86
Lattice Points in Polytopes Richard P. Stanley M.I.T. Lattice Points in Polytopes – p. 1

Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

  • Upload
    voliem

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Lattice Points in Polytopes

Richard P. Stanley

M.I.T.

Lattice Points in Polytopes – p. 1

Page 2: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

A lattice polygon

Georg Alexander Pick (1859–1942)

P : lattice polygon in R2

(vertices ∈ Z2, no self-intersections)

Lattice Points in Polytopes – p. 2

Page 3: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Boundary and interior lattice points

Lattice Points in Polytopes – p. 3

Page 4: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =2I + B − 2

2.

Example on previous slide:

2 · 4 + 10 − 2

2= 9.

Lattice Points in Polytopes – p. 4

Page 5: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =2I + B − 2

2.

Example on previous slide:

2 · 4 + 10 − 2

2= 9.

Lattice Points in Polytopes – p. 4

Page 6: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Two tetrahedra

Pick’s theorem (seemingly) fails in higherdimensions. For example, let T1 and T2 be thetetrahedra with vertices

v(T1) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

v(T2) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Lattice Points in Polytopes – p. 5

Page 7: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Failure of Pick’s theorem in dim 3

ThenI(T1) = I(T2) = 0

B(T1) = B(T2) = 4

A(T1) = 1/6, A(T2) = 1/3.

Lattice Points in Polytopes – p. 6

Page 8: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Polytope dilation

Let P be a convex polytope (convex hull of afinite set of points) in R

d. For n ≥ 1, let

nP = {nα : α ∈ P}.

3PP

Lattice Points in Polytopes – p. 7

Page 9: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Polytope dilation

Let P be a convex polytope (convex hull of afinite set of points) in R

d. For n ≥ 1, let

nP = {nα : α ∈ P}.

3PPLattice Points in Polytopes – p. 7

Page 10: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

i(P, n)

Let

i(P, n) = #(nP ∩ Zd)

= #{α ∈ P : nα ∈ Zd},

the number of lattice points in nP.

Lattice Points in Polytopes – p. 8

Page 11: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

i(P, n)

Similarly let

P◦ = interior of P = P − ∂P

i(P, n) = #(nP◦ ∩ Zd)

= #{α ∈ P◦ : nα ∈ Zd},

the number of lattice points in the interior of nP.

Note. Could use any lattice L instead of Zd.

Lattice Points in Polytopes – p. 9

Page 12: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

i(P, n)

Similarly let

P◦ = interior of P = P − ∂P

i(P, n) = #(nP◦ ∩ Zd)

= #{α ∈ P◦ : nα ∈ Zd},

the number of lattice points in the interior of nP.

Note. Could use any lattice L instead of Zd.

Lattice Points in Polytopes – p. 9

Page 13: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

An example

P 3P

i(P, n) = (n + 1)2

i(P, n) = (n − 1)2 = i(P,−n).

Lattice Points in Polytopes – p. 10

Page 14: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Reeve’s theorem

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let P be athree-dimensional lattice polytope. Then thevolume V (P) is a certain (explicit) function ofi(P, 1), i(P, 1), and i(P, 2).

Lattice Points in Polytopes – p. 11

Page 15: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The main result

Theorem (Ehrhart 1962, Macdonald 1963) Let

P = lattice polytope in RN , dimP = d.

Then i(P, n) is a polynomial (the Ehrhartpolynomial of P) in n of degree d.

Lattice Points in Polytopes – p. 12

Page 16: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Reciprocity and volume

Moreover,

i(P, 0) = 1

i(P, n) = (−1)di(P,−n), n > 0

(reciprocity).

If d = N then

i(P, n) = V (P)nd + lower order terms,

where V (P) is the volume of P.

Lattice Points in Polytopes – p. 13

Page 17: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Reciprocity and volume

Moreover,

i(P, 0) = 1

i(P, n) = (−1)di(P,−n), n > 0

(reciprocity).

If d = N then

i(P, n) = V (P)nd + lower order terms,

where V (P) is the volume of P.

Lattice Points in Polytopes – p. 13

Page 18: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Generalized Pick’s theorem

Corollary. Let P ⊂ Rd and dimP = d. Knowing

any d of i(P, n) or i(P, n) for n > 0 determinesV (P).

Proof. Together with i(P, 0) = 1, this datadetermines d + 1 values of the polynomial i(P, n)of degree d. This uniquely determines i(P, n)and hence its leading coefficient V (P). �

Lattice Points in Polytopes – p. 14

Page 19: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Generalized Pick’s theorem

Corollary. Let P ⊂ Rd and dimP = d. Knowing

any d of i(P, n) or i(P, n) for n > 0 determinesV (P).

Proof. Together with i(P, 0) = 1, this datadetermines d + 1 values of the polynomial i(P, n)of degree d. This uniquely determines i(P, n)and hence its leading coefficient V (P). �

Lattice Points in Polytopes – p. 14

Page 20: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

An example: Reeve’s theorem

Example. When d = 3, V (P) is determined by

i(P, 1) = #(P ∩ Z3)

i(P, 2) = #(2P ∩ Z3)

i(P, 1) = #(P◦ ∩ Z3),

which gives Reeve’s theorem.

Lattice Points in Polytopes – p. 15

Page 21: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Birkhoff polytope

Example. Let BM ⊂ RM×M be the Birkhoff

polytope of all M × M doubly-stochasticmatrices A = (aij), i.e.,

aij ≥ 0

i

aij = 1 (column sums 1)

j

aij = 1 (row sums 1).

Lattice Points in Polytopes – p. 16

Page 22: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

(Weak) magic squares

Note. B = (bij) ∈ nBM ∩ ZM×M if and only if

bij ∈ N = {0, 1, 2, . . . }∑

i

bij = n

j

bij = n.

Lattice Points in Polytopes – p. 17

Page 23: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Example of a magic square

2 1 0 4

3 1 1 2

1 3 2 1

1 2 4 0

(M = 4, n = 7)

∈ 7B4

Lattice Points in Polytopes – p. 18

Page 24: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Example of a magic square

2 1 0 4

3 1 1 2

1 3 2 1

1 2 4 0

(M = 4, n = 7)

∈ 7B4

Lattice Points in Polytopes – p. 18

Page 25: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

HM(n)

HM(n) := #{M × M N-matrices, line sums n}

= i(BM , n).

H1(n) = 1

H2(n) = n + 1

[

a n − a

n − a a

]

, 0 ≤ a ≤ n.

Lattice Points in Polytopes – p. 19

Page 26: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

HM(n)

HM(n) := #{M × M N-matrices, line sums n}

= i(BM , n).

H1(n) = 1

H2(n) = n + 1

[

a n − a

n − a a

]

, 0 ≤ a ≤ n.

Lattice Points in Polytopes – p. 19

Page 27: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The case M = 3

H3(n) =

(

n + 2

4

)

+

(

n + 3

4

)

+

(

n + 4

4

)

(MacMahon)

Lattice Points in Polytopes – p. 20

Page 28: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The Anand-Dumir-Gupta conjecture

HM(0) = 1

HM(1) = M ! (permutation matrices)

Theorem (Birkhoff-von Neumann). The verticesof BM consist of the M ! M × M permutationmatrices. Hence BM is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture).HM(n) is a polynomial in n (of degree (M − 1)2).

Lattice Points in Polytopes – p. 21

Page 29: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The Anand-Dumir-Gupta conjecture

HM(0) = 1

HM(1) = M ! (permutation matrices)

Theorem (Birkhoff-von Neumann). The verticesof BM consist of the M ! M × M permutationmatrices. Hence BM is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture).HM(n) is a polynomial in n (of degree (M − 1)2).

Lattice Points in Polytopes – p. 21

Page 30: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

H4(n)

Example. H4(n) =1

11340

(

11n9 + 198n8 + 1596n7

+7560n6 + 23289n5 + 48762n5 + 70234n4 + 68220n2

+40950n + 11340) .

Lattice Points in Polytopes – p. 22

Page 31: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =

#{M×M matrices B of positive integers, line sum n}.

But every such B can be obtained from anM × M matrix A of nonnegative integers byadding 1 to each entry.

Corollary.HM(−1) = HM(−2) = · · · = HM(−M + 1) = 0

HM(−M − n) = (−1)M−1HM(n)

Lattice Points in Polytopes – p. 23

Page 32: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =

#{M×M matrices B of positive integers, line sum n}.

But every such B can be obtained from anM × M matrix A of nonnegative integers byadding 1 to each entry.

Corollary.HM(−1) = HM(−2) = · · · = HM(−M + 1) = 0

HM(−M − n) = (−1)M−1HM(n)

Lattice Points in Polytopes – p. 23

Page 33: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Two remarks

Reciprocity greatly reduces computation.

Applications of magic squares, e.g., tostatistics (contingency tables).

Lattice Points in Polytopes – p. 24

Page 34: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Zeros of H9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2

No explanation known.

Lattice Points in Polytopes – p. 25

Page 35: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Zeros of H9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2

No explanation known.

Lattice Points in Polytopes – p. 25

Page 36: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Zonotopes

Let v1, . . . , vk ∈ Rd. The zonotope Z(v1, . . . , vk)

generated by v1, . . . , vk:

Z(v1, . . . , vk) = {λ1v1 + · · · + λkvk : 0 ≤ λi ≤ 1}

Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)(1,2)

(0,0)

Lattice Points in Polytopes – p. 26

Page 37: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Zonotopes

Let v1, . . . , vk ∈ Rd. The zonotope Z(v1, . . . , vk)

generated by v1, . . . , vk:

Z(v1, . . . , vk) = {λ1v1 + · · · + λkvk : 0 ≤ λi ≤ 1}

Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)(1,2)

(0,0)

Lattice Points in Polytopes – p. 26

Page 38: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Lattice points in a zonotope

Theorem. Let

Z = Z(v1, . . . , vk) ⊂ Rd,

where vi ∈ Zd. Then

i(Z, 1) =∑

X

h(X),

where X ranges over all linearly independentsubsets of {v1, . . . , vk}, and h(X) is the gcd of allj × j minors (j = #X) of the matrix whose rowsare the elements of X.

Lattice Points in Polytopes – p. 27

Page 39: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

An example

Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)(1,2)

(0,0)

Lattice Points in Polytopes – p. 28

Page 40: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Computation of i(Z, 1)

i(Z, 1) =

4 0

3 1

+

4 0

1 2

+

3 1

1 2

+gcd(4, 0) + gcd(3, 1)

+gcd(1, 2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1

= 24.

Lattice Points in Polytopes – p. 29

Page 41: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Computation of i(Z, 1)

i(Z, 1) =

4 0

3 1

+

4 0

1 2

+

3 1

1 2

+gcd(4, 0) + gcd(3, 1)

+gcd(1, 2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1

= 24.

Lattice Points in Polytopes – p. 29

Page 42: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Application to graph theory

Let G be a graph (with no loops or multipleedges) on the vertex set V (G) = {1, 2, . . . , n}.Let

di = degree (# incident edges) of vertex i.

Define the ordered degree sequence d(G) of Gby

d(G) = (d1, . . . , dn).

Lattice Points in Polytopes – p. 30

Page 43: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Example of d(G)

Example. d(G) = (2, 4, 0, 3, 2, 1)

1 2

4 5 6

3

Lattice Points in Polytopes – p. 31

Page 44: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Number of ordered degree sequences

Let f(n) be the number of distinct d(G), whereV (G) = {1, 2, . . . , n}.

Lattice Points in Polytopes – p. 32

Page 45: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

f(n) for n ≤ 4

Example. If n ≤ 3, all d(G) are distinct, sof(1) = 1, f(2) = 21 = 2, f(3) = 23 = 8. For n ≥ 4we can have G 6= H but d(G) = d(H), e.g.,

3 4

2 11 2

3 4 3 4

1 2

In fact, f(4) = 54 < 26 = 64.

Lattice Points in Polytopes – p. 33

Page 46: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) : V (G) = {1, . . . , n}} ⊂ Rn,

the polytope of degree sequences (Perles,Koren).

Easy fact. Let ei be the ith unit coordinate vectorin R

n. E.g., if n = 5 then e2 = (0, 1, 0, 0, 0). Then

Dn = Z(ei + ej : 1 ≤ i < j ≤ n).

Lattice Points in Polytopes – p. 34

Page 47: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) : V (G) = {1, . . . , n}} ⊂ Rn,

the polytope of degree sequences (Perles,Koren).

Easy fact. Let ei be the ith unit coordinate vectorin R

n. E.g., if n = 5 then e2 = (0, 1, 0, 0, 0). Then

Dn = Z(ei + ej : 1 ≤ i < j ≤ n).

Lattice Points in Polytopes – p. 34

Page 48: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The Erdos-Gallai theorem

Theorem. Let

α = (a1, . . . , an) ∈ Zn.

Then α = d(G) for some G if and only if

α ∈ Dn

a1 + a2 + · · · + an is even.

Lattice Points in Polytopes – p. 35

Page 49: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

A generating function

Enumerative techniques leads to:

Theorem. Let

F (x) =∑

n≥0

f(n)xn

n!

= 1 + x + 2x2

2!+ 8

x3

3!+ 54

x4

4!+ · · · .

Then:

Lattice Points in Polytopes – p. 36

Page 50: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

A formula for F (x)

F (x) =1

2

(

1 + 2∑

n≥1

nn xn

n!

)1/2

×

(

1 −∑

n≥1

(n − 1)n−1 xn

n!

)

+ 1

]

× exp∑

n≥1

nn−2 xn

n!(00 = 1)

Lattice Points in Polytopes – p. 37

Page 51: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Coefficients of i(P, n)

Let P denote the tetrahedron with vertices(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 13). Then

i(P, n) =13

6n3 + n2 −

1

6n + 1.

Lattice Points in Polytopes – p. 38

Page 52: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The “bad” tetrahedron

z

x

y

Thus in general the coefficients of Ehrhartpolynomials are not “nice.” Is there a “better”basis?

Lattice Points in Polytopes – p. 39

Page 53: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The “bad” tetrahedron

z

x

y

Thus in general the coefficients of Ehrhartpolynomials are not “nice.” Is there a “better”basis?

Lattice Points in Polytopes – p. 39

Page 54: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The h-vector of i(P, n)

Let P be a lattice polytope of dimension d. Sincei(P, n) is a polynomial of degree d, ∃ hi ∈ Z suchthat

n≥0

i(P, n)xn =h0 + h1x + · · · + hdx

d

(1 − x)d+1.

Definition. Define

h(P) = (h0, h1, . . . , hd),

the h-vector of P.

Lattice Points in Polytopes – p. 40

Page 55: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The h-vector of i(P, n)

Let P be a lattice polytope of dimension d. Sincei(P, n) is a polynomial of degree d, ∃ hi ∈ Z suchthat

n≥0

i(P, n)xn =h0 + h1x + · · · + hdx

d

(1 − x)d+1.

Definition. Define

h(P) = (h0, h1, . . . , hd),

the h-vector of P.

Lattice Points in Polytopes – p. 40

Page 56: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Example of an h-vector

Example. Recall

i(B4, n) =1

11340(11n9

+198n8 + 1596n7 + 7560n6 + 23289n5

+48762n5 + 70234n4 + 68220n2

+40950n + 11340).

Then

h(B4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).

Lattice Points in Polytopes – p. 41

Page 57: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Example of an h-vector

Example. Recall

i(B4, n) =1

11340(11n9

+198n8 + 1596n7 + 7560n6 + 23289n5

+48762n5 + 70234n4 + 68220n2

+40950n + 11340).

Then

h(B4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).

Lattice Points in Polytopes – p. 41

Page 58: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Elementary properties of h(P)

h0 = 1

hd = (−1)dimPi(P,−1) = I(P)

max{i : hi 6= 0} = min{j ≥ 0 :

i(P,−1) = i(P,−2) = · · · = i(P,−(d−j)) = 0}

E.g., h(P) = (h0, . . . , hd−2, 0, 0) ⇔ i(P,−1) =i(P,−2) = 0.

Lattice Points in Polytopes – p. 42

Page 59: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Another property

i(P,−n − k) = (−1)d i(P, n) ∀n ⇔

hi = hd+1−k−i ∀i, and

hd+2−k−i = hd+3−k−i = · · · = hd = 0

Lattice Points in Polytopes – p. 43

Page 60: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Back to B4

Recall:

h(B4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).

Thus

i(B4,−1) = i(B4,−2) = i(B4,−3) = 0

i(B4,−n − 4) = −i(B4, n).

Lattice Points in Polytopes – p. 44

Page 61: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Main properties of h(P)

Theorem A (nonnegativity). (McMullen, RS)hi ≥ 0.

Theorem B (monotonicity). (RS) If P and Q arelattice polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i.

B ⇒ A: take Q = ∅.

Lattice Points in Polytopes – p. 45

Page 62: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Main properties of h(P)

Theorem A (nonnegativity). (McMullen, RS)hi ≥ 0.

Theorem B (monotonicity). (RS) If P and Q arelattice polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i.

B ⇒ A: take Q = ∅.

Lattice Points in Polytopes – p. 45

Page 63: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Main properties of h(P)

Theorem A (nonnegativity). (McMullen, RS)hi ≥ 0.

Theorem B (monotonicity). (RS) If P and Q arelattice polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i.

B ⇒ A: take Q = ∅.

Lattice Points in Polytopes – p. 45

Page 64: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Proofs

Both theorems can be proved geometrically.

There are also elegant algebraic proofs based oncommutative algebra.

Lattice Points in Polytopes – p. 46

Page 65: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Further directions

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle,RS). Let P be a lattice d-polytope. Then

i(P, α) = 0, α ∈ R ⇒ −d ≤ α ≤ bd/2c.

Theorem. Let d be odd. There exists a 0/1d-polytope Pd and a real zero αd of i(Pd, n) suchthat

limd→∞

d odd

αd

d=

1

2πe= 0.0585 · · · .

Lattice Points in Polytopes – p. 47

Page 66: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Further directions

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle,RS). Let P be a lattice d-polytope. Then

i(P, α) = 0, α ∈ R ⇒ −d ≤ α ≤ bd/2c.

Theorem. Let d be odd. There exists a 0/1d-polytope Pd and a real zero αd of i(Pd, n) suchthat

limd→∞

d odd

αd

d=

1

2πe= 0.0585 · · · .

Lattice Points in Polytopes – p. 47

Page 67: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

An open problem

Open. Is the set of all complex zeros of allEhrhart polynomials of lattice polytopes dense inC? (True for chromatic polynomials of graphs.)

Lattice Points in Polytopes – p. 48

Page 68: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

II. Brion’s theorem

Example. Let P be the polytope [2, 5] in R, so Pis defined by

(1) x ≥ 2, (2) x ≤ 5.

Let

F1(t) =∑

n≥2n∈Z

tn =t2

1 − t

F2(t) =∑

n≤5n∈Z

tn =t5

1 − 1t

.

Lattice Points in Polytopes – p. 49

Page 69: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

II. Brion’s theorem

Example. Let P be the polytope [2, 5] in R, so Pis defined by

(1) x ≥ 2, (2) x ≤ 5.

Let

F1(t) =∑

n≥2n∈Z

tn =t2

1 − t

F2(t) =∑

n≤5n∈Z

tn =t5

1 − 1t

.

Lattice Points in Polytopes – p. 49

Page 70: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

F1(t) + F2(t)

F1(t) + F2(t) =t2

1 − t+

t5

1 − 1t

= t2 + t3 + t4 + t5

=∑

m∈P∩Z

tm.

Lattice Points in Polytopes – p. 50

Page 71: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Cone at a vertex

P : Z-polytope in RN with vertices v1, . . . ,vk

Ci: cone at vertex i supporting P

v

(C v)

Lattice Points in Polytopes – p. 51

Page 72: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Cone at a vertex

P : Z-polytope in RN with vertices v1, . . . ,vk

Ci: cone at vertex i supporting P

v

(C v)

Lattice Points in Polytopes – p. 51

Page 73: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The general result

Let Fi(t1, . . . , tN ) =∑

(m1,...,mN )∈Ci∩ZN

tm1

1 · · · tmN

N .

Theorem (Brion). Each Fi is a rational functionof t1, . . . , tN , and

k∑

i=1

Fi(t1, . . . , tN) =∑

(m1,...,mN )∈P∩ZN

tm1

1 · · · tmN

N

(as rational functions).

Lattice Points in Polytopes – p. 52

Page 74: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The general result

Let Fi(t1, . . . , tN ) =∑

(m1,...,mN )∈Ci∩ZN

tm1

1 · · · tmN

N .

Theorem (Brion). Each Fi is a rational functionof t1, . . . , tN , and

k∑

i=1

Fi(t1, . . . , tN) =∑

(m1,...,mN )∈P∩ZN

tm1

1 · · · tmN

N

(as rational functions).

Lattice Points in Polytopes – p. 52

Page 75: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

III. Toric varieties

Given an integer polytope P, can define aprojective algebraic variety XP , a toric variety.

Leads to deep connections with toric geometry,including new formulas for i(P, n).

Lattice Points in Polytopes – p. 53

Page 76: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

IV. Complexity

Computing i(P, n), or even i(P, 1) is#P -complete. Thus an “efficient” (polynomialtime) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed dimP, ∃polynomial-time algorithm for computing i(P, n).

Lattice Points in Polytopes – p. 54

Page 77: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

IV. Complexity

Computing i(P, n), or even i(P, 1) is#P -complete. Thus an “efficient” (polynomialtime) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed dimP, ∃polynomial-time algorithm for computing i(P, n).

Lattice Points in Polytopes – p. 54

Page 78: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

V. Fractional lattice polytopes

Example. Let SM(n) denote the number ofsymmetric M × M matrices of nonnegativeintegers, every row and column sum n. Then

S3(n) =

{

18(2n

3 + 9n2 + 14n + 8), n even18(2n

3 + 9n2 + 14n + 7), n odd

=1

16(4n3 + 18n2 + 28n + 15 + (−1)n).

Why a different polynomial depending on nmodulo 2?

Lattice Points in Polytopes – p. 55

Page 79: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

V. Fractional lattice polytopes

Example. Let SM(n) denote the number ofsymmetric M × M matrices of nonnegativeintegers, every row and column sum n. Then

S3(n) =

{

18(2n

3 + 9n2 + 14n + 8), n even18(2n

3 + 9n2 + 14n + 7), n odd

=1

16(4n3 + 18n2 + 28n + 15 + (−1)n).

Why a different polynomial depending on nmodulo 2?

Lattice Points in Polytopes – p. 55

Page 80: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The symmetric Birkhoff polytope

TM : the polytope of all M × M symmetricdoubly-stochastic matrices.

Easy fact: SM(n) = #(

nTM ∩ ZM×M

)

Fact: vertices of TM have the form 12(P + P t),

where P is a permutation matrix.

Thus if v is a vertex of TM then 2v ∈ ZM×M .

Lattice Points in Polytopes – p. 56

Page 81: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The symmetric Birkhoff polytope

TM : the polytope of all M × M symmetricdoubly-stochastic matrices.

Easy fact: SM(n) = #(

nTM ∩ ZM×M

)

Fact: vertices of TM have the form 12(P + P t),

where P is a permutation matrix.

Thus if v is a vertex of TM then 2v ∈ ZM×M .

Lattice Points in Polytopes – p. 56

Page 82: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The symmetric Birkhoff polytope

TM : the polytope of all M × M symmetricdoubly-stochastic matrices.

Easy fact: SM(n) = #(

nTM ∩ ZM×M

)

Fact: vertices of TM have the form 12(P + P t),

where P is a permutation matrix.

Thus if v is a vertex of TM then 2v ∈ ZM×M .

Lattice Points in Polytopes – p. 56

Page 83: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

The symmetric Birkhoff polytope

TM : the polytope of all M × M symmetricdoubly-stochastic matrices.

Easy fact: SM(n) = #(

nTM ∩ ZM×M

)

Fact: vertices of TM have the form 12(P + P t),

where P is a permutation matrix.

Thus if v is a vertex of TM then 2v ∈ ZM×M .

Lattice Points in Polytopes – p. 56

Page 84: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

SM(n) in general

Theorem. There exist polynomials PM(n) andQM(n) for which

SM(n) = PM(n) + (−1)nQM(n), n ≥ 0.

Moreover, deg PM(n) =(

M2

)

.

Difficult result (W. Dahmen and C. A. Micchelli,1988):

deg QM(n) =

{

(

n−12

)

− 1, n odd(

n−22

)

− 1, n even.

Lattice Points in Polytopes – p. 57

Page 85: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

SM(n) in general

Theorem. There exist polynomials PM(n) andQM(n) for which

SM(n) = PM(n) + (−1)nQM(n), n ≥ 0.

Moreover, deg PM(n) =(

M2

)

.

Difficult result (W. Dahmen and C. A. Micchelli,1988):

deg QM(n) =

{

(

n−12

)

− 1, n odd(

n−22

)

− 1, n even.

Lattice Points in Polytopes – p. 57

Page 86: Lattice Points in Polytopes - MIT Mathematicsrstan/transparencies/lp-shanghai.pdf · Boundary and interior lattice points Lattice Points in Polytopes – p. 3. ... Birkhoff polytope

Lattice Points in Polytopes – p. 58