25
Laplace Transforms 1. Standard notation in dynamics and control (shorthand notation) 2. Converts mathematics to algebraic operations 3. Advantageous for block diagram analysis Chapter 3

Laplace Transforms

Embed Size (px)

DESCRIPTION

Laplace Transforms. 1 . Standard notation in dynamics and control (shorthand notation) 2. Converts mathematics to algebraic operations 3. Advantageous for block diagram analysis. Chapter 3. Laplace Transform. Example 1:. Chapter 3. Usually define f(0) = 0 (e.g., the error). - PowerPoint PPT Presentation

Citation preview

Page 1: Laplace Transforms

Laplace Transforms

1. Standard notation in dynamics and control (shorthand notation)

2. Converts mathematics to algebraic operations

3. Advantageous for block diagram analysis

Ch

apte

r 3

Page 2: Laplace Transforms

0

)( dtf (t)e=tf -stL

Laplace Transform

Example 1:Example 1:-

00

- - - -( ) ( )

00 0

-

0

( ) 0

1 1( ) -

( ) 0

st st

bt bt st b s t b s t

st

a a aa ae dt e

s s s

e e e dt e dt eb s s b

df dff e dt s (f) f( )

dt dt

L

L

L L L

Usually define f(0) = 0 (e.g., the error)

Ch

apte

r 3

Page 3: Laplace Transforms

?

00

00

0

where

2

2

2

=dt

fd

fsfsF= s

ffssF= s

ssΦ

dt

df φ

dt

dφ=

dt

fd

n

n

L

LL

Page 4: Laplace Transforms

22

22222

111

2

1

2cos

ωs

s=

ωs

jωs

ωs

jωs=

jωsjωs=

ee=t

tjt-j

LL

Note that

cos sin

cos sin

1

j t

jwt

e t j t

e t j t

j

Page 5: Laplace Transforms

2 2

sin2

j t j te et

j

s

L L

Page 6: Laplace Transforms

Unit Step Function:

0 0

1 0

1

tS t

t

S ts

L

Page 7: Laplace Transforms

Ch

apte

r 3

Difference of two step inputs S(t) – S(t-1)

Note that S(t-1) is the step starting at t = 1.

By Laplace transform

1( )

seF s

s s

Can be generalized to steps of different magnitudes(a1, a2).

Page 8: Laplace Transforms

Ch

apte

r 3

0

1 1( ) (1 )

h st hsF s e dt eh hs

Let h→0, f(t) = δ(t) (Dirac delta)

Page 9: Laplace Transforms

0

0 0

Impulse Function: t

11

1

1

lim

lim lim

hs

h

hs hs

h h

t ehs

e se

hs s

tL

Page 10: Laplace Transforms

Laplace transforms can be used in process control for:

1. Solution of differential equations (linear)

2. Analysis of linear control systems (frequency response)

3. Prediction of transient response for different inputs

Ch

apte

r 3

Page 11: Laplace Transforms

Ch

apte

r 3

Page 12: Laplace Transforms

Please see Table 3.1 in Text

Ch

apte

r 3

Page 13: Laplace Transforms

Example 3.1

Solve the ODE,

5 4 2 0 1 (3-26)dy

y ydt

First, take L of both sides of (3-26),

25 1 4sY s Y s

s

Rearrange,

5 2

(3-34)5 4

sY s

s s

Take L-1,

1 5 2

5 4

sy t

s s

L

From Table 3.1,

0.80.5 0.5 (3-37)ty t e

Ch

apte

r 3

Page 14: Laplace Transforms

Example 2:Example 2:

system at rest (s.s.)

Step 1 Take L.T. (note zero initial conditions)

00

0000

2461162

2

3

3

at t=dt

du

)=(y)=(y)=y(

udt

duy

dt

dy

dt

yd

dt

yd

3 26 11 6 ( ) 4 2s Y(s)+ s Y(s)+ sY(s) Y s = sU(s) + U(s)

Ch

apte

r 3

To find transient response for u(t) = unit step at t > 0

1. Take Laplace Transform (L.T.)2. Factor, use partial fraction decomposition3. Take inverse L.T.

Page 15: Laplace Transforms

Rearranging,

Step 2a. Factor denominator of Y(s)

Step 2b. Use partial fraction decomposition

Multiply by s, set s = 0

input) (1

1

6116

2423

stepunits

U(s)

ssss

s+Y(s)=

))(s+)(s+)=s(s+s++s+s(s 3216116 23

321321

24 4321

s

α

s

α

s

α

s

α

))(s+)(s+s(s+

s+

3

1

321

2

321321

24

1

0

4321

0

α

s

α

s

α

s

αsα

))(s+)(s+(s+

s+

ss

Ch

apte

r 3

Page 16: Laplace Transforms

For 2, multiply by (s+1), set s=-1 (same procedurefor 3, 4)

3

531 432 , α, αα

3

13

53

3

1 32

) y(tt

eeey(t)= ttt

Step 3. Take inverse of L.T.

You can use this method on any order of ODE, limited only by factoring of denominator polynomial(characteristic equation)

Must use modified procedure for repeated roots, imaginary roots

Ch

apte

r 3

)3

3/5

2

3

1

1

3

1(

ssssY(s)=

Page 17: Laplace Transforms

One other useful feature of the Laplace transform is that one can analyze the denominator of the transform to determine its dynamic behavior. For example, if

the denominator can be factored into (s+2)(s+1).Using the partial fraction technique

The step response of the process will have exponential terms e-2t and e-t, which indicates y(t) approaches zero. However, if

We know that the system is unstable and has a transient response involving e2t and e-t. e2t is unbounded for large time. We shall use this concept later in the analysis of feedback system stability.

23

12 ss

Y(s)=

1221

s

α

s

αY(s)=

))(s(sssY(s)=

21

1

2

12

Ch

apte

r 3

Page 18: Laplace Transforms

Properties of Laplace Transform

Page 19: Laplace Transforms

Linearity

where and are constants.

af t bg t

a f t g t

aF s bG s

a b

L

L +bL

Page 20: Laplace Transforms

Sifting Theorems

0 0

0 0

-

(a) Dead time

( )

(b) Multiplication by

t s t s

bt

bt

g t f t t S t t

g t e f t e F s

e

e f t F s b

L L

L

Page 21: Laplace Transforms

Final Value Theorem“offset”

Example 3: step responseExample 3: step response

offset (steady state error) is a.

sY(s))=y(s 0lim

aτs

a

τs

asY(s)

s

a

τsY(s)

s

1lim

1

1

1

0

Ch

apte

r 3

Page 22: Laplace Transforms

Initial Value Theorem

by initial value theorem

by final value theorem

sY(s)y(t)=st limlim

0

))(s+)(s+s(s+

s+=For Y(s)

321

24

00 )=y(

3

1)=y(C

hap

ter

3

Page 23: Laplace Transforms

Transform of Time Integration

0

t F sf d

s L

Page 24: Laplace Transforms

Differentiation of F(s)

1n

n nn

d F st f t

ds L

Page 25: Laplace Transforms

Integration of F(s)

s

f tF d

t

L