35
Moncheite and palladseite of unusual chemical composition from the Miessi River, Inari, Northern Finland 18-Aug- 14 Kari K. KOJONEN, Geological Survey of Finland Andrew M. McDONALD , Dept. of Earth Sciences, Laurentian University, Canada Chris J. STANLEY, Natural History Museum, UK Bo JOHANSON, Geological Survey of Finland 05/13/2022 1 21st IMA General Meeting , Johannesburg, RSA, September 1-5, 2014

Kojonen et al IMA 2014

Embed Size (px)

Citation preview

Page 1: Kojonen et al IMA 2014

1

Moncheite and palladseite of unusual chemical composition from the Miessi

River, Inari, Northern Finland

18-Aug-14

Kari K. KOJONEN, Geological Survey of FinlandAndrew M. McDONALD , Dept. of Earth Sciences, Laurentian University, CanadaChris J. STANLEY, Natural History Museum, UKBo JOHANSON, Geological Survey of Finland

05/01/202321st IMA General Meeting , Johannesburg, RSA, September 1-5, 2014

Page 2: Kojonen et al IMA 2014

05/01/2023 2

Outline

• Introduction• General geology of the northern Lapland• Methods of study• Placer PGM in Miessi River • Optical and SEM images + EDS results• EPMA results• VHN and R measurement results• XRD results• Conclusions

Page 3: Kojonen et al IMA 2014

05/01/2023

Geological map of northern Finland and the distribution of PGM bearing layered intrusions and placer deposits

3

Page 4: Kojonen et al IMA 2014

05/01/2023

General geology

• The bedrock in Lemmenjoki River tributary is granulite, including felsic granulites and granite gneisses and intrusive mafic enderbite-norites, quartz-, hematite, quartz-feldspar porphyry and pegmatite veins

• The ages obtained of zircons are 1.95Ga for the granulite

• Intrusive layered norites and enderbites give an age of 1.905Ga with zircon age determinations

4

Page 5: Kojonen et al IMA 2014

05/01/2023

Digital bedrock map of Northernmost Finland in 2014

5

Page 6: Kojonen et al IMA 2014

05/01/2023

Low altitude magnetic total intensity airborne map, height 31m

6

Page 7: Kojonen et al IMA 2014

05/01/2023

Low altitude magnetic total intensity airborne map, height 31m, Lemmenjoki River area

7

Page 8: Kojonen et al IMA 2014

05/01/2023 8

Page 9: Kojonen et al IMA 2014

05/01/2023 9

Kaarreoja River, contact between granulite and weathered gabbro MgO 9.9 wt.%

Page 10: Kojonen et al IMA 2014

Layered gabbro, lower Miessi RiverMgO 6.8 wt.%

05/01/2023 10

Page 11: Kojonen et al IMA 2014

05/01/2023 11

Layered gabbro, lower Miessi River MgO 8.1 wt.%

Page 12: Kojonen et al IMA 2014

05/01/2023 12

Methods of study• Heavy mineral sands were sieved in the laboratory with a

sieve set from 1 mm to 40 microns opening• Coarser grains were hand picked under stereo-

microscope/macroscope• Grains with size <250 microns were sieved to several

fractions and panned iin the laboratory, and finally run with the ”gold hound” spiral separator,

• Optical microscopy; macroscope, polarisation microscope, microphotography

• SEM/EDS • EMPA at the GSF• Reflectivity and Vickers hardness measurements at NHM• XRD at the Laurentian University, Sudbury

Page 13: Kojonen et al IMA 2014

05/01/2023

Optical microscopy with a macroscope and polarizing ore microscope at GTK

13

Page 14: Kojonen et al IMA 2014

05/01/2023

Jeol variable vacuum SEM/EDS with an automatic Oxford INCA Feature analysis program for PGM grain counting

14

Page 15: Kojonen et al IMA 2014

05/01/2023 15

Cameca SX100 EMP at GSF

Page 16: Kojonen et al IMA 2014

05/01/2023 16

Reflectivity and VHN measurement at NHM in London UK

Page 17: Kojonen et al IMA 2014

05/01/2023 17

XRD studies using the Gandolfi camera at the Laurentian university, Sudbury Canada

Page 18: Kojonen et al IMA 2014

05/01/2023 18

Gandolfi XRD method used atthe Laurentian University, Sudbury

• XRD analysis flowsheet

Gandolfi XRD camera (two axes of rotation; improved I data).

BaFEu Image Plate (IP, shown in cross-section). Eu2+↔ Eu3+

Advantages over film:Reusable, flexible, no dark room, greater sensitivity (record weak and strong reflections), increased dynamic range, affordable.

Conversion of image to diffractograms in seconds.Can be run under vacuum.Much smaller grains (~ 20 um) can now be run.S/M and Rietveld analyses are now possible.

Page 19: Kojonen et al IMA 2014

05/01/2023 19

Optical macroscope studies of the grains monted with double sided tape on a 30 mm diameter

brass plates as monolayer grain mount

Page 20: Kojonen et al IMA 2014

05/01/2023 20

Optical macroscope studies of the grains monted with double sided tape on a 30 mm diameter

brass plates as monolayer grain mount

Page 21: Kojonen et al IMA 2014

05/01/2023 21

SEM EDS studies of the grains with low vacuum mode and automatic feature analysis of the grains

Page 22: Kojonen et al IMA 2014

05/01/2023 22

Results of the automatic SEM EDS feature analysis of the 1019 grains

Class Rank Features % total features Feature area (sq. µm) % total areaSperrylite 1 380 37.29 29100000.00 49.41Mertieite 1 10 0.98 908000.00 1.54Vysotskite 1 1 0.10 82100.00 0.14Cooperite 1 11 1.08 1050000.00 1.78Braggite 1 5 0.49 384000.00 0.65Pt-oxide 1 2 0.20 150000.00 0.25Pt Te 1 21 2.06 141000.00 0.24PdSb 1 1 0.10 842.00 0.00Au 2 14 1.37 325000.00 0.55Electrum 2 0 0.00 0.00 0.00Cassiterite 2 66 6.48 4380000.00 7.44Native Bi 2 44 4.32 2510000.00 4.26Nb-Ta-minerals 3 14 1.37 1210000.00 2.05W-minerals 3 1 0.10 382.00 0.00Fe-sulfides 3 21 2.06 65500.00 0.11Zircon 4 8 0.79 89800.00 0.15Monazite 4 27 2.65 1110000.00 1.88Th-U_oxide 4 199 19.53 12000000.00 20.37Pb-oxide, galena 4 64 6.28 2210000.00 3.75Chromite 5 17 1.67 1150000.00 1.95Titanomagnetite 5 4 0.39 3810.00 0.01Magnetite, Hematite 5 37 3.63 803000.00 1.36Ilmenite 5 6 0.59 69200.00 0.12Rutile 5 8 0.79 69900.00 0.12Arsenopyrite 5 39 3.83 38200.00 0.06Phosphates 5 19 1.86 1050000.00 1.78total 1019 100.00 58900734.00 100

Page 23: Kojonen et al IMA 2014

05/01/2023 23

Results of the automatic SEM EDS feature analysis of 431 PGM grains

Class Features% total features

Feature area (sq. µm)

% total area

Sperrylite 380 88.17 29100000.00 91.46Mertieite 10 2.32 908000.00 2.85Vysotskite 1 0.23 82100.00 0.26Cooperite 11 2.55 1050000.00 3.30Braggite 5 1.16 384000.00 1.21Pt-oxide 2 0.46 150000.00 0.47Pt Te 21 4.87 141000.00 0.44PdSb 1 0.23 842.00 0.00total 431 100.00 31815942.00 99.98

Page 24: Kojonen et al IMA 2014

05/01/2023 24

Results of the automatic SEM EDS feature analysis of 431 PGM grains

91.46

2.850.26

3.30 1.210.470.440.00

SperryliteMertieiteVysotskiteCooperiteBraggitePt-oxidePt TePdSb

Page 25: Kojonen et al IMA 2014

05/01/2023 25

Manual checkup of unclassified grains with SEM/EDS

Grains in the BSE images: 1) Cu bearing isomertieite, 2) Cu and Te bearing palladseite, 3) tellurian palladseite, 4) UM2004-52 Pd10(As,Te)3 5) Se bearing braggite, 6) Se bearing moncheite. BEI by Kari Kojonen.

5

21

4 6

3

Page 26: Kojonen et al IMA 2014

05/01/2023 26

Previously discovered new mineral from the same place Miessiite Pd11Te2Se2

Isotropic, color grayish white, 1 polarizer, Miessi River, optical image by K. Kojonen

Page 27: Kojonen et al IMA 2014

05/01/2023 27

UD (undefined) minerals in polished section

Reflected light, 1 polarizer. Optical images by K. Kojonen

EDS PtSeTeEDS PdSeTe

EDS PdSeTe

Page 28: Kojonen et al IMA 2014

05/01/2023 28

EPMA results of the UD minerals• Calculations for mineral: PdSeTe Run on date: 7-October-2013• CHEM (Formula Weight) calculations• Total Wt% = 99.06 average of 30• Formula Weight = 3048.49 • Constit Data Mole Symbol Number• Name Wt % Ratio of Atoms• Cu 1.14 0.0179 Cu 0.55• Se 35.14 0.4450 Se 13.70• Pd 57.13 0.5368 Pd 16.52• Os 0.39 0.0021 Os 0.06• Pt 0.96 0.0049 Pt 0.15• Au 0.24 0.0012 Au 0.04• Sb 0.08 0.0003 Sb 0.02• Te 4.02 0.0315 Te 0.97• Total weight % = 99.06• Total Atom Number = 32.00• Total Atomic Ratio = 1.0398• f-Factor = 30.7742• Formula Weight = 3048.49• Empirical formulae (Pd15.84Pt0.03Os0.12Cu1.17Au0.02)17.18(Se12.03S0.51Sb0.02Te1.81)14.37 According to

Louis Cabri the formulae of palladseite is Pd17Se15.

Page 29: Kojonen et al IMA 2014

05/01/2023 29

EPMA results of the UD minerals• Calculations for mineral: PtSeTe • CHEM (Formula Weight) calculations• Total Wt% = 100.05• Formula Weight = 420.02• Constit Data Mole Symbol Number• Name Wt % Ratio of Atoms• Se 10.05 0.1273 Se 0.53• Pd 0.66 0.0062 Pd 0.03• Pt 43.92 0.2251 Pt 0.95• Ag 0.02 0.0002 Ag 0.00• Sb 0.02 0.0002 Sb 0.00• Te 45.38 0.3556 Te 1.49• • Total weight % = 100.05• Total Atom Number = 3.00• Total Atomic Ratio = 0.7146• f-Factor = 4.1981• Formula Weight = 420.02• empirical formulae (Pt0.95Pd0.03)0.98(Se0.53Te1.49)2.02, that corresponds the formulae of moncheite

Page 30: Kojonen et al IMA 2014

05/01/2023 30

VHN values of the UD minerals

For 25g load:

PtSeTe mean (3) 101 range 83-116 sf-cv. Equivalent to Mohs ~ 3 (moncheite QDF 381 VHN 128-153)

PdTeSe 1 mean (5) 472 range 459-484 p-sf. Equivalent to Mohs ~ 5.

PdTeSe 2 mean (3) 478 range 462-489 p-sf. Equivalent to Mohs ~ 5. (palladseite QDF 409 VHN 390-437)

Page 31: Kojonen et al IMA 2014

05/01/2023 31

Reflectance curves of the UD minerals

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 70040

45

50

55

60

65

70

Selenian moncheite and moncheite Ro data

selenian moncheiteQDF3.379QDF3.380QDF3.381

lambda nm

R%

CIE color values (illuminant C) x 0.312, y 0.318, Y% 59.4, λd 585, Pe% 1.5.

Page 32: Kojonen et al IMA 2014

05/01/2023 32

Reflectance curves of the PdTeSe mineral

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 70030

35

40

45

50

55

60

R data for tellurian palladseite and palladseite

pal.Nm1pal.Nm2QDF3.409

lambda nm

R%

CIE color values (illuminant C) x 0.314, y 0.323, Y% 48.1, λd 572, Pe% 2.8

Page 33: Kojonen et al IMA 2014

05/01/2023 33

XRD of the PtSeTe mineral

• The PtSeTe phase gave a moncheite pattern.• Moncheite crystallizes in the space group P33̄̄m1

and unit-cell refinement based on 18 reflections (20-125º2Θ) gives a 3.994(2) Å, c 5.233(3) Å, V 70.49 Å3, Z = 1, class 33̄̄ m, c:a=1.310, density 9.590 g/cm3(calc). The chemistry shows Te>Se, so the mineral is a Se-bearing moncheite.

• Se replacing Te in the moncheite lattice decreases the lattice size and the VHN values.

Page 34: Kojonen et al IMA 2014

05/01/2023 34

XRD of the PdTeSe phase

• The PdTeSe has an XRD pattern of palladseite.• Palladseite crystallizes in the space group Pm3m.

The refined unit-cell edge for the calculated Te-bearing palladseite (based on 28 reflections for 32-123º2Θ) is: a 10.653(2) Å, V 1208.97 Å3, Z 2, space group Pm3m, class m3m, density 7.958 g/cm3(calc.).

• Te replacing Se in the lattice of palladseite increases the cell size, VHN and the reflectance values compared to the normal palladseite .

Page 35: Kojonen et al IMA 2014

05/01/2023 35

Summary and conclusions

• The PGM paragenesis is rather poor on sulphur containing only a few grains of cooperite – braggite – vysotskite, which have crystallized with the early magmatic minerals. Thus, it is evident that Se and Te are replacing each other in the lattice of natural moncheite and palladseite in the Miessi River area. Both elements belong to the group 16 of the periodic system of the elements and have a similar charge and less than 15 % differing ionic radius ( Se2- 1.98Å and Te2- 2.21Å, Vaughan and Graig, 1978). Almost similar replacement of Te and Se have been recently reported (Kojonen et al. 2007) in the description of miessiite discovered nearby in the same area. Miessiite is isostructural with isomertieite that is quite common in the area. The PGM paragenesis contains both Te and Se and miessiite is an example of a Te-Se member of the isomertieite group minerals.

• The decrease in the unit cell of selenian moncheite can be explained by the increased substitution of Se for Te: in [6], radius Te2-=2.21 and Se2- = 1.98 Å, so the more Se there is, the smaller unit cell will be.

• In terms of the hardness in moncheite, an increase in Se would increase the hardness, too, as the bond distances would shorten (relatively).

• Te replacing Se in the lattice of palladseite increases the cell size, VHN and the reflectance values compared to the normal palladseite.