120
1 1 INDONESIA ELECTRICITY SUPPLY CHALLENGES: TEN-YEAR ELECTRICITY DEVELOPMENT PLAN 2010-2019 Dosen : Ir.Syariffuddin Mahmudsyah,M.Eng. PT PLN (PERSERO)

Kuliah D3 PTE- Listrik Sel Surya

Embed Size (px)

DESCRIPTION

Materi Teknik Elektro

Citation preview

Page 1: Kuliah D3 PTE- Listrik Sel Surya

1 1

INDONESIA ELECTRICITY

SUPPLY CHALLENGES: TEN-YEAR ELECTRICITY DEVELOPMENT PLAN

2010-2019

Dosen : Ir.Syariffuddin Mahmudsyah,M.Eng.

PT PLN (PERSERO)

Page 2: Kuliah D3 PTE- Listrik Sel Surya

2 2

ELECTRICITY DEMAND FORECAST 2010-2019

1. The electricity demand growth estimated average 9.3% per

year (Jawa-Bali 8.97%, West Indonesia 10.2% and East

Indonesia 10.6%)

2. The electricity sales from year 2010 onwards is forecasted

by assuming an average economic growth of 6.2% and an

average population growth of 1.17%.

It is anticipated that the sales for those years would not be

constrained, as all of the power plants of the fast track

program would have been already in operation.

3. Electrification ratio increase from 65% in 2009 to 91% by

the end of 2019.

4. DSM program to shave and shift peak load has not been

taken into account.

Page 3: Kuliah D3 PTE- Listrik Sel Surya

3 3

JAVA-BALI SYSTEM

DEMAND FORECAST 2010-2019

IB : 10.2%

21 TWh

54 TWh

IT : 10,6%

11 TWh 28 TWh

JB : 8,97%

115 TWh

252 TWh

Electricity Demand growth average 9.3%/year

Page 4: Kuliah D3 PTE- Listrik Sel Surya

NAD 72,7%

Sumut 75,5%

Sumbar 67,6%

Riau + Kepri 44,7%

Babel 48,4%

Lampung 47,1%

Jabar+Banten 64,95%

Jateng+Yogya 70,2%

Sumsel+Jambi+Bengkulu 50,3%

Jatim 61,6%

Bali 76,2%

NTB 29,9%

NTT 21,7%

Kalbar 49,5%

Kalselteng 56,3%

Kaltim 53,9%

Sulutenggo 51,2%

Sulteng 47,64%

Sulselrabar 55,8%

Maluku 53,5%

Papua + Irjabar 27,8%

Category :

> 60 %

41 - 60 %

20 - 40 %

INDONESIA ELECTRICITY RATIO 2009 sekita63%

Page 5: Kuliah D3 PTE- Listrik Sel Surya

5 5

POLICY IN GENERATION EXPANSION PLANNING

1. Some ageing and inefficient oil-fired power plants are retired as

soon as more effcient plants are available.

2. Generation expansion planning is made on least-cost principle, by looking for generation configuration that have minimum system costs.

3. However, development of renewables (especially geothermal and some hydro) is encouraged, by treating these as fixed plants prior to optimisation process.

4. Loss of Load Probability (LOLP) of <1 day/year is used as

reliability criteria during planning process.

The reserve margin is restricted within 35-50% range based on net

dependable capacity. Rental power plants and excess power are

not taken into account.

Page 6: Kuliah D3 PTE- Listrik Sel Surya

6 6

5. Gas supply is assumed to be available for Java Bali system, yet for outside Java – Bali system gas-fired power plants are considered only if there is a definite gas supply. LNG receiving terminal is also considered as one option of gas supply.

6. Development of small scale coal-fired powerplants is used to substitute oil-fired powerplants for smaller systems, if there is no local primary energy resource available.

7. Coal-fired power plants with unit size of 1,000 MW supercritical would be introduced into the Java-Bali system.

8. PLN expects a bigger role from private sector in IPP development.

POLICY IN GENERATION EXPANSION PLANNING

Page 7: Kuliah D3 PTE- Listrik Sel Surya

7

1,054

3,553

5,141

1,479

3,178

1,440 1,738 1,681

3,425

4,699 5,248

117

413

1,258

2,896

2,763

3,329 2,282

3,461

2,238

936

890

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

IPP

PLN

Additional Capacity 53,219MW up to 2019

PLN Generation 32,636MW and IPP 20,583MW, Average 4800MW/year

GENERATION CAPACITY EXPANSION PLAN

Page 8: Kuliah D3 PTE- Listrik Sel Surya

8

Fast Track Program Phase 1 (Jawa)

1. PLTU 1 Jateng-Rembang, 2x315MW, Cons. Zelan+Tronoh+Priamanaya, Contract Signed

21March2007

2. PLTU 2 Banten-Labuan, 2x300MW, Cons. Chengda+Truba Jurong, Contract Signed

21March2007

3. PLTU 1 Jabar-Indramayu, 3x330MW, Cons. Sinomach+CNEEC+PT Penta Adi Samudra,

Contract Signed 21March2007

4. PLTU 2 Jatim-Paiton, 1x660MW, Cons. Harbin PE+Mitra Selaras+Hutama Energi, Contract

Signed 7August2007

5. PLTU 1 Banten-Suralaya, 1x625MW, Cons. CNTIC+Rekayasa Industri, Contract Signed

12March2007

6. PLTU 1 Jatim-Pacitan 2x315MW, Cons. Dongfang Electric+Dalle Energy, Contract Signed

7Augus2007

7. PLTU 2 Jabar-Pelabuhan Ratu, 3x350MW, Cons. Shanghai Electric+Maxima Infrastructure,

Contract Signed 7August2007

8. PLTU 3 Banten-Teluk Naga, 3x315MW, Cons. Dongfang Electric+Dalle Energy, Contract

Signed 7August2007

9. PLTU 3 Jatim-Tg. Awar Awar, 2x350MW, Sinomach+CNEEC+Penta Adi Samudra, Contract

Signed 25April2008

10. PLTU 2 Jateng-Adipala Cilacap, 1x660MW, Contract 22December2008, COD 2012

Page 9: Kuliah D3 PTE- Listrik Sel Surya

9

Fast Track Program Phase 1 (Outside Jawa)

1. PLTU 2 Sumut-Pangkalan Susu, 2x220MW, Cons. Guangdong+Nintec+Bagus Karya

2. PLTU Kepri-Tg. Balai Karimun, 2x7MW, Cons. Shangdong+Rekadaya Elektrika

3. PLTU NAD-Meulaboh, 2x110MW, Synohydro

4. PLTU 1 Riau-Bengkalis, 2x10MW, Cons. Guandong

Machinery+Modaco+Kelsri+Angkasa Buana

5. PLTU 2 Riau-Selat Panjang, 2x7MW, Bouwstead Maxitherm

6. PLTU Sumbar-Teluk Sirih, 2x212MW, Cons. CNTIC+Rekayasa Industri

7. PLTU Lampung-Tarahan Baru, 2x100MW, Jiangxi Electric Power Design Institute+Adhi

Karya

8. PLTU 3 Babel-Bangka Baru, 2x30MW, Cons. Truba,+China Shanghai Group

9. PLTU 4 Babel-Belitung 2x16,5MW, Cons. Shandong Machinery+Poeser Indonesia

10. PLTU 1 Kalbar-Parit Baru, 2x50MW, Cons. Bumi Rama Nusantara+Altons

11. PLTU 2 Kalbar-Bengkayang, 2x27,5MW, Cons. Guangdong Machinery+Wijaya Karya

12. PLTU Kalsel-Asam Asam, 2x65MW, Cons. Chengda+Wijaya Karya

13. PLTU 1 Kalteng, Pulang Pisau, 2x60MW

14. PLTU 1 NTB-Bima, 2x10MW, Guandong+Modaco Enersys+Angkasa Buana Cipta

15. PLTU 2 NTB-Lombok,2x25MW, Barata Indonesia

16. PLTU 1 NTT-Ende 2x7MW, Cons. Shandong Machinery+Rekadaya Elektrika

17. PLTU 2 NTT-Kupang, 2x16,5MW, Shandong Mavhinery+Poeser Indonesia

Page 10: Kuliah D3 PTE- Listrik Sel Surya

10

Fast Track Program Phase 1 (Outside Jawa)

18. PLTU Gorontalo, 2x25MW, Meta Epsi

19. PLTU 2 Sulut-Amurang, 2x25MW, Wijaya Karya

20. PLTU Sultra-Kendari, 2x10MW, Cons. Shangdong Machinery+Rekadaya Elektrika

21. PLTU Sulsel-Barru, 2x50MW, Cons. Hubei Hongyuan Engineering+Bagus Karya

22. PLTU Maluku Utara-Tidore, 2x7MW, Cons. Shandong Machinery+Rekadaya Elektrika

23. PLTU 3 Papua-Jayapura, 2x10MW, Cons. Modern Widya Technical+Boustead

Maxitherm

Page 11: Kuliah D3 PTE- Listrik Sel Surya

Fast Track Program Phase 2

• More geothermal projects will be developed, and large coal fired power plant in Java to be excluded from Fast Track Program Phase 2. In addition to that, Upper Cisokan Pumped Storage Project will be included in the program.

The composition of project will consist of: geothermal 48%, hydro 12%, gas combined cycle 14% and coal fired outside Java-Bali 26%.

The capacity of the projects will be as follows:

Java-Bali: geothermal 2,137 MW, hydro 1,000 MW and gas combined cycle 1,200 MW.

Outside Java-Bali: coal plant 2,616 MW, hydro 174 MW, geothermal 2,596 MW, and gas combined cycle 240 MW.

Total Indonesia: coal plant 2,616 MW, hydro 1,174 MW, geothermal 4,733 MW and gas combined cycle 1,440 MW, totalling 9,963 MW.

Page 12: Kuliah D3 PTE- Listrik Sel Surya

The second phase of fast track program will consist of 3,649 MW of PLN’s project and 6,314 MW of IPP project.

The 1,200 MW gas combined cycle in Java-Bali is Muara Tawar Add-On 2,3,4 project. This project is very strategic in that it will meet the future demand by the year 2011-2012, however the feasibility of the project will subject to gas supply availability.

The 1,000 MW hydro project in Java-Bali is Upper Cisokan Pumped Storage. This project is very strategic as it will serve as peaking unit to replace the role of oil fired plants.

Most geothermal projects will be IPP. To ensure the success of the projects within the time frame of the program (up to 2014), geothermal developers must take immediate project preparation and PLN must make immediate geothermal IPP procurement.

Fast Track Program Phase 2

Page 13: Kuliah D3 PTE- Listrik Sel Surya

Summary of Fast Track Program Phase 2

REGION Steam

Coal PP (MW)

Combined

Cycle PP (MW)

Geo PP (MW)

Hydro PP

(MW)

Total (MW)

JAVA-BALI - 1.200 2.137 1.000 4.337

OUTSIDE

JAVA-BALI 2.616 240 2.596 174 5.626

TOTAL 2.616

(26%)

1.440

(14%)

4.733

(48%)

1.174

(12%)

9.963

(100%)

Page 14: Kuliah D3 PTE- Listrik Sel Surya

SUMATERA • PLTA : 174 MW

• PLTP : 2285 MW

• PLTU : 1100 MW

• PLTGU : 120 MW

Map of Fast Track Program Phase 2

KALIMANTAN • PLTU : 840 MW

• PLTGU : 120 MW

SULAWESI • PLTP : 195 MW

• PLTU : 418 MW

MALUKU • PLTP : 40 MW

• PLTU : 44 MW

PAPUA • PLTU : 114 MW

NTT • PLTP : 46 MW

• PLTU : 30 MW

NTB • PLTP :30 MW

• PLTU :70 MW

JAMALI • PLTP : 2.137 MW

• PLTU : 0 MW

• PLTGU : 1.200 MW

• PLTA : 1.000 MW

TOTAL

• PLTA : 1174 MW

• PLTP : 4733 MW

• PLTU : 2616 MW

• PLTGU : 1440 MW

TOTAL : 9963 MW

Page 15: Kuliah D3 PTE- Listrik Sel Surya

Investment of Fast Track Program Phase 2

Capacity

(MW)

Investment

(Million USD)

Capacity

(MW)

Investment

(Million USD)

Steam Coal PP 380 549 2,236 3,231

Combined Cycle PP 1,440 1,210 - -

Geothermal PP 655 917 4,078 10,195

Hydro PP 1,174 1,148 - -

Total 3,649 3,824 6,314 13,426

PLN IPP

Plant

Page 16: Kuliah D3 PTE- Listrik Sel Surya

16 16

TRANSMISSION EXPANSION PLANNING

JAVA-BALI 2008-2018

KEBUTUHAN TRANSMISI JAWA-BALI 2008-2018

Satuan kms

TRANSMISI 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

500 kV AC 159 127 4 329 920 606 444 100 60 340 3,089

500 kV DC 350 350

150 kV 564 3,497 1,403 1,120 727 482 560 282 644 276 12 9,567

70 kV 14 80 10 22 126

TOTAL 578 3,735 1,541 1,146 1,056 1,402 1,166 726 1,094 336 352 13,132

KEBUTUHAN TRAFO JAWA-BALI 2008-2018

Satuan MVA

TRAFO 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

500/150 kV 1,666 4,666 3,000 2,000 1,000 4,000 3,500 3,000 6,000 1,000 29,832

150/70 kV 160 490 160 100 910

150/20 kV 1,820 4,800 7,920 4,036 3,570 3,480 3,330 3,690 5,370 5,160 1,980 45,156

70/20 kV 60 460 190 90 90 80 80 150 190 130 100 1,620

TOTAL 3,706 10,416 11,270 6,126 4,660 7,560 6,910 6,840 11,560 5,290 3,180 77,518

Page 17: Kuliah D3 PTE- Listrik Sel Surya

17

Project Name COD Financing Plan

Transmisi 275 kV Sumatera (Payakumbuh –

Padangsidempuan)

2012 Loan JICA

Transmisi 275 kV Rengat – Garuda Sakti

(220 km)

2014 unallocated

Transmisi Sumatera-Jawa ± 500 kV HVDC 2016 USD 2,3 milyar, Loan JICA

Jawa-Bali Crossing 500 kV HVAC 2015 USD 328 juta, akan

diusulkan ke ADB

Interkoneksi Kalbar-Serawak 275 kV HVAC 2012 USD 101 juta, akan

diusulkan ke ADB

Interkoneksi Sumatera-Malaysia ± 250 kV

HVDC

2015 USD 353 juta, akan

diusulkan ke ADB/JICA

Perkuatan Transmisi Sistem Jakarta dan Bali 2011

2012

USD 420 juta, KE

Perkuatan Transmisi Kota-Kota Besar di

Jawa

2012 USD 250 juta, IBRD

Transmisi 500 kV AC Tj Jati - Ungaran –

Pemalang – Mandirancan – Indramayu

(±500 km)

2015 USD 300 juta, unallocated

Page 18: Kuliah D3 PTE- Listrik Sel Surya

DISTRIBUTION EXPANSION PLAN

18

ADDIONAL DISTRIBUTION FACILITY UP TO 2019:

•MV : 181,000KMS 16,500 KMS/YEAR

•LV : 249,500KMS 22,700 KMS/YEAR

•DISTRIBUTION TRANSFORMER : 35,000 MVA 3,200 MVA/YEAR

•ADDITIONAL COSTUMER : 27,4 MILION 2,5 MIO/YEAR

Page 19: Kuliah D3 PTE- Listrik Sel Surya

PLN INVESTMENT

19

-

1,000.0

2,000.0

3,000.0

4,000.0

5,000.0

6,000.0

7,000.0

8,000.0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Juta USD INVESTMENT

PROJECTION UP TO

2019 : USD 64,7

BILLION, INCLUDING

INVESTMENT FOR

LIFE

EXTENSION/REFURBI

SHMENT EXISTING

GENERATION, SPARE

IBT

Column1 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Jumlah

Pembangkit 3,777.0 3,495.3 3,188.3 2,851.1 3,143.0 2,427.4 2,854.7 3,548.0 4,270.4 4,304.7 4,721.4 38,581.2

Transmisi 1,065.8 1,985.9 1,939.7 1,297.4 1,145.7 1,521.7 2,072.9 1,227.4 592.2 719.7 851.6 14,419.9

Distribusi 598.2 774.4 1,080.4 1,006.8 947.5 987.1 1,165.6 1,185.9 1,300.2 1,337.7 1,304.4 11,688.3

Total Investasi 5,441.0 6,255.6 6,208.4 5,155.3 5,236.1 4,936.1 6,093.3 5,961.3 6,162.8 6,362.1 6,877.4 64,689.4

Page 20: Kuliah D3 PTE- Listrik Sel Surya

PLN + IPP INVESTMENT

20

INVESTMENT

PROJECTION UP TO

2019 : USD 83,0

BILLION OR USD 7,6

BILLION PER YEAR,

INCLUDING

INVESTMENT FOR LIFE

EXTENSION/REFURBIS

MENT EXISTING

GENERATION, SPARE

IBT

-

1,000.0

2,000.0

3,000.0

4,000.0

5,000.0

6,000.0

7,000.0

8,000.0

9,000.0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Juta USD

Column1 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Jumlah

Pembangkit 4,858.0 5,100.2 5,099.0 5,369.2 5,810.6 5,061.4 4,901.0 5,194.7 5,483.1 5,026.0 4,987.8 56,891.0

Transmisi 1,065.8 1,985.9 1,939.7 1,297.4 1,145.7 1,521.7 2,072.9 1,227.4 592.2 719.7 851.6 14,419.9

Distribusi 598.2 774.4 1,080.4 1,006.8 947.5 987.1 1,165.6 1,185.9 1,300.2 1,337.7 1,304.4 11,688.3

Total Investasi 6,522.0 7,860.5 8,119.1 7,673.4 7,903.8 7,570.2 8,139.6 7,608.0 7,375.5 7,083.4 7,143.8 82,999.2

Page 21: Kuliah D3 PTE- Listrik Sel Surya

PLN PROJECT JAWA-BALI SYSTEM

21

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

PLN

On-going dan Committed Project

Muara Karang PLTGU 500 194

Muara Tawar Blok #5 PLTGU 234

Priok Extension PLTGU 500 243

Suralaya #8 PLTU 625

Labuan PLTU 300 300

Teluk Naga/Lontar PLTU 945

Pelabuhan Ratu PLTU 1,050

Indramayu PLTU 990

Rembang PLTU 630

Pacitan PLTU 630

Paiton Baru PLTU 660

Tj. Awar-awar PLTU 700

Cilacap Baru / Adipala PLTU 660

Sub Total On-going & Committed 800 3,399 3,359 243 - 1,360 - - - - -

Rencana

Upper Cisokan PS PLTA 500 500

Muara Tawar Add-On 2,3,4 PLTGU 150 700 350

Jawa Barat (LNG Terminal) PLTGU 1,500 750

PLTGU Baru PLTGU 1,500

PLTG Baru PLTG 400 600 800

PLTU Baru PLTU 1,000 1,000 3,000

Tangkuban Perahu 1 PLTP 110

Kamojang PLTP 60 40

Kesamben PLTA 37

Kalikonto-2 PLTA 62

Matenggeng PS PLTA 443 443

Grindulu PS PLTA 500 500

Sub Total Rencana - - 150 - 760 650 1,500 1,412 2,380 3,793 4,300

Total PLN 800 3,399 3,509 243 760 2,010 1,500 1,412 2,380 3,793 4,300

PROYEK

Page 22: Kuliah D3 PTE- Listrik Sel Surya

IPP PROJECT JAWA-BALI SYSTEM

22

2009 2010 2011 2012 2013 2014 2015 2016

IPP

On-going dan Committed Project

Kamojang #4 PLTP

Darajat #3 PLTP

Wayang Windu PLTP 110

Bekasi Power PLTGU 130

Cikarang Listrindo PLTGU 100 50

Cirebon PLTU 660

Paiton #3-4 Exp PLTU 815

Tanjung Jati B Exp PLTU 1,320

Celukan Bawang PLTU 130 250

Sub Total On-going & Committed 110 230 710 2,265 250 - - -

Rencana

Banten PLTU 660

Madura (1x400 MW) PLTU 400

Bali Timur PLTU 200

Sumatera Mulut Tambang PLTU 1,200

PLTU Jawa Tengah (Infrastruktur) PLTU 1,000 1,000

PLTP Percepatan Tahap 2 IPP PLTP - - - 175 365 785 445 250

Rajamandala PLTA 47

Jatigede PLTA 110

Sub Total Rencana - - - 175 565 1,942 1,845 2,110

Total IPP 110 230 710 2,440 815 1,942 1,845 2,110

Total Tambahan 910 3,629 4,219 2,683 1,575 3,952 3,345 3,522

TOTAL KAPASITAS SISTEM MW 22,796 26,030 30,209 32,816 34,391 38,343 41,688 45,210

RESERVE MARGIN % 29 34 41 39 33 36 35 35

PROYEK

Page 23: Kuliah D3 PTE- Listrik Sel Surya

23

For the next 10 years

• The average electricity demand would grow at 9.3%/year (Jawa-Bali 8.97%,

West Indonesia 10.2% and East Indonesia 10.6%)

• Total additional generation capacity for Indonesia is 53,219 MW, consists of

32,636 MW of PLN projects and 20,583 MW of IPP projects

• Development of renewable energy, especially geothermal, is encouraged,

by additional 5,006 MW by 2018

• Total additional transmission network would reach 44,257 kms for all

voltage levels, and total additional of transformers would be 103,000 MVA

for all voltage levels.

• Total additional distribution network is 175,013 kms for MV, 222,018 kms for

LV, 30,877 MVA for distribution transformers and 25 million new customer

connections.

SUMMARY

Page 24: Kuliah D3 PTE- Listrik Sel Surya

24

• Total investment needed for Gen + Trans + Dis is US$ 64,69 billion

(PLN only) or US$ 82,99 billion (PLN+IPP).

• Investment needed for PLN power plant projects alone is US$

38,581 billion, and for IPP projects is US$ 18,31 billion.

SUMMARY

Page 25: Kuliah D3 PTE- Listrik Sel Surya

25 25

Some strategic generation projects:

• CCGT Muara Tawar Add-on 2, 3, 4, 1,200 MW, commissioned in 2011-2012.

• Fast Track Generation Project 10,000 MW Phase 2 with total capacity of 11,355 MW year 2011-2014 (this figure might change due to recent government‟s will to promote more geothernal).

• Upper Cisokan Pumped Storage of 4x250 MW in 2014 (WB)

• CFPP Jawa Tengah Infrastruktur (IFC) 2x1,000 MW in 2014-2015.

• CFPP mine mouth in Sumatera 6x600 MW in 2016-2017 (transferred to Java Bali system)

• CCGT LNG Bojanegara 3x750 MW in 2015-2017.

SUMMARY

Page 26: Kuliah D3 PTE- Listrik Sel Surya

26 26

Some strategic transmission projects:

• HVDC transmission between Sumatera and Java in 2016.

• Sub-sea 150 kV Java-Bali circuit 3,4, 2010

• Batam – Bintan interconnected system using sub-sea 150 kV, 2010

• 275 kV transmission connecting West Kalimantan – Serawak in

2011

• 500 kV Java-Bali Crossing from Paiton to Kapal/near Denpasar in

2015

SUMMARY

Page 27: Kuliah D3 PTE- Listrik Sel Surya

SISTEM TENAGA LISTRIK

• Sistem tenaga listrik pada awal abad ke 20

secara dramatik semakin bertumbuh dan

memiliki korelasi yang penting dengan industri.

Tidak lama kemudian, peralatan-peralatan

penting seperti mesin-mesin listrik, sistem

peralatan kesehatan, dan sarana perlengkapan

hiburan modern mulai memberikan keuntungan

secara signifikan, sehingga biaya untuk

menghasilkan tenaga listrik tidak lagi mahal

bahkan cenderung menurun secara perlahan

Page 28: Kuliah D3 PTE- Listrik Sel Surya

Pusat-pusat Pembangkit Listrik (1)

Page 29: Kuliah D3 PTE- Listrik Sel Surya

MW

Social + Public

Bisnis

Industry

Total tanpa Rumah Tangga

POLA KONSUMSI

0 2 4 6 8 10 12 14 16 18 20 22 24

Waktu WBP

Rumah Tangga

Total termasuk Rumah Tangga

Waktu

22 18 24 06 12

POLA PRODUKSI

00

WBP

COAL (42%)

GAS (19%)

GEO (5%)

Daya Mampu Pembangkit

MW

Rp/kWh

158-259

180-452

178-541

MFO (7%)

HSD (17%)

Hydro (7%)

1650-2475

5-18

ROR (2%) 5-18

INDUSTRI

BISNIS BISNIS

GARDU

STEP-UP

GARDU

STEP DOWN

RUMAH

SOSIAL/

PUBLIK

PLTA

PLTD

PLTP

PLTG

PLTU

PLTGU

TRAFO

STEP DOWN

Bagaimana listrik dialirkan

Page 30: Kuliah D3 PTE- Listrik Sel Surya

INDUSTRI

BISNIS

SISTEM PEMBANGKIT

GARDU

STEP-UP

SISTEM TRANSMISI SISTEM DISTRIBUSI

GARDU

STEP DOWN

RUMAH

SOSIAL/

PUBLIK

PLTA

PLTD

PLTP

PLTG

PLTU

PLTGU

KONSUMEN

TRAFO

STEP DOWN

Page 31: Kuliah D3 PTE- Listrik Sel Surya

PT PLN (PERSERO) PT PLN (PERSERO)

DISTRIBUSI JAWA TIMURDISTRIBUSI JAWA TIMUR

AREA PELAYANAN & JARINGAN BANYUWANGIAREA PELAYANAN & JARINGAN BANYUWANGI

Saluran Udara Tegangan

Extra Tinggi (SUTET)

Saluran Udara Tegangan

Tinggi (STET)

150 kV / 500 kV

500 kV / 150 kV150 kV / 20 kV

20 kV / 220 V

Generation GI SUTET 150/500 kV. SUTET 500 kV. GI SUTET 500/150 kV. Transmisi 150 kV. GI 150 / 20 KV. Distribusi 20 kV. Trafo Distribusi 20 kV/220 V Jaringan teg 220 V

Page 32: Kuliah D3 PTE- Listrik Sel Surya

Peranan Transformator dalam Sistem Tenaga

Transformator adalah suatu peralatan

statis yang terdiri dari beberapa koil,

yang dikopel melalui suatu rangkaian

magnetik, yang menghubungkan dua

level tegangan yang berbeda (secara

umum) dalam suatu sistem elektrik

yang memungkinkan pertukaran energi

diantara terminal-terminal dalam suatu

arah melalui medan magnetik.

Page 33: Kuliah D3 PTE- Listrik Sel Surya

Definisi Keandalan

Keandalan adalah suatu probabilitas kemampuan suatu peralatan atau sistem untuk dapat berfungsi sesuai dengan fungsi yang diinginkan selama jangka waktu yang ditetapkan[1].

Keandalan dari setiap peralatan atau sistem, tidaklah sama karena hal ini bergantung dari periode waktu dan fungsi yang ditetapkan. Dengan demikian keandalan dapat digunakan untuk membandingkan dan memprediksi kontinuitas kerja dan ketahanan kerja dari suatu peralatan atau sistem dengan peralatan atau sistem yang lain.

Sistem adalah gabungan dari peralatan-peralatan yang disusun menurut pola tertentu dan secara komprehensif peralatan tersebut memiliki satu tujuan tertentu dimana keandalan dari suatu sistem distribusi ditentukan oleh keandalan dari masing-masing peralatan-peralatan yang membentuk suatu sistem.

Sedangkan yang dimaksud dengan analisa keandalan dari suatu sistem atau peralatan adalah suatu analisa dari kemampuan dan kontinuitas suatu sistem/peralatan untuk berfungsi sesuai dengan waktu yang ditetapkan.

[1] IEEE, 2007. IEEE Recommended Practice for The Design of Reliable Industrial and Commercial Power System. p.8,13

Page 34: Kuliah D3 PTE- Listrik Sel Surya

Adapun konsep evaluasi

kegagalan meliputi : 1) Kegagalan

Kegagalan adalah suatu kondisi ketidakmampuan suatu peralatan untuk melaksanakan suatu fungsi yang diperlukan.

2) Penyebab Kegagalan

Banyak faktor yang menyebabkan suatu peralatan mengalami kegagalan, antara lain : Faktor alam, faktor manusia dan faktor dari peralatan tersebut. Keadaan lingkungan selama disain, pembuatan maupun operasional akan menuntun kepada kegagalan.

3) Mode Kegagalan

Pada saat terjadi suatu kegagalan maka suatu peralatan yang mengalami kegagalan akan mengintervensi peralatan lain. Mode kegagalan adalah proses pengamatan dan pengevaluasian efek berantai dari suatu kegagalan peralatan.

4) Mekanisme Kegagalan

Pada saat terjadi suatu kegagalan pada suau peralatan, pasti ada penyebab-penyebabnya. Pada mekanisme kegagalan ini akan dievaluasi penyebab-penyebab kegegagalan beserta kronologis terjadinya suatu kegagalan

Page 35: Kuliah D3 PTE- Listrik Sel Surya

Sistem Operasi Jaringan

Distribusi

Sistem distribusi merupakan bagian dari sistem tenaga listrik secara keseluruhan,

sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya

besar (Bulk Power Source) sampai ke konsumen.

Page 36: Kuliah D3 PTE- Listrik Sel Surya
Page 37: Kuliah D3 PTE- Listrik Sel Surya

Pada umumnya sistem distribusi tenaga listrik di

Indonesia terdiri atas beberapa bagian, sebagai berikut

• Gardu Induk Distribusi (Distribution Substation): Merupakan gardu yang bertugas membagi dalam beberapa penyulang (feeder) dari 150kV menjadi 20kV.

• Distribusi Primer : Dari keluaran (outgoing) penyulang, tenaga listrik disalurkan melalui distribusi primer dengan tegangan sebesar 20kV/6kV menuju ke pusat – pusat beban melalui SUTM (Saluran Udara Tegangan Menegah) dan SKTM (Saluran Kabel Tegangan Menengah).

• Distribusi Sekunder : Terdiri dari dua jenis, yaitu Saluran Udara Tegangan Rendah (SUTR) dan Saluran Kabel Tegangan Rendah (SKTR), tegangan yang berada pada saluran ini dari distribusi primer melalui transformator distribusi menjadi 380/220 V.

Page 38: Kuliah D3 PTE- Listrik Sel Surya

SAIFI (System Average

Interruption Frequency Index)

• SAIFI adalah indeks keandalan dari hasil

pengukuran frekuensi gangguan sistem

rata-rata tiap tahun. Berisi informasi

tentang frekuensi gangguan permanent

rata-rata tiap konsumen dalam suatu area

yang dievaluasi.

Jumlah Total Konsumen TergangguSAIFI =

Jumlah Total Konsumen Yang Terlayani

Page 39: Kuliah D3 PTE- Listrik Sel Surya

SAIDI (System Average

Interruption Duration Index)

• SAIDI adalah indeks keandalan hasil

pengukuran durasi gangguan sistem rata-

rata tiap tahun. Indeks ini berisi tentang

frekuensi gangguan permanent rata-rata

tiap konsumen dalam suatu area yang

dievaluasi.

Jumlah Total Durasi Gangguan Konsumen

SAIDI=Jumlah Total Konsumen Yang Dilayani

Page 40: Kuliah D3 PTE- Listrik Sel Surya

MAIFI (Momentary Average

Interruption Frequency Index)

MAIFI adalah indeks keandalan hasil

pengukuran dari durasi waktu gangguan

sementara sistem rata-rata tiap tahun

Indeks ini berisi tentang frekuensi

gangguan sementara rata-rata tiap konsu

men dalam suatu wilayah yang dievaluasi

Jumlah Konsumen Mengalami Pemadaman SementaraMAIFI=

Jumlah Total Konsumen Yang Dilayani

Page 41: Kuliah D3 PTE- Listrik Sel Surya

CAIDI (Customer Average

Interruption Duration Index)

CAIDI adalah indeks keandalan hasil

pengukuran dari durasi gangguan

konsumen rata-rata tiap tahun. Indeks ini

berisi tentang waktu rata-rata untuk penor

malan kembali gangguan tiap-tiap

konsumen dalam satu tahun.

Jumlah Total Durasi Gangguan KonsumenCAIDI=

Jumlah Total Konsumen Terganggu

Page 42: Kuliah D3 PTE- Listrik Sel Surya

Reliability Index Assesment

(RIA) • RIA (Reliability Index

Assessment) adalah suatu teknik standar untuk menganalisa indeks keandalan pada sistem secara sistematis. Gangguan/kegagalan komponen secara komprehensif dan sistematis dianalisa dan dicari mode kegagalannya. Selanjutnya setiap mode kegagalan yang sudah dianalisa, didaftarkan pada RIA worksheet.

Reliability

Index

Assessment

Topologi Sistem

Laju Kegagalan

Peralatan

Repair Time

Switching Time

SAIFI

SAIDI

MAIFI

Mekanisme Pengaman

Pemulihan Sistem

Page 43: Kuliah D3 PTE- Listrik Sel Surya

Gardu Induk Pada Sistem

Distribusi

Gardu Induk adalah suatu sistem instalasi, terdiri dari peralatan listrik yang berfungsi untuk :

• Transformasi tenaga listrik tegangan tinggi yang satu ke tegangan tinggi yang lainnya atau ke tegangan menengah.

• Pengukuran, pengawasan operasi serta pengaturan pengamanan dari sistem tenaga listrik.

• Pengaturan daya ke gardu-gardu induk lain melalui tegangan tinggi dan gardu-gardu distribusi melalui feeder tegangan menengah.

Page 44: Kuliah D3 PTE- Listrik Sel Surya

Gardu Listrik dapat dibagi menjadi dua

• Menurut lokasi dan peranannya.

1. Gardu Induk.

• Adalah gardu listrik yang mendapat daya dari saluran transmisi atau sub transmisi suatu sistem tenaga listrik berasal dari pembangkit-pembangkit listrik, untuk kemudian menyalurkannya ke daerah beban (industri, kota, konsumen pribadi, dll) melalui saluran distribusi primer.

2. Gardu Distribusi. • Adalah gardu yang mendapat daya dari saluran distribusi primer

yang menyalurkan tenaga listrik ke pemakaian dengan tegangan menengah.

• Menurut penempatan peralatannya. – Gardu Induk Pasangan Dalam (Gas Insulated Switchgear)

• Gardu induk dimana semua peralatannya (CT, PMT, PMS, busbar, panel kontrol) di pasang di dalam gedung (kompartemen).

Page 45: Kuliah D3 PTE- Listrik Sel Surya

Adapun keuntungan dari kontruksi GIS adalah :

• Membutuhkan lahan yang sempit dibandingkan dengan kontruksi gardu induk konvensionalgardu induk konvensional

• Perawatan yang lebih mudah

• Peralatannya lebih sederhana.

• Lebih aman, karena semua peralatan berada dalam enclosure yang tertutup.

Adapun kerugian dari kontruksi GIS adalah : Pembangunannya membutuhkan biaya yang lebih mahal jika dibandingkan konvensional. Oleh karena itu pembangunan gardu induk menggunakan kontruksi GIS atau konvensional disesuaikan dengan dana dan luas lahan yang diperlukan.

•Gardu Induk pasangan luar.

• Gardu induk dimana semua peralatannya (LA, CT, PT, Cable Head) di tempatkan di udara terbuka.

Page 46: Kuliah D3 PTE- Listrik Sel Surya

Sisi Tegangan Tinggi

– Transformator Daya

– Pemutus Tenaga (CB)

– Saklar Pemisah (DS)

– Pengubah transformator Berbeban

– Transformator Arus (CT)

– Transformator Tegangan (PT)

Sisi Tegangan Menengah

– Pemutus Tenaga trafo (incoming circuit Breaker)

– Pemutus Tenaga Kabel (outgoing Circuit Breaker)

– Trafo Arus (CT)

– Trafo Tegangan (PT)

– Peralatan Kontrol

• Panel Kontrol

• Panel Relay

• Meter-meter pengukuran

Peralatan dan fasilitas penting yang menunjang untuk kepentingan

pengaturan distribusi tenaga listrik yang ada di Gardu Induk

Page 47: Kuliah D3 PTE- Listrik Sel Surya

PEMBANGKIT

BEBAN

Sistem DISTRIBUSI RADIAL dibagi empat :

Page 48: Kuliah D3 PTE- Listrik Sel Surya

SUMBER

PEMBAGKIT

MAIN FEEDER LATERAL

FEEDER

LATERAL FUSE

KE PUSAT – PUSAT BEBAN

DISTRIBUTION

TRANSFORMER

Page 49: Kuliah D3 PTE- Listrik Sel Surya

AREA BEBAN

- 1 TIE

SWITCH

SECTIONALIZ

ER DS

AREA BEBAN

- 2

SUMBER

AREA BEBAN

- 3

KE PUSAT

BEBAN

3 Φ3 Φ3 Φ

Page 50: Kuliah D3 PTE- Listrik Sel Surya

LOAD

CENTRE

BACK

FEEDER

SALURAN

DISTRIBUSI

PRIMER

SALURAN

DISTRIBUSI

SEKUNDER

BEBAN

KONSUMEN

BACK

FEEDER

EXPRES

FEEDER

SUMBER

Page 51: Kuliah D3 PTE- Listrik Sel Surya

SUMBER 3Φ

1Φ 1Φ

AREA FASA R

AREA FASA S

LATERAL

FEEDER

AREA

FASA T

KE PUSAT-

PUSAT

BEBAN

d) SISTEM

DISTRIBUSI

RADIAL

DAERAH

FASA

Page 52: Kuliah D3 PTE- Listrik Sel Surya

Terdapat beberapa macam bentuk jaringan

distribusi. Namun jaringan distribusi sebagian

besar berbentuk radial (baik jaringan distribusi

primer maupun sekunder).

Keuntungan dari jaringan distribusi radial:

Mudah untuk mengamankan arus

gangguan yang

terjadi.

Sangat kecil kemungkinan untuk terjadi

arus

gangguan pada hampir keseluruhan

jaringan.

Mudah untuk mengontrol tegangan.

Mudah untuk memprediksi dan

mengontrol aliran

daya pada jaringan.

Biaya investasi yang murah

Page 53: Kuliah D3 PTE- Listrik Sel Surya

Berikut ini adalah gambar jaringan distribusi primer

yang sering digunakan pada tipe radial

Page 54: Kuliah D3 PTE- Listrik Sel Surya

Sistem Ring (Loop)

• Bentuk jaringan dari sistem ring (Loop)

merupakan rangkaian tertutup dan seperti cincin

(Ring). Dengan menggunakan sistem ini, beban

bisa disuplai dari dua penyulang jika salah satu

saluran terjadi gangguan. Sehingga kontinuitas

penyaluran tenaga listrik lebih baik dari sistem

radial dan panjang jaringan yang ditanggung

oleh dua penyulang tersebut bisa lebih pendek,

sehingga voltage drop-nya semakin kecil.

Page 55: Kuliah D3 PTE- Listrik Sel Surya

Sistim RING (LOOP) ini terdiri

atas dua jenis, yaitu :

a) Sistem Open Loop.

• Pada tipe ini, dilengkapi dengan sakelar

yang Normaly Open (NO) diantara

saluran penyulang yang satu dengan

saluran penyulang lainnya.

b) Sistem Close Loop.

• Pada tipe ini, dilengkapi dengan sakelar

yang Normaly Closed (NC).

Page 56: Kuliah D3 PTE- Listrik Sel Surya

SUMBER

MAIN FEEDER

LATERAL

MAIN FEEDER

LATERAL

SECTIONALIZ

ER DS

LOOP TIE DS

SISTEM RING (LOOP)

Page 57: Kuliah D3 PTE- Listrik Sel Surya

Sistem Jaring (Mesh)

• Sistem ini menyediakan banyak pilihan saluran dan sumber. Jadi tidak hanya salurannya yang lebih dari satu tetapi sumbernya juga lebih dari satu. Tipe ini lebih baik daripada radial maupun loop. Spesifikasi tipe ini adalah :

• a. Kontinuitas penyaluran daya paling terjamin.

• b. Kualitas tegangan baik, dan rugi daya pada saluran amat kecil.

• Dibanding dengan bentuk / tipe yang lain, paling fleksibel dalam melayani perkembangan dan pertumbuhan beban.

• Memerlukan biaya investasi yang mahal. Jadi tipe ini lebih banyak diterapkan pada jaringan transmisi (SUTT dan SUTET).

Page 58: Kuliah D3 PTE- Listrik Sel Surya

SALURAN

DISTRIBUSI

PRIMER

SALURAN

TRANSMISI

SUMBER A

SUMBER B

SUMBER C

SALURAN

DISTRIBUSI

SEKUNDER

SUMBER D

SISTEM JARING (MESH)

Page 59: Kuliah D3 PTE- Listrik Sel Surya

Yang menjadi ciri khas dari sistem spindle adalah saluran

cadangan (express) dimana pada kondisi normal tidak

dibebani namun bertegangan dan adanya gardu hubung

yang merupakan titik pertemuan dari semua penyulang

primer, yang berisi rel daya sejumlah saklar yang

menghubungkan masing-masing penyulang utama ke rel

tersebut. Di sepanjang saluran juga terdapat Load Break

Switch (LBS) yang berguna untuk keperluan manuver bila

ada gangguan pada saluran kerja (working feeder).

Jika terjadi gangguan pada salah satu penyulang yang

terletak diantara dua gardu maka setelah gangguan

dilokalisir, pelayanan dapat dipulihkan dengan satu bagian

mendapatkan saya langsung dari GI sedangkan bagian yang

lain mendapatkan daya dari GI yang sama setelah melalui

penyulang express dan gardu hubung.

SISTEM SPINDLE

Page 60: Kuliah D3 PTE- Listrik Sel Surya

Keuntungan pada sistem spindel adalah : Memiliki kontinuitas penyaluran daya terjamin.

Kualitas tegangan baik karena rugi daya pada

saluran paling kecil.

Memudahkan dalam mencari lokasi gangguan.

Memperkecil jumlah pelangggan yang padam

Sedangkan kelemahan pada sistem ini

adalah : Biaya investasi yang besar.

Perlu tenaga trampil dalam pengoperasian.

Perlu koordinasi perencanaan yang teliti dan

rumit.

Page 61: Kuliah D3 PTE- Listrik Sel Surya

SALURAN UDARA SALURAN KABELBAWAH TANAH

Page 62: Kuliah D3 PTE- Listrik Sel Surya

Evaluasi Keuntungan dari Saluran Udara dan Saluran

Bawah Tanah

Saluran Udara Saluran Bawah Tanah

Biaya : Sangat menguntungkan.

Secara keseluruhan, biaya sangat

rendah

Estetika : Sangat menguntungkan,

hampir tidak ada bagian yang keluar

secara visual

Umur Teknis : Cukup lama, sekitar

30-50 tahun, sedangkan saluran

bawah tanah memiliki umur teknis

sekitar 20-40 tahun.

Keamanan :Sangat aman dari

masyarakat , karena masyarakat

hampir tidak pernah melihat secara

visual pada permukaan tanah.

Keandalan : Pada saat terjadi

gangguan, durasi waktu gangguan

cukup pendek karena gangguan

mudah ditemukan dan dapat

diperbaiki dengan cepat

Keandalan : Secara signifikan

memiliki sedikit gangguan, tetapi

durasi waktu gangguan cukup

panjang karena gangguan cukup

sulit untuk ditemukan dan waktu

perbaikannya pun cukup lama

Pembebanan : Dapat diberikan

pembebanan overload

Operasional dan perbaikan : Biaya

perawatan cukup kecil

Page 63: Kuliah D3 PTE- Listrik Sel Surya

Sistem Pengaman pada Sistem

Jaringan Distribusi

Agar suatu sistem distribusi dapat berfungsi dengan secara baik,

gangguan-gangguan yang terjadi pada tiap bagian harus dapat

dideteksi dan dipisahkan dari sistem lainnya dalam waktu yang

secepatnya, bahkan kalau dapat, mungkin pada awal terjadinya

gangguan. Keberhasilan berfungsinya proteksi memerlukan adanya

suatu koordinasi antara berbagai alat proteksi yang dipakai.

Adapun fungsi sistem pengaman adalah :

Melokalisir gangguan untuk membebaskan perlatan dari gangguan.

Membebaskan bagian yang tidak bekerja normal, untuk mencegah

kerusakan.

Memberi petunjuk atau indikasi atas lokasi serta macam dari

kegagalan

Untuk dapat memberikan pelayanan listrik dengan keandalan yang

tinggi kepada konsumen.

Untuk mengamankan keselamatan manusia terutama terhadap

bahaya yang ditimbulkan listrik.

Page 64: Kuliah D3 PTE- Listrik Sel Surya

Dalam usaha menjaga kontinuitas pelayanan

tenaga listrik dan menjaga agar peralatan pada

jaringan primer 20 kV tidak mengalami

kerusakan total akibat gangguan, maka

mutlak diperlukan peralatan pengaman.

Adapun peralatan pengaman yang digunakan

pada jaringan tegangan menengah 20 kV

terbagi menjadi :

1)Peralatan pemisah atau penghubung

2)Peralatan pengaman arus lebih

3)Peralatan pengaman tegangan lebih.

Page 65: Kuliah D3 PTE- Listrik Sel Surya

Peralatan Pemisah atau

Penghubung • Fungsi dari pemutus beban atau pemutus daya

(PMT) adalah untuk mempermudah dalam

membuka dan menutup suatu saluran yang

menghubungkan sumber dengan beban baik dalam keadaan normal maupun dalam keadaan

gangguan.

Jenis pemutus yang digunakan pada gardu adalah :

• Circuit Breaker (Pemutus Tenaga)

• Disconnecting Switch (DS)

Sedangkan pemutus pada jaringan adalah :

• Load Break Switch (LBS)

• Sectionalizer / Automatic Vacum Switch (AVS)

Page 66: Kuliah D3 PTE- Listrik Sel Surya

Jenis Circuit Breaker yang dipakai

pada sistem distribusi adalah :

• Air Break Circuit Breaker

• Oil Circuit Breaker

• Minimum Oil Circuit Breaker

• Air Blast Circuit Breaker

• Sulphur Hexafluoride (SF6) Circuit

Breaker

• Vacuum Circuit Breaker

Page 67: Kuliah D3 PTE- Listrik Sel Surya

Photovoltaics versus

Concentrated Solar Power

Dr. Martin Stickel

ICCI

International Energy and Environment Fair and Conference

Isanbul, 14th May 2010

Page 68: Kuliah D3 PTE- Listrik Sel Surya

68 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Agenda

Fichtner GmbH & Co. KG

Photovoltaics and Concentrated Solar Power

Financial Results depending on Plant Location

Summary

Page 69: Kuliah D3 PTE- Listrik Sel Surya

69 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

The Fichtner Group

Established in 1922 – still a family-owned concern

Germany‟s biggest independent engineering and

consultancy enterprise

More than 1700 employees worldwide – 450 in our Home Office

Project experience in 150 countries

Over 1200 ongoing projects – around 650 in our Home Office

Active on behalf of:

• enterprises in the central services and utilities sector

• energy-intensive industries

• international development and commercial banks

• government and communal institutions and authorities

Total turnover of 179 million € in 2008 – 67% international

turnover 69

Page 70: Kuliah D3 PTE- Listrik Sel Surya

70 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

FICHTNER – Independent Engineering and

Consulting

Germany‟s biggest independent engineering and consultancy company

Founded in 1922 and 100% family owned since then

Staff strength:

Home office (Stuttgart) ca.

450

Total ca.

1,700

Turn-over 2008:

Home office: 122 million EUR

Total: 179 million EUR

On a global level FICHTNER is on average involved in approx.1,200 projects

with an overall investment volume of about 60 billion EUR.

FICHTNER is represented in more than 50 countries worldwide.

Page 71: Kuliah D3 PTE- Listrik Sel Surya

71 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

FICHTNER Turkey

FICHTNER has been working for more than

40 years on various projects in Turkey

Established in July 2008, FICHTNER Turkey is

100% owned by FICHTNER Germany

Completed numerous projects

mainly in the private sector

Brought together experienced international

experts & local engineers/consultants

and worked on the most important projects of Turkey

Vision of FICHTNER Turkey:

• Become one of the biggest well established engineering companies in

the region

• Provide state-of-the art engineering and technical services to meet the

demands of the growing energy market

• Make use of Turkey‟s young population: Train local engineers and

technical staff to make them compatible with international experts

• Use them for the most challenging projects in the region and

worldwide

Page 72: Kuliah D3 PTE- Listrik Sel Surya

72 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Renewable Energy Technologies

Hydropower

Wind Power

Solarthermal Power

Photovoltaic

Geothermal Power

Solid Biomass

Sewage and Landfill Gas

Biogas

Biomass to Liquid (BtL)

Fuel Cells

Page 73: Kuliah D3 PTE- Listrik Sel Surya

73 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Project phase Our service Objective

Concept study Development and review of Definition of approach

realization concepts

Feasibility study Investigation of technical and Financing agreement/depiction

of

financial viability financial performance

Conceptual and Drawing up permit Construction and operation

layout engineering application documents permits

Detail engineering Drawing up tender documents Project- and client-specific

tender documents

Tendering and Bid evaluation and Plant procurement to meet

quality, contract award contract negotiations time and cost requirements

Construction and installation Site supervision Functional plant

Commissioning / test operation Supervision of commissioning Production-ready plant

and tests

Operation Check of routine operation Regular commercial utilization

Our Range of Engineering and Consultancy

Services

Page 74: Kuliah D3 PTE- Listrik Sel Surya

74 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Agenda

Fichtner GmbH & Co. KG

Photovoltaics and Concentrated Solar Power

Financial Results depending on Plant Location

Summary

Page 75: Kuliah D3 PTE- Listrik Sel Surya

75 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Irradiation in Turkey

Turkey shows similar irradiation characteristics as Spain, one of

the largest solar energy markets.

Page 76: Kuliah D3 PTE- Listrik Sel Surya

76 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Worldwide Installed PV Supply

Page 77: Kuliah D3 PTE- Listrik Sel Surya

77 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

PV „Grid Parity“ in Germany

Bundesverband Solarwirtschaft

Page 78: Kuliah D3 PTE- Listrik Sel Surya

78 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Technologies Solar Power

PlantsSolar Thermal

Photovoltaic (PV)

Concentrating (CPV)

Non-Concentr.

DC-AC Inverter

Solar-Chimney

Linear Fresnel

Parabolic Trough

Central Receiver

Dish

Rankine Cycle (ST)

Brayton Cycle

StirlingEngine

Electric Power

Wind Turbine

Thermal Energy Storage

Concentration ratio and Temperature increasing

Integrated Solar Combined Cycle

Non-Concentrating

Linear-focusing (single axis)

Point-focusing (dual axias)

Page 79: Kuliah D3 PTE- Listrik Sel Surya

79 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Photovoltaics

Source: Juwi AG

Page 80: Kuliah D3 PTE- Listrik Sel Surya

80 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Photovoltaic Power - Module Types

•Mono-crystalline silicon: Most efficient technology (efficiencies

of around 18% (commercial) to 28% (research)

•Multi-crystalline silicon: Cheaper than mono-crystalline silicon

but also less efficient. Research cells approach 24% efficiency,

and commercial modules approach around 16% efficiency.

•Thin film:

•Cheaper than crystalline silicon but less efficient.

•Various materials (amorphous silicon, Cadmium Telluride,

Copper Indium Diselluride (CIS))

Selection of the technology depending on: site, irradiation, temperature, costs

vs. efficiency etc.

Page 81: Kuliah D3 PTE- Listrik Sel Surya

81 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Photovoltaic Power - Module Tracking

Mean annual radiation gain in

Central Europe

Mean annual radiation gain in

Southern Europe

Fix, optimum tilt angle 0% 0%

Horizontal N-S axis 11.5% 17.4%

30° tilt axis 22.9% 29.8%

Vertical axis, module tilt

50°

23.1% 29.6%

Biaxial tracking 27.2% 34%

Page 82: Kuliah D3 PTE- Listrik Sel Surya

82 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Concentrated Solar Power (CSP)

General Technology Principle Concentration of solar energy flow (direct irradiation required)

Conversion of Solar irradiation into high temperature heat

Conversion of high temperature heat into mechanical energy

Conventional power generation technology

Characteristics High energy density

Conventional components used (hybridisation possible)

Economy of scale leads to large scale plants

Possibility of thermal energy storage

Types of Solar Thermal Power Plants Parabolic Trough

Fresnel Trough

Solar Tower (Central Receiver)

Parabolic Dish (Dish/Stirling)

Solar Chimney

Page 83: Kuliah D3 PTE- Listrik Sel Surya

83 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Parabolic Trough

Condenser

Steam

370°C, 100bar

395°C

Electricit

y

to the

grid

Parabolic

Trough Field

295°C

Storage

Air and

vapour

Air Air

G ~

Solar HX

Coolin

g

Tower

Steam

turbine

30 MW

Source: Fichtner

Page 84: Kuliah D3 PTE- Listrik Sel Surya

84 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Heat

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hr.)

So

lar

He

at

(MW

-th

)

21. Jundumping

to storage

from storage

direct used

Thermal

storage

transfers

excess solar

heat into

evening hours.

Extension of full load operation to night time

hours

Reduction of part load operation (cloud

transients)

Dispatchable power generation

State-of-the-art technology: Two-tank molten

salt storage (E.g. AndaSol 1-3: 1050 MWh [7.5

h])

CSP Advantage: Operation without Sunshine

Page 85: Kuliah D3 PTE- Listrik Sel Surya

85 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Trends & Expectations

Capital Costs PV plants:

2.5-4 €/Wp EPC prices depending on module type and tracking

system

Decreasing module costs (future 1€/Wp), i.e. even lower EPC

prices

Capital Costs CSP plants:

4-6 €/Wp (parabolic trough, 50MW)

Due to technological innovations and economies of scale

decreasing electricity generation costs expected

Peak load or “base load”

PV: Peak load plants purely depending on global solar

irradiation

CSP: Possibility of energy storage & relatively high

predictability

of plant availability

Project Capacities

PV: 1kW – 50MW

CSP: Parabolic trough 10MW – 300MW

Fresnel 30MW (first commercial plant)

Page 86: Kuliah D3 PTE- Listrik Sel Surya

86 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Agenda

Fichtner GmbH & Co. KG

Photovoltaics and Concentrated Solar Power

Financial Results depending on Plant Location

Summary

Page 87: Kuliah D3 PTE- Listrik Sel Surya

87 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Feasibility of Solar Projects

Fichtner Cost

Database

Plant Concept &

Simulation of

Electricity Generation

Plant CAPEX

Plant OPEX

Revenues for

Electricity Sales Feed-in

Tariff

Modelling of

Project

Economics

Net present value

Internal rate of return

Levelized electricity

costs…

Page 88: Kuliah D3 PTE- Listrik Sel Surya

88 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

PV Performance Projection - Example

Page 89: Kuliah D3 PTE- Listrik Sel Surya

89 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

PV Performance Projection - Example

Page 90: Kuliah D3 PTE- Listrik Sel Surya

90 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Site Assessment

Source: Google Maps

Page 91: Kuliah D3 PTE- Listrik Sel Surya

91 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Site Assessment

Example: Johannesburg, South Africa

0.00

0.05

0.10

0.15

0.20

0.25

Thin film Poly-crystalline

Mono-crystalline

Parabolictrough

LE

C [€/k

Wh

]

fixed

1-axis

2-axis

Page 92: Kuliah D3 PTE- Listrik Sel Surya

92 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Sensitivity of O&M Costs

-10%

-9%

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

100% 90% 80% 70% 60% 50% 40%

Ch

an

ge o

f L

EC

[%

]

Change of O&M costs (100%=O&M costs of Montalto)

Thin film (fixed)

Polycrystalline (fixed)

Monocrystalline (1-axis)

Parabolic trough

Page 93: Kuliah D3 PTE- Listrik Sel Surya

93 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Sensitivity of Land Costs

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

+100%

+80%

+ 60%

+ 40%

+ 20%

0 - 20%

- 40%

- 60% - 80%

-100%

Ch

an

ge o

f L

EC

Change land costs

Thin film (fixed)

Monocrystalline(fixed)

Polycrystalline (fixed)

Parabolic trough

Page 94: Kuliah D3 PTE- Listrik Sel Surya

94 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Sensitivity of Ambient Temperature

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

11.0 12.8 14.6 16.4 18.3 20.1 21.9 23.7 25.6

Ch

an

ge o

f L

EC

Ambient temperature [°C]

Thin film Monocrystalline

Polycrystalline Parabolic trough

Page 95: Kuliah D3 PTE- Listrik Sel Surya

95 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Sensitivity of Direct Normal Irradiation

-10%

-5%

0%

5%

10%

15%

20%

25%

1,254 1,463 1,671 1,881 2,089 2,299 2,508 2,716 2,926

Ch

an

ge o

f L

EC

DNI [kWh/a]

Thin film

Monocrystalline

Polycrystalline

Parabolic trough

Page 96: Kuliah D3 PTE- Listrik Sel Surya

96 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Agenda

Fichtner GmbH & Co. KG

Photovoltaics and Concentrated Solar Power

Financial Results depending on Plant Location

Summary

Page 97: Kuliah D3 PTE- Listrik Sel Surya

97 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Global Annual Solar Cell Production

Source: Photon

Page 98: Kuliah D3 PTE- Listrik Sel Surya

98 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

PV: Projection of Module Production Capacity

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Recession 675.3 1049.8 1407.7 1984.6 3073 5455.8 5214.1 5425.4 6207.7 11611 15569.5

Conservative 675.3 1049.8 1407.7 1984.6 3073 5455.8 5990.2 6808.1 8770.3 11731.9 15732.7

Accelerated 675.3 1049.8 1407.7 1984.6 3073 5455.8 6555.2 8507.2 12202.2 18718.2 28795.6

0

5000

10000

15000

20000

25000

30000

35000

MW

p

Recession

Conservative

Accelerated

Source: Paula Mints, Navigant Consulting, Inc., 2009

Page 99: Kuliah D3 PTE- Listrik Sel Surya

99 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

2009 2010 2011 2012 2013

Cu

mu

lati

ve

Inst

all

ed

Ca

pa

city

[M

W]

Announced CSP Projects

Accelerated Base Case Slow Development

Page 100: Kuliah D3 PTE- Listrik Sel Surya

100 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Summary

No general „better“ technology but project specific technology selection

Size, topography, irradiation (global / direct), Accessibility, grid condition

Feed-in tariffs

Relevance of dispatchability / storage

Design optimization required for each project

Thorough project development and due diligence process

Reliable design

“Bankable” EPC and O&M Contracts

performance and plant acceptance criteria and procedures

liquidated damages and incentive schemes

Reliable Yield Forecasts

Enormous potential for solar technologies in Turkey and worldwide

Page 101: Kuliah D3 PTE- Listrik Sel Surya

101 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Contact

Whom to contact?

FICHTNER GmbH & Co. KG

Büyükdere Cad. 87/5

34387 Mecidiyeköy

Istanbul

Turkey

Phone 212- 2171767

Fax 212-2178124

Mobile 0549-2171775

E-Mail [email protected]

www.fichtner.com.tr

FICHTNER GmbH & Co. KG

Sarweystraße 3

70191 Stuttgart

Germany

Dr. Martin Stickel

Manager PV / Solar Technologies

Phone +49 (0)711 8995-684

Fax +49 (0)711 8995-495

Mobile +49 (0) 172 6358294

E-Mail [email protected]

www.fichtner.de

Page 102: Kuliah D3 PTE- Listrik Sel Surya

102 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Typical Project Constellation

Investor

Solar Project

Special Purpose

Vehicle (SPV)

Lender Insurance

company

Utility

EPC contractor(s)

Service

Company

Equity

EPC Contract

O&M Contract

Policies Loans

Power

purchase

agreement

Developer Management Project

Rights

Operation

Contract

Objectives:

Implementation of a long life power plants with high energy yield and availability

Proper and safe operation complying with the relevant requirements

Low cost, high return on investment

Page 103: Kuliah D3 PTE- Listrik Sel Surya

103 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Typical Solar Power Technical Due Diligence

•Project structure and obligations of project parties

•Solar radiation measurements and long-term global solar radiation

assumptions

•Technical concept such as layout, grid connection, civil works

•Energy yield assessment as to the reliability of the input data, simulation,

methods and results (SOLPRO / PVSYST)

•Suitability of site (e.g. radiation, temperature, site complexity, soil conditions)

•Contracts / project agreements including mainly: EPC-Contract, grid

connection agreement, PPA, O&M, technical and administrative operation

•Adequacy of the technical warranties and verification procedures (e.g.

performance test, availability, technical characteristics)

•Qualification of involved parties, QC/QA concept

•Permits and licenses (status, constraints e.g. due to noise, etc.)

•Project insurances

•Time schedule /

•Project management / risk management

•Financial model: elaboration of model or providing input data to bank‟s /

financial advisor‟s model

•Analysis of project sensitivities / risk assessment

Phase I: Pre-Financial Close Due Diligence

Engineering

and contract

award

Construction

Operation

Conceptual

study and

decision-

making

phase

Facilitate

investment /

financing

decisions

Page 104: Kuliah D3 PTE- Listrik Sel Surya

104 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Typical Solar Power Technical Due Diligence

•Construction monitoring (compliance with contract / specifications)

•Compliance with project schedule

•Review of EPC contractor„s / owner„s progress report

•Site and workshop inspections

•Preparation of monthly or quarterly progress reports

Phase II: Construction Monitoring

•Certification of completion

•Review of commissioning and of trial operation

•Attendance and monitoring of the performance and reliability tests

•Review of performance test results in view of liquidated damages requests

•PV plant installation and mounting inspections

Phase III: Testing and completion certificate

•Carry out annual site visits

•Preparation of (semi-) annual operating status reports including

•operating performance (availability, power performance, energy yield)

•maintenance and extraordinary events

Phase IV: Monitoring during term of project loan facilities

Engineering

and contract

award

Construction

Operation

Conceptual

study and

decision-

making

phase

Facilitate

investment /

financing

decisions

Page 105: Kuliah D3 PTE- Listrik Sel Surya

105 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Page 106: Kuliah D3 PTE- Listrik Sel Surya

106 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

PV World Market 2008

Bundesverband Solarwirtschaft

Page 107: Kuliah D3 PTE- Listrik Sel Surya

107 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Integrated Expertise

Complete solutions on a sound technical and economic footing

Broad-based range of services from one source

Comprehensive technological know-how as

foundation

• conventional technologies

• innovative technologies / renewable energies Extensive planning experience in all project

phases

Classical planning services are rounded off by

our over-arching expertise in consultancy

Consultancy

Planning Technologies

Power Supply

Energy

Technology

Environmental

Technology

Water and

Infrastructure

IT, Economics

and Finances

Page 108: Kuliah D3 PTE- Listrik Sel Surya

108 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Gas turbine 90 MW

Exhaust

600°C

Steam

turbine

60 MW

Condenser

Steam

540°C, 100bar

395°C

Electricity

to the

grid

Parabolic

Trough Field

295°C

Storag

e

Air and

vapour

Ai

r

Air

G ~

HRSG Solar HX

Coolin

g

Tower

G

~

Stack

Exhaust

100°C

Solar

Island

Combined Cycle

Island

Integrated Solar Combined Cycle (ISCC)

Page 109: Kuliah D3 PTE- Listrik Sel Surya

109 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Thermal Power Plants – Fresnel

Principle / Characteristics

Line-focussing with long mirror strips onto fixed absorber

Lower optical efficiency compared to parabolic trough

More simple design offers potentially lower investment cost

Direct steam generation in absorber (25 – 100 bar / 270 – 550°C)

Conventional water-steam-cycle (now saturated, future superheated)

Efficient use of land due to compact design

Status

Relatively new technology

Several pilot plants in operation in Australia, Spain and USA

First pre-commercial demonstration plant for electricity generation

(5 MWe) started operation end of 2008 in California

First large scale plant shall start operation in 2012 in California

using Ausra‟s Compact Linear Fresnel Reflector technology.

New 30MW project announced in Spain, recent large

investment by Swiss utility

Page 110: Kuliah D3 PTE- Listrik Sel Surya

110 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Thermal Power Plants – Solar Tower

Principle / Characteristics

Tracked field of mirrors („heliostats“), point focussing (factor > 500)

Concentration on small area on top of the tower („receiver“)

High concentration factors = high temperatures (up to 700°C)

High solar-electric efficiency due to higher temperatures

Different heat transfer fluids (molten salt, air, water/steam)

generation of steam by heat exchanger

conventional water-steam-cycle

Status

Potential successfully demonstrated in several large pilot plants

Solar Tower technologies at different development stages

First two commercial plants in operation in Spain (PS 10 & 20)

Several large plants (>100 MWe) under development in US

Despite first commercial plants still more R&D needed

Page 111: Kuliah D3 PTE- Listrik Sel Surya

111 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

PV related services

- technical due diligences - on behalf of lenders as well as

investors

- techno-economic feasibility and conceptual studies

- yield projections

- specifications for large-scale PV installations

- check of construction and operating contracts - EPC and O&M -

under their technical and commercial aspects

- supervision of construction and progress monitoring

- participation in acceptance tests

- verification of electricity yields during operation

- other PV related technical advisory

Page 112: Kuliah D3 PTE- Listrik Sel Surya

112 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Methodology

Page 113: Kuliah D3 PTE- Listrik Sel Surya

113 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Methodology – Financial Calculation

Levelized electricity costs (LEC) in €/kWh

It Investment expenditures in the year t in €

Mt Operations and maintenance expenditures in the year t

in €

Et Electricity generation in the year t in kWh

i Discount rate

n Life time of the system in years

Page 114: Kuliah D3 PTE- Listrik Sel Surya

114 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Site Assessment

Nassau, Bahamas

0.13

0.18

0.23

0.28

0.33

0.38

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

LE

C [€/k

Wh

]

Price of Module [€/Wp]

fixed

1-axis

Page 115: Kuliah D3 PTE- Listrik Sel Surya

115 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Sensitivity of Wind Speed

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

2.6 3.0 3.5 4.0 4.4 4.9 5.3 5.7 6.2

Ch

an

ge o

f L

EC

[%

]

Wind speed [m/s]

Thin film

Monocrystalline

Polycrystalline

Parabolic trough

Page 116: Kuliah D3 PTE- Listrik Sel Surya

116 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Extract of Reference Projects – Solar Thermal

Abu Dhabi: Design and

Engineering

100 MWe CST Plant

India, Mathania 140 MWe ISCC (solar 30

MWe)

Jordan Project Development

for 50 MWe Solar

Rankine Cycle Plant

Greece, Theseus AE Project Company

50 MW Solar Rankine Cycle

Plant

BMU / KfW, ZIP

Program Ten research projects for Market

Introduction of Solar Technology

Australia Site Selection and

Feasibility Study

200 MW CST

Plant

Spain, AndaSol-1, -2, -

3: Three Solar Rankine Cycle

Plants with storage, each 50

MWe

Spain, PS-10 10 MW

Central Receiver Plant

Spain, RentaSolar

S.A. Project Company for

PV Power Plants in Spain

Morocco, Ain Beni

Mathar 400 MWe ISCC (solar 20 MWe)

World Bank Global Market Initiative

(GMI)

EM-Power

Arizona, USA Project Development for

250 MWe Solar Rankine Cycle

Plant

Botswana Site Selection and

Feasibility Study

for 200 Mwe CST

Plant Egypt, El Nasr Solar Process Heat Plant

Egypt, Kuraymat: 150 MWe ISCC (solar 20

MWe)

Page 117: Kuliah D3 PTE- Listrik Sel Surya

117 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Irradiation

Different technologies use different type of

irradiation.

Direct

Diffuse

Global = Diffuse + DirectDirect Direct

on horizontal plane

on normal plane

Direct

Diffuse

Global = Diffuse + DirectDirect Direct

on horizontal plane

on normal plane

Page 118: Kuliah D3 PTE- Listrik Sel Surya

118 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Solar Thermal Power Plants – Parabolic Trough

Principle / Characteristics

Tracked parabolic trough focuses on a „receiver“ (up to factor 100)

Heat transfer fluid (currently synthetic oil) heats up to 393°C in receiver

Generation of superheated steam via solar heat exchanger

Conventional water-steam-cycle

Possibility to store thermal energy (currently molten salt storage)

Solar-to-electric efficiency of 12-16%

Status

Most mature and bankable CSP technology

First nine plants (SEGS plants) successfully in operation

since more than 20 years in California

Several Gigawatts of parabolic trough power plants in

planning or already under construction

Major cost reduction due to mass production, economy

of scale and further technological advancements

Next steps: Direct steam generation + implementation

of new storage technologies (e.g. concrete)

Page 119: Kuliah D3 PTE- Listrik Sel Surya

119 Photovoltaics versus Concentrated Solar Power – Turkey 2010 Conference

Site Assessment

Site DNI

[kWh/m²]

Temperature

[°C]

Wind

[m/s]

Nassau 1,890 25.7 4.1

Montalto 1,584 16.0 3.0

Johannesbur

g 2,302 15.7 3.5

Technology Nassau

[kWh/kWp]

Montalto

[kWh/kWp]

Johannesburg

[kWh/kWp]

Thin film 1,886 1,609 2,020

Monocrystalline 1,728 1,485 1,904

Polycrystalline 1,683 1,466 1,879

Parabolic

trough 2,125 1,570 2,155

Page 120: Kuliah D3 PTE- Listrik Sel Surya

120 120

PT PLN (PERSERO)