Lcr Thesis Presentation Final

  • Published on
    24-May-2015

  • View
    929

  • Download
    2

DESCRIPTION

Master\'s thesis defense presentation

Transcript

1. SWANSON School of Engineering CONCRETE MIXTURE PROPERTIES AFFECTINGTHEAGGREGATE INTERLOCK MECHANISM OFJOINTS AND CRACKS FOR RIGID PAVEMENT SYSTEMS LUIS CARLOS RAMIREZ Advisor : Dr. Julie VandenbosscheMasters Thesis Defense November 19, 2010 2. OUTLINE INTRODUCTIONMOTIVATIONAPPROACHRESEARCH OBJECTIVESMETHODOLOGYEXECUTIONRESULTS AND ANALYSISCONCLUSIONSFUTURE WORKMasters Thesis Defense 11/19/2010 3. INTRODUCTIONPavement Performance Faulting Punchouts Corner Breaks Transverse Cracking Masters Thesis Defense 11/19/2010 4. INTRODUCTIONLoad Transfer Efficiency (LTE) of Cracks and Joints(LTE) L= 1U= 0L= 1U= 1 ULTE = x100%LMasters Thesis Defense 11/19/2010 5. INTRODUCTIONAggregate Interlock MechanismPCC SlabBase LTEjoint=LTEbase+LTEAGG 20%-40%AGG= Joint Spring Stiffness Masters Thesis Defense 11/19/2010 6. INTRODUCTION Factors Affecting the Aggregate Interlock MechanismCrack Surface TextureCrack width CA TopCAMatrix CACASize Hardness Strength Gradation AngularityMasters Thesis Defense 11/19/2010 7. MOTIVATIONDamage accumulation += f( AGG/kl) AGG/kl)M-E Design AGG = f( LTE) LTE = f( Surface texture) texture)Surf. texture = f( PCC Material properties)Masters Thesis Defense 11/19/2010 8. APPROACHSurface Texture ConcreteVandenbossche (1999) (1999)Mixture PropertiesIoannides LTEet.al (1990)AGG/AGG/kl Masters Thesis Defense 11/19/2010 9. RESEARCH OBJECTIVES1. Establish a relationship between PCC properties and LTE.LTE.2. Establish a relationship between PCC properties and AGG.AGG.3. Investigate the effect of PCC properties on fractureparameters.4. Determine influence of fracture parameters on theaggregate interlock.Masters Thesis Defense 11/19/2010 10. METHODOLOGYSelectCast Identify Data PointsSpecimensData Gaps to Include& Testing DataCalculate SelectionResults Previousfrom TestsStudies Data AnalyzedStatistical Analysis of Development Combined Data FittingResults of Models Data Masters Thesis Defense 11/19/2010 11. Full Factorial Design Matrix LA Category CA Top Size (in) w/c ratio Category Existent Low strength0.75Medium strength High strength Low strength Low resistance to abrasion1.5Medium strength EXECUTIONHigh strength Low strength 2.5Medium strength High strength Low strength0.75Medium strength High strength Low strength Medium resistance to abrasion 1.5Medium strength High strength Low strength 2.5Medium strength High strength Low strength0.75Medium strength High strength Low strength High resistance to abrasion 1.5Medium strength High strength Low strength 2.5Medium strength High strength Masters Thesis Defense 11/19/2010 12. EXECUTION Concrete Mixtures Properties Concrete MixLS_0.75_17_0.4 LS_0.75_17_0.45 SL_1.25_34_0.4 SL_0.75_34_0.4 SL_0.75_34_0.45 IDAggregateTypeLimestone LimestoneSlag SlagSlag TopAggregate0.75 0.75 1.25 0.750.75Size (in)CoarseAggregateVolumetric 44 Proportion (%) Water-to- Cement Ratio0.4 0.450.40.40.45LA Value (%)17 34 Absorption 0.5 4.78 Capacity, (%) Bulk Specific 2.712.35 GravityCA GradationAASHTO No. 57 Masters Thesis Defense 11/19/2010 13. EXECUTIONTesting Program Day 1 Day 28Fracture Energy Fracture EnergyTest RILEM TPMTest RILEM TPM 19901990 (4 specimens per(4 specimens permixture)mixture)VolumetricSurface TextureVST Test (35 FracturedFlexural StrengthFaces) Test ASTM C78 (3 specimens permixture)Masters Thesis Defense 11/19/2010 14. INTRODUCTIONVolumetric Surface Texture Test (VST) Vandenbossche (1999) Masters Thesis Defense 11/19/2010 15. RESULTS AND ANALYSIS0.2365 in3/in2 VSTR Results 0.1289 in3/in2 Masters Thesis Defense 11/19/2010 16. RESULTS AND ANALYSIS VSTR Model VSTR=0.3689+0.5004*TS-24.5162*(1/LA)-0.0540*w/c+0.2049*TS2-2.2665*TS*w/c+61.5434*(w/c/LA) Response Surface Method (RSM) VSTR =Volumetric Surface Texture Ratio (in3/in2) R2=0.91 Adjusted R2=0.86 TS = Aggregate Top Size(in) LA = LA Abrasion (%) w/c =w/c ratio Source p-valueTerms p-value 0.600 Regression0.0000Constant0.000Predicted VSTR (in/in) 0.500Linear0.0010 TS 0.002 0.4000.300Square 0.00101/LA0.000 0.2000.100 Interaction 0.0000w/c 0.001 0.000 0.0000 0.10000.2000 0.3000 0.4000 0.5000 0.6000TS20.000 Measured VSTR (in/in)TS*w/c 0.000w/c/LA0.005 Masters Thesis Defense 11/19/2010 17. RESULTS AND ANALYSIS VSTR f(CA Top Size, CA LA) w/c ratio =0.45 0.600000.50000-0.60000 0.500000.40000-0.50000VSTR (in3/in2) 0.400000.30000-0.400000.20000-0.30000 0.300000.10000-0.200000.20000 0.00000-0.10000 0.10000 0.000001621 2631LA (%) 37 2.34 2.02421.71 1.39 CA top size(%)1.07 0.75Masters Thesis Defense 11/19/2010 18. RESULTS AND ANALYSISVSTR f(CA LA, w/c ratio)CA Top size = 1 in0.350000.30000 VSTR (in3/in2) 0.25000 0.30000-0.350000.20000 0.25000-0.30000 0.15000 0.20000-0.250000.15000-0.20000 0.100000.10000-0.15000 0.050000.05000-0.10000 0.00000 0.38 0.40 0.00000-0.050000.43w/c ratio 0.45 430.4838 3227 LA (%) 2116 Masters Thesis Defense 11/19/2010 19. RESULTS AND ANALYSISLTE Model VST LTE = 39.7 log + 5.6 cw R2=0.95Adjusted R2 =0.90VST = VTSR t eff teff Vandenbossche (1999) [(0.3689 + 0.5004 TS 24.5162 (1/ LA) 0.0540 w / c + 0.2049 TS 2 LTE = 39.7 log{2.2665 TS w / c + 61.5434(w _ c / LA)] 2.54 * teff } + 5.6cw LTE= Load Transfer Efficiency (%) VST=Volumetric Surface Texture (in3/in) VSTR =Volumetric Surface Texture Ratio (in3/in2) TS = Aggregate Top Size(in) LA = LA Abrasion (%) w/c =w/c ratio Masters Thesis Defense 11/19/2010 teff= Slab Effective Thickness (cm) cw= Crack Width (cm) 20. RESULTS AND ANALYSIS 100 900.75 in 80 LTE (%)1 in70 601.5 in50 402 in0 20 40 60 80 100 120LTE vs. Crack Width Crack width (mils)100Jensen & Hansen (2001)90Predicted 1in Slab thickness =10 in Limestone LA =34% , TS =1in Gravel LA 22%, TS=2iin80 Mesured 1 in LTE (%) 70 Predicted 2 in 6050Measured 2 in 400 20 406080 100 120Masters Thesis Defense 11/19/2010 Crack width (mils) 21. RESULTS AND ANALYSIS AGG Model10090... 80 1 1.17786 70 0.01Load Transfer Efficiency, % 60AGG = LTE kl 0.012 50 40 3020 Crovetti (1994) 10 0 Ioannides et. al (1990) 0.01 0.1110 100 1000Nondimensional Stiffness, AGG/kl [(0.3689 + 0.5004 TS 24.5162 (1/ LA) 0.0540 w / c + 0.2049 TS 2 LTE = 39.7 log{2.2665 TS w / c + 61.5434(w _ c / LA)] 2.54 * teff} + 5.6 cwLTE= Load Transfer Efficiency (%)VST=Volumetric Surface Texture (in3/in) 0.25 VSTR =Volumetric Surface Texture Ratio (in3/in2) Eh3 TS = Aggregate Top Size(in)l= 12 (1 2 )k LA = LA Abrasion (%) w/c =w/c ratioteff= Slab Effective Thickness (cm)cw= Crack Width (cm)k= Modulus of Subgrade Reaction (psi/in)Masters Thesis Defense 11/19/2010 l = Radius of Relative Stiffness (in) 22. RESULTS AND ANALYSIS AGG f(LA, w/c ratio) k =200 psil= 30 incw=0.08 inteff=11 inCA top size= 1 in 7.00E+04 6.00E+04 5.00E+04 AGG (psi)4.00E+046.00E+04-7.00E+045.00E+04-6.00E+043.00E+044.00E+04-5.00E+042.00E+043.00E+04-4.00E+04 1.00E+04 2.00E+04-3.00E+041.00E+04-2.00E+04 4.00E+010.38 0.40 4.00E+01-1.00E+04 0.42w/cratio 0.44 0.46 0.48 43 4632 35 38 40 24 27 30 LA (%)16 19 21 Masters Thesis Defense 11/19/2010 23. CONCLUSIONSDevelopment of VSTR modelVSTR = f (w/c, TS, LA). Development of LTE modelLTE = f (w/c, TS, LA, cw, t)Development of AGG modelAGG= f (w/c, TS, LA, cw, t, k, l) Masters Thesis Defense 11/19/2010 24. FUTURE WORKTo expand and additional validation of VSTR model. To incorporate AGG model into the MEPDG.To investigate the effect of additional PCC properties on the surface texture. To investigate the relationship between concrete fracture parameters and the aggregate interlock mechanism. Masters Thesis Defense 11/19/2010 25. Thank you! QUESTIONS?/COMMENTS? Masters Thesis Defense 11/19/2010