27
Council for Mineral Technology Presentation to Mintek 75 Technical Conference Landmarks in Minerals Biotechnology 04 June 2009 Petrus J. van Staden Manager, Biotechnology Division, Mintek.

Landmarks in Minerals Biotechnology - MINTEK · • Uranium heap bioleaching • Uranium agitated tank bioleaching • Nanoparticles produced by microbes • Surfactants (flotation

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Council for Mineral Technology

Presentation to Mintek 75 Technical ConferenceLandmarks in Minerals Biotechnology

04 June 2009

Petrus J. van StadenManager, Biotechnology Division, Mintek.

Colleagues:

• John Neale, • Mariekie Gericke, • Peter Craven

• Dr Tony Pinches

• Permission of Mintek.

Acknowledgements

Minerals Biotechnology

The utilization of the biochemical processes of micro organisms in

the exploitation of mineral resources

Minerals Biotechnology

40oC

1 atm

pH = 1

Redox = 650 mV (Ag/AgCl)

30 kg O2 / d / m3

DO = 1 ppm

O2 Utilisation 40%

Establishment of Minerals Metabolising Microbes

(What’s in it for the bugs ?)

Fe2+ + ¼ O2 + H3O+ è Fe3+ + 3/2H2O ΔG = -10.6 kcal/molΔH = -24.6 kcal/mol

S + 3/2 O2 + 3/2 H2O è SO42- + 2H3O+ ΔG = -120.7 kcal/mol

ΔH = -148.5 kcal/mol

Biominingmicroorganisms

Fe2+

Fe3+

SO42- + 2H+

S0

M2+

M2+

Metal sulfide ores (MFeS2) Biomining

microorganismsFe2+

Fe3+

SO42- + 2H+

S0

M2+

M2+

M2+

M2+

Metal sulfide ores (MFeS2)

What’s in it for the bugs?

• 1556: H2SO4 by pyrite heap bioleaching. (Georgius Agricola, De Re Metallica 1556, as per Andy Carter in Wardrop)

• 1680: Antoni van Leeuwenhoek discovers bacteria. (D. BARDELL, MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126)

• Pasteurization 1865 (Microsoft Encarta 98 Encyclopedia 1993-1997 Microsoft Corporation )

• 1890’s: Heaps of low-grade ore, left for one to three years for "natural" decomposition (Salkield L.U. (1987) A technical history of the Rio Tinto mines: …)“Spanish Climate”

Some Milestones (1)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Rio Tinto river

• 1556: H2SO4 by pyrite heap bioleaching. (Georgius Agricola, De Re Metallica 1556, as per Andy Carter in Wardrop)

• 1680: Antoni van Leeuwenhoek discovers bacteria. (D. BARDELL, MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126)

• Pasteurization 1865 (Microsoft Encarta 98 Encyclopedia 1993-1997 Microsoft Corporation )

• 1890’s: Heaps of low-grade ore, left for one to three years for "natural" decomposition (Salkield L.U. (1987) A technical history of the Rio Tinto mines: …)“Spanish Climate”

• 1895: Was shown that living matter could reduce sulfate to sulfide in sediments under anaerobic conditions. (Beijerinck, Bakteriol. Abt. 2, 1 (1895), 49-59 )

• 1947: Thiobacillus ferrooxidans was identified (Colmer A.R., Hinkle M.E. (1947). Science 106:253 - 256 ) (later reclassified as Acidithiobacillus )

• 1950's: Leach-dumps (Brierley, 2007)

• 1965: Discovery of the first iron- and sulfur oxidizing archaea (Brierley 2007)

Some Milestones (1)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Burning coal dump

Hot springs

Isolation of thermophiles

• 1556: H2SO4 by pyrite heap bioleaching. (Georgius Agricola, De Re Metallica 1556, as per Andy Carter in Wardrop)

• 1680: Antoni van Leeuwenhoek discovers bacteria. (D. BARDELL, MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126)

• Pasteurization 1865 (Microsoft Encarta 98 Encyclopedia 1993-1997 Microsoft Corporation )

• 1890’s: Heaps of low-grade ore, left for one to three years for "natural" decomposition (Salkield L.U. (1987) A technical history of the Rio Tinto mines: …)“Spanish Climate”

• 1895: Was shown that living matter could reduce sulfate to sulfide in sediments under anaerobic conditions. (Beijerinck, Bakteriol. Abt. 2, 1 (1895), 49-59 )

• 1947: Thiobacillus ferrooxidans was identified (Colmer A.R., Hinkle M.E. (1947). Science 106:253 - 256 ) (later reclassified as Acidithiobacillus )

• 1950's: Leach-dumps (Brierley, 2007)

• 1965: Discovery of the first iron- and sulfur oxidizing archaea (Brierley 2007)

• 1970’s and 1980’s: Uranium market decline• 1980: Lo Aguirre, first heap bioleaching plant (Raedett In Aus Biotech, 2001)

Some Milestones (1)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

• 1984: MINTEK 50

• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold (agitated tank) bioleach plant

Some Milestones (2)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Beaconsfield, Tasmania 1999

• 1984: MINTEK 50

• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)

• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development

• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

Some Milestones (3)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Kasese plant (Andy Carter, Wardrop)

• 1984: MINTEK 50

• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)

• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development

• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

• 1999: Beaconsfield refractory gold bioleach plant (Neale in J. SAIMM)

• 2001: Uranium price all-time low (Uranium 2005 Resources, Production and Demand)

• 2002: Peñoles, Mintek, BacTech Chalcopyrite concentrate bioleach pilot plant, Mexico

Some Milestones (3)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

COPPER BIOLEACHINGLARGE-SCALE PILOTING MEXICO: 2001-2

• 1984: MINTEK 50• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and

forced aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

• 1999: Beaconsfield refractory gold bioleach plant (Neale in J. SAIMM)

• 2001: Uranium price all-time low (Uranium 2005 Resources, Production and Demand)

• 2002: Peñoles, Mintek, BacTech Chalcopyrite concentrate bioleach pilot plant, Mexico,

• 2002: BHP Billiton / Alliance Copper commercial demonstration plant for copper-enargite concentrate by Alliance Copper, and

• 2002: GEOCOAT Thermophilic Bioleaching of Chalcopyrite Concentrates, Field Trials (Harvey, Holder. Alta 2002 Ni/Co Conference)

• 2006: High temperature heap bioleaching, transitional primary/secondary copper ore (Mintek)

Some Milestones (4)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

PILOT PLANT: 20,000-t HEAPS (x 7+)

• 1984: MINTEK 50• 1985: Experiments on in-situ uranium heap leaching using intermittent flooding and forced

aeration (Wadden and Gallant in Minerals Engineering, 1996).

• 1986: Fairview: first commercial refractory gold bioleach plant 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1987+: Paques anaerobic technologies for effluent treatment (ref 1895)

• 1993: Forced aeration on heap bioleach, Girilambone (Raedett, 2001)

• 1997 - 2000: BioNic® and BioZinc® development

• 1999: Kasese Co (from pyrite) bioleach plant, Uganda (Briggs & Millard, 1998)

• 1999: Beaconsfield refractory gold bioleach plant (Neale in J. SAIMM)

• 2001: Uranium price all-time low (Uranium 2005 Resources, Production and Demand)

• 2002: Peñoles, Mintek, BacTech Chalcopyrite concentrate bioleach pilot plant, Mexico,

• 2002: BHP Billiton / Alliance Copper commercial demonstration plant for copper-enargite concentrate by Alliance Copper, and

• 2002: GEOCOAT Thermophilic Bioleaching of Chalcopyrite Concentrates, Field Trials (Harvey, Holder. Alta 2002 Ni/Co Conference)

• 2006: High temperature heap bioleaching, transitional primary/secondary copper ore (Mintek)

• 2006/7: Uranium market recovery

Some Milestones (4)

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

• High temperature heap bioleaching

• High temperature tank bioleaching

– (identification techniques, inoculation of heaps)

• Adaptation to increasingly dirty and complex ores and concentrates

• Leaching of silicate-matrix minerals

• Uranium heap bioleaching

• Uranium agitated tank bioleaching

• Nano particles produced by microbes

Minerals Biotechnology Ahead

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

2 µm 1 µm

Gold nanoparticles and nanoplates

100 nm

• High temperature heap bioleaching

• High temperature tank bioleaching

– (identification techniques, inoculation of heaps)

• Adaptation to increasingly dirty and complex ores and concentrates

• Leaching of silicate-matrix minerals

• Uranium heap bioleaching

• Uranium agitated tank bioleaching

• Nano particles produced by microbes

• Surfactants (flotation reagents, flocculants)

Minerals Biotechnology Ahead

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

EPS

EPS-covered cells of L. ferrooxidans at/in pits on a pyrite surface (W. Sand)

Applications: Bioflotation

Bioflocculation

Biocorrosion

• High temperature heap bioleaching• High temperature tank bioleaching

– (identification techniques, inoculation of heaps)

• Adaptation to increasingly dirty and complex ores and concentrates• Leaching of silicate-matrix minerals• Uranium heap bioleaching• Uranium agitated tank bioleaching • Nano particles produced by microbes• Surfactants (flotation reagents, flocculants)• Organic acid leaching• Sulfate reduction in metals recovery and effluent disposal• Waste treatment (slags, ash, scrap)

• . . .

Minerals Biotechnology Ahead

http://wiki.biomine.skelleftea.se/wiki/index.php/History_of_biohydrometallurgy#_ref-20

Heading

www.mintek.co.za

Thank you