57
Prostate Cancer Radiotherapy: Image Guidance Patrick Kupelian, M.D. Professor and Vice Chair University of California Los Angeles Department of Radiation Oncology [email protected] February 2013

Kupelian 2nd talk prostate igrt hyderabad 2013 (kupelian)

Embed Size (px)

Citation preview

  • 1. Prostate Cancer Radiotherapy: Image Guidance Patrick Kupelian, M.D.Professor and Vice Chair University of California Los Angeles Department of Radiation [email protected] 2013

2. Prostate as a model for IGRTCLINICAL NEED:DOSE ESCALATION:Smaller margins are a necessity (with or without IMRT)HYPOFRACTIONATION:Increases the importance of individual treatment accuracyCHANGES DURING THERAPY DO OCCUR:Motion:SignificantDeformation: Minimal for the prostate gland SVs / LNs problematicNATURE OF CHANGE: MOSTLY RANDOM(Unlike anatomic changes due to tumor shrinkage, weight loss) 3. Image Guidance MethodsDifferent Guidance Methods Generate Different Types of Images 4. GUIDANCE TECHNIQUES Soft tissue imaging: Ultrasound CT Large Inter / Intra user variability Fiducial based:X-rays CT Electromagnetic 5. Implantation of metallic markers Prep:Antiobiotics day before, am and pmEnema day of insertion Insertion: Transrectal Ultrasound guidance(Biopsy probe) Needles: 18G needles Pattern: 3 markers (R base, L base, R apex) Time:5 minsShinohara et al.Technique for Implantation of FiducialMarkers in the Prostate.Urology 71, 196-200, 2008. 6. PROSTATE:MARKERPatients Markers Intermarker distanceSTABILITYnn variationDehnad et al. 9 19 SD: 0.5 mmPoggi et al.9 45Mean: 1.2 mmSD: 0.2 mmAubin et al.7 21Mean: 0.01 mmSD: 0.87 mmLitzenberg et al. 1030Range SD: 0.7 - 1.7 mmPouliot et al.1133Mean SD 1.3 mmRange SD: 0.44 - 3.04 mmKupelian et al. 56168 Mean: 1.01 mmSD: 1.03 mmRange SD: 0.3 - 4.2 mm 7. IMPLANTED FIDUCIALS MV X-rays kV X-rayskV Cone Beam CT Helical MV CT MV Cone Beam CT VISIBLE ON X-RAY BASED IMAGING SYSTEMS 8. ARE IMPLANTED FIDUCIAL REQUIRED?Megavoltage CT (MV CT)Cone Beam CT (CBCT) TransverseTransverse CB CTMV CTSagittalSagittalMV CT CB CT 9. Prostate alignment studyMVCT scans Radiation Therapist vs Physician Alignment methods:Marker Anatomy Contours 3 patients, 112 scansLangen et al., IJROBP, 62, pp 1517 10. Therapist vs Physician RegistrationDifferences 5 mmMarkerAnatomyContour A/P: 1 % A/P: 5 % A/P: 17 % S/I: 2 % S/I: 10 %S/I: 31 % Lat: 1 % Lat: 0 %Lat: 3 %Markers decrease interuser variabilityLangen et al., IJROBP, 62, 1517, 2005 11. Marker LocationShould be representative of relevant anatomy (prostate/rectum interface)Inadequate PlacementAdequate Placement(Anterior)(Posterior) 12. Interfraction MotionGeometry versus DosimetryDosimetric Impact of Motion 13. Interfraction Motion Need for Daily Imaging?74 patients, 2252 fractions, all IGRT with daily shifts.Replay different alignment strategies;Check residual errors vs actual daily shifts.Significant proportions of residual errors with any scenario.Example:Every other day imaging + apply running average;Residual errors > 3 mm in ~40% of fractionsResidual errors > 5 mm in ~25% of fractionsSignificant random component: Need daily imaging Kupelian et al., IJROBP, 70: 1146, 2008 14. Interfraction Motion CorrectionsClinical Impact 15. Interfraction Motion / Clinical ImpactChallenges to document clinical impact: Endpoints: Cure; Long timeline, few events Toxicity: Low number of significant events Dose escalationImplemented Decreasing marginssimultaneously Image Guidance Independent effect of image guidance?? 16. Image Guidance: Avoiding Systematic ErrorsIMPACT ON CLINICAL OUTCOMES: TUMOR CONTROLImpact of Rectal Distention at the Time of Initial PlanningMDACCDutch Trialde Crevoisier et al, IJROBP, 62, 965-973, 2004 Heemsbergen et al., IJROBP, 67, 14181424, 2007 17. NO IMPACT OF RECTAL DISTENTION ONRELAPSE FREE SURVIVAL IN PATIENTS TREATED WITH IMAGE GUIDANCECleveland Clinic Rectal volume at simulation Biochemical Relapse Free SurvivalN=4881 50 100 ccRectal volume.6on Planning CT .4Med FU: 60 mos .2p=0.18 00 12 24 36 48 6072 8496Time (months)Kupelian, IJROBP (70), 1146, 2008 18. TREATMENT MARGINS TOO SMALL:INCREASED FAILURES ??Engels, IJROBP, 74: 388-391, 2009 19. TREATMENT MARGINS TOO SMALL??N=2136 mm lateral, 10 mm otherwiseNo guidanceN=25 3 mm lateral, 5 mm otherwise Fiducial/GuidancebNED at 5 years (median follow-up 53 months): No guidance (large margins): 91% Guidance (small margins):58% p=0.02On multivariate analysis, biochemical failure predictors were; High Risk Group Low RT Dose Rectal Distention Guidance (small margins) Engels, IJROBP, 74: 388-391, 2009 20. CHHiP TrialLocalized Prostate Cancer; N=30261st randomization: Dose: 74 Gy at 2 Gy per fx vs 60 Gy at 3 Gy per fx2nd randomization: Image Guidance:Image Guidance vs no Image Guidance3rd randomization:Margins 21. INTRAFRACTION MOTION 22. Prostate Real Time Motion StudiesAdapted from Ghilezan, IJROBP, 62, 406417, 2005Author (year)ObsMethodSampling Motion (mm)Kupelian (2005)1157 Calypso 9-11 min >3 mm motion for >30 secs in 41% Continuous>5 mm motion for >30 secs in 15%Ghilezan (2005) 18Cine MRI 1hr q 6 sec Range S.D.: 0.7-1.7Mah (2002)42Cine MRI9 min q 20 s Range S.D.: 1.5-3.4Padhani (1999)55Cine MRI 7 min >5 mm motion in 29%Khoo (2002) 10MRI 6 min q 10 s Range S.D.: 0.9 -1.7Kitamura (2002) 50Fluoro 2 min Range S.D.: 0.1-0.5Dawson (2000) 4 Fluoro 1030 sec Range S.D.: 0.95.3Malone (2000) 40Fluoro q 20 s>4-mm motion AP 8% SI 23%Nederveen (2002) 251Fluoro23 minRange S.D.: 0.3-0.7Shimizu (2000)72Fluoro 9 min Median: AP 0.7, SI 0.9Vigneault (1997) 223EPID --No displacementHuang (2002)20US (2) 1520 min apart Range S.D.: 0.4 1.3 23. Intrafraction MotionElectromagnetic Tracking (Prostate)Calypso MicroposWirelessWirePermanent Removable 24. Kupelian, IJROBP, 67: 1088-1098, 2007HighContinuous TransientPersistent Frequency Drift Excursion StableExcursionExcursion Erratic 25. MONITORING INTRAFRACTION MOTION IN THE CLINIC Calypso, Electromagnetic trackingClinical protocol: 3 mm threshold Realignment only between beamsPatients N=29Fractions: N=963, mean= 33 /patientEvents:Mean Frequency Range(indiv pt)No motion >3 mm, no intervention 59% 10-100%Motion >3 mm, transient, no intervention 14% 0-42%Motion >3 mm, realignment between beams25% 0-85%MD disagree with therapist intervention1%0-8% (interuser variability)Kupelian 2009 26. Intrafraction Motion: Dosimetric Consequence FRACTIONATION, Cumulative doses, D95%MDACCO: N=16 patients, full course Prostate - No Delay Pat. 15 Pat. 2a n g e fr o m p D95 Pat. 3%P DosechChange, la n Pat. 40 Pat. 5 Pat. 6-5 Pat. 7 Pat. 8 Pat. 9 -10 e r ce n t Pat. 10 Pat. 11 Pat. 12 -15 Pat. 13 Pat. 14 -20 Pat. 15 05101520 25 3035Pat. 16 Fract ion number Langen, IJROBP, 2009 27. Intrafraction Motion: Dosimetric Consequence FRACTIONATION, Cumulative doses, D95% MDACCO: WORST CASE (WORST INTRAFRACTION MOTION) P rostate - Delay (Pat. 8) 5 Fractions 10P erc en t c h an g e from p la n % Dose Change, D95 5 0 -5- 10- 15Cumulativedaily- 20- 25 0 510 15202530 35Fraction numberLangen, IJROBP, 2009 28. INTRAFRACTION MOTION CLINICAL IMPACT 29. CORRECTION OFINTERFRACTION AND INTRAFRACTIONMOTIONCLINICAL IMPACTAIM STUDY 30. Intrafraction Monitoring Correction Clinical Impact?Assessing the Impact of Margin (AIM) Reduction Study Sandler, et al. Urology:75(5):1004-8, 2010Acute toxicity comparison (PreRTand End of treatment QOL scores):Group 1Group 2 (Historical control)Sanda et al., NEJM 2008 358(12) 1250-61EM tracking (Calypso)Guidance method, if any, not reported (2 mm threshold:Institutional normsrealigned in 57% of fx)3 mm post marginsVarying margins 5-10 mm81 Gy~ 75-80 GyN=64 patientsN=153 patientsIMRT, no hormonesIMRT, no hormones2008-20092003-2006 31. Intrafraction Monitoring Correction Clinical Impact?PreRT PostRT Difference (Post Pre)Benefit from smaller margins oron EPICDomainStudyMeanEPIC Mean EPIC95% CI Differencemotion management? DifferenceScoreScore AIM91.8 89.8 -1.9[-9.0, 5.1]Bowel / rectal NEJM94.4 78.5 -16.0[-19.4,-12.5]Control Urinary AIM84.5 80.6 -4.0 [-10.0, 2.1] irritation /obstruction NEJM86.6 70.1 -16.5 [-19.8, -13.3]Control Assessing the Impact of Margin (AIM) Reduction Study Sandler, et al. Urology:75(5):1004-8, 2010 32. Reducing anatomic variations: Intrarectal balloonImmobilization? Unclearvan Lin et al, IJROBP, 61, 278, 2005Court et al, RO, 81, 184, 2006Wang et al, RO, 84, 177, 2007Heijmink et al, IJROBP, 73, 1446, 2009Improve rectal dosimetry /Decrease late rectal bleedingPatel et al, RO, 67, 285, 2003Teh et al, Med Dosim, 30, 25, 2005van Lin et al, IJROBP, 67, 799, 2007 33. DAILY POSITIONAL VARIATIONBALLOON VERSUS PROSTATE GLANDDay 53214 34. BALLOON: INTRAFRACTION MOTION DURING PROSTATE SBRTTime = 0 mins +38 +28 +10 mins +18 +5 35. ENDORECTAL BALLOON: DECREASE IN INTRAFRACTION MOTION?Nijmegen + MDACC Orlando: Smeenk et al. ASTRO 2010. Electromagnetic tracks in 30 patients 1143 tracks available for analysis 15 patients without balloon 15 patients with balloon% 3D motion > 3 mm 20%No ERBBalloon decreases 15%but does not 10%eliminateERB5%intrafraction motion0%200500 1000Time (s) 36. Deformation / RotationsDosimetric Impact 37. Interfraction Anatomic Variations: Daily MVCTsAlignment on markersAlignment on mid gland prostate ProstateProstate Seminal VesiclesSeminal VesiclesCourtesy: Chester Ramsey 38. DOSIMETRIC IMPACT OF DEFORMATION DOSE RECALCULATIONPlan TreatmentCHECK ISODOSE LINESRECALCRECONTOUR:MANUAL OR DEFORMABLE REGISTRATIONCHECK DVHsDVH 39. DOSIMETRIC IMPACT OF INTERFRACTION DEFORMATION Legend Legend10 patientsRectumProstate D95Rectal volume @ 2 Gy (cc)70 Plan Plan2.3Mean Mean60 SD SDMargins: Fraction D95 (Gy) Max2.250 MinMaxMin6 mm2.1404 mm Posterior302.0201.9400 daily scans10Alignment on marker 1.8 01.7 12 3 45 6 7 8 9 10Recontours12 3 4 5 6 7 8 9 10 Patient PatientDose recalculationProstate: Adequate coverageRectum: Large variations in some patientsKupelian, IJROBP, 66, 876-82, 2006 40. DEFORMATION Challenge: Independent movement of prostate vs nodesJ. Pouliot, From Dose to Image to Dose: IGRT to DGRT, Panel on On-Board Imaging : Challenges and Future Directions,ASTRO 49th Annual Meeting in Los Angeles, Ca, Oct. 29, 2007.Xia et al., Comparison of three strategies in management of independentmovement of the prostate and pelvic lymph nodes. Med Phys. 2010Sep;37(9):5006-13. 41. Independent Motion of Prostate vs NodesSolution: Dont Treat Pelvic Lymph Nodes!RTOG 9413 RTOG 94-13. N=1323. 4 group randomization.No difference between Pelvis vs Prostate only RT Biochemical failure free survival (Phoenix definition) Whole Pelvis Prostate OnlyLawton et al , IJROBP, 69, 646-655, 2007 42. GETUG Trial: Prostate only versus Pelvic RT Pommier et al, JCO, 2007Low Risk High RiskProgression Free Survival 43. FUTURE: REAL TIME RADIOTHERAPYAdjustments at the time of delivery (similar to surgery) 44. Ultimate solution for deformations; Real-Time Radiotherapy Assessment and adjustments: Daily (all fractions) On-line Intra-fraction variations included Deformable registration software Dose accumulation (inter/intrafraction) Real-time adaptationX-rays / CT / PET / MRI 45. Real-Time Radiotherapy:Continuous soft-tissue imaging withautomated plannning / delivery In-room MRI / MRI guidanceViewRay system0.35 T on-board MRI 46. Pilot (Navigation) Scans 20 sec Pilot Scan 47. Automatically Identify & Locate Tissues 48. Predict Dose On Demand 49. Optimize On Demand 50. Track Tissues & Control Therapy 51. Physicians Workstation: Overall review and supervision 52. FUTURE: HYPOFRACTIONATION / SBRT BOOSTING OF INTRAPROSTATIC LESIONSINCORPORTATING SBRT IN HIGHER RISK CASESNORMAL TISSUE AVOIDANCE URETHRA RECTUM SUBSECTIONS / ANUS ERECTILE TISSUES SPHINCTERS 53. TECHNIQUESELECTIVE INTRAPROSTATIC BOOSTVSFOCAL THERAPY 54. CONCLUSIONSImage Guidance is necessary with dose escalation.Assessing the dosimetric impact of radiation deliverytechniques is important, particularly with hypofractionation.Systematic errors during delivery (e.g. rectal distention atsimulation) will introduce the most consequential errors.The dosimetric impact of motion will differ in various movingand deforming areas: e.g. tumor vs prostate vs SVs vs LNs.In the future, real time adjustments might be necessary fortight margin / large fraction treatments. 55. Prostate Cancer Radiotherapy: Image Guidance Patrick Kupelian, M.D.Professor and Vice Chair University of California Los Angeles Department of Radiation [email protected] 2013