at high frequencies Bandwidth is < 5 GHz for 48 inch PC board trace (FR4)

    0 2 4 6 8

    x 1011

    0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Time (seconds)

    out

    Eye Diagram

  • 8/11/2019 Lec1 Overview

    30/36

    M.H. Perrott MIT OCW

    Multi-Level Signaling

    Increase spectral efficiency by sending more than onebit during a symbol interval

    - Example: 4-Level PAM at 12.5 Gb/s on same channel

    Effective data rate: 25 Gb/s

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    x 1010

    0.2

    0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Time (seconds)

    out

    Eye Diagram

  • 8/11/2019 Lec1 Overview

    31/36

    M.H. Perrott MIT OCW

    How Else Can We Reduce ISI?

    Consider a system level view of the link

    - Channel can be viewed as having an equivalentfrequency response

    Assumes linearity and time-invariance (accurate for mosttransmission line systems)

    Transmitter

    Driver

    Receiver

    Detector

    Channel

    Transmitter Receiver

  • 8/11/2019 Lec1 Overview

    32/36

    M.H. Perrott MIT OCW

    Equalization

    Undo channel frequency response with an inverse

    filter at the receiver

    - Removes ISI!

    - Can make it adaptive to learn channel

    Transmitter

    Driver

    Receiver

    Detector

    Channel

    Transmitter Receiver

    Equalization

  • 8/11/2019 Lec1 Overview

    33/36

    M.H. Perrott MIT OCW

    The Catch

    Equalization enhances noise

    - Overall SNR may be reduced Optimal approach is to make ISI and noise

    degradation about equal

    Transmitter

    Driver

    Receiver

    Detector

    Channel

    Transmitter Receiver

    EqualizationNoise

  • 8/11/2019 Lec1 Overview

    34/36

    M.H. Perrott MIT OCW

    Alternative Pre-emphasize at Transmitter

    Put inverse filter at transmitter instead of receiver

    - No enhancement of noise, but - Need feedback from receiver to learn channel

    - Requires higher dynamic range/power from transmitter

    Transmitter

    Driver

    Receiver

    Detector

    Channel

    Trransmitter Receiver

    NoiseCompensation

    (Pre-emphasis)

    O f

  • 8/11/2019 Lec1 Overview

    35/36

    M.H. Perrott MIT OCW

    Best Overall Performance

    Combine compensation and equalization

    - Starting to see this for high speed links

    Transmitter

    Driver

    Receiver

    Detector

    Channel

    Trransmitter Receiver

    EqualizationNoiseCompensation

    (Pre-emphasis)

    Wh t th I ith Wi l S t ?

  • 8/11/2019 Lec1 Overview

    36/36

    M.H. Perrott MIT OCW

    What are the Issues with Wireless Systems?

    Noise

    - Need to extract the radio signal with sufficient SNR Selectivity (filtering, processing gain)

    - Need to remove interferers (which are often much larger!) Nonlinearity

    - Degrades transmit spectral mask

    - Degrades selectivity for receiver Multi-path (channel response)

    - Degrades signal nulls rather than ISI usually the issue

    - Can actually be used to advantage!We will look at BOTH broadband data links and

    wireless systems in this class