49
KINETYCZNA TEORIA GAZÓW

KINETYCZNA TEORIA GAZÓW

  • Upload
    alagan

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

KINETYCZNA TEORIA GAZÓW. Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie jak: ciśnienie, objętość, temperatura. Ciśnienie wywierane przez gaz jest skutkiem zderzeń cząsteczek ze ściankami zbiornika. - PowerPoint PPT Presentation

Citation preview

Page 1: KINETYCZNA TEORIA GAZÓW

KINETYCZNA TEORIA GAZÓW

Page 2: KINETYCZNA TEORIA GAZÓW

Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie jak: ciśnienie, objętość, temperatura.

•Ciśnienie wywierane przez gaz jest skutkiem zderzeń cząsteczek ze ściankami zbiornika. •Zdolność gazu do wypełnienia całej objętości zbiornika jest konsekwencją swobody ruchu cząsteczek.•Temperatura i energia wewnętrzna zależą od energii kinetycznej tych cząsteczek

Kinetyczna teoria gazów analizuje problem z cząsteczkowego punktu widzenia.

Page 3: KINETYCZNA TEORIA GAZÓW

Równanie stanu gazu doskonałego

Doświadczenie pokazuje, że wszystkie gazy rzeczywiste przy dostatecznie małej gęstości można opisać jednym równaniem:

nRTpV p – ciśnienien – liczba moli gazu w próbceT – temperatura bezwzględna gazu

R – stała gazowa; R = 8.31 J/(mol.K)

NkTpV k – stała Boltzmanna; k = 1.38.10-23

N – liczba cząsteczek

Page 4: KINETYCZNA TEORIA GAZÓW

Praca wykonana przez gaz doskonały w stałej temperaturze

ROZPRĘŻANIE IZOTERMICZNE

Vconst

VnRTp

11

nRTpV

k

p

V

V

pdVW

Page 5: KINETYCZNA TEORIA GAZÓW

V

nRTp

k

p

V

V

pdVW

k

p

k

p

k

p

V

V

VV

V

V

VnRTV

dVnRTdV

V

nRTW ln

Praca wykonana przez gaz doskonały w procesie rozprężania izotermicznego:

b

aba lnlnln

Page 6: KINETYCZNA TEORIA GAZÓW

p

k

V

VnRTW ln

0ln p

k

V

VnRTW

W przypadku procesu rozprężania: Vk > Vp

zatem: Vk / Vp > 1 co daje ln(Vk / Vp) > 0

Page 7: KINETYCZNA TEORIA GAZÓW

Praca wykonana przez gaz doskonały w stałej objętości

PRZEMIANA IZOCHORYCZNA

Jeżeli objętość gazu jest stała to:

W = 0

Praca wykonana przez gaz doskonały przy stałym ciśnieniu

PRZEMIANA IZOBARYCZNA

Jeżeli ciśnienie gazu jest stałe to:

W = p(Vk-Vp) = pV

k

p

V

V

pdVW

Page 8: KINETYCZNA TEORIA GAZÓW

Ciśnienie, temperatura i prędkość średnia kwadratowa

- n moli gazu doskonałego w zbiorniku o objętości V=L3

- Ściany zbiornika maja stałą temperaturę T

L

L

L

Page 9: KINETYCZNA TEORIA GAZÓW

W jaki sposób ciśnienie p wywierane przez gaz na ścianki zbiornika zależy od prędkości jego cząsteczek?

Page 10: KINETYCZNA TEORIA GAZÓW

1) Pomijamy zderzenia cząsteczek między sobą.

2) Zderzenia cząsteczek ze ścianami naczynia są SPRĘŻYSTE – po zderzeniu z zacienioną ścianką naczynia zmienia się tylko składowa prędkości w kierunku osi x, co sprawia, że zmienia się tylko składowa pędu cząsteczki w kierunku osi x:

co z kolei sprawia, że pęd jakiego doznaje ściana wynosi +2mvx

xxxx mvmvmvp 2

Page 11: KINETYCZNA TEORIA GAZÓW

xxxx mvmvmvp 2

Page 12: KINETYCZNA TEORIA GAZÓW

L

mv

vL

mv

t

p x

x

xx2

2

2

xx v

Lt

t

Lv

22

Cząsteczka regularnie zderza się z zacieniowaną ścianką.

Czas jaki mija pomiędzy kolejnymi zderzeniami t równy jest czasowi potrzebnemu na przebycie przez cząsteczkę drogi od jednej ściany do drugiej (L) i z powrotem (L) z prędkością vx:

Średnia szybkość z jaką cząstka przekazuje pęd ściance naczynia:

Page 13: KINETYCZNA TEORIA GAZÓW

Z drugiej zasady dynamiki Newtona:

dt

pd

dt

vmd

dt

vdmamF

m

Fa

zmiana pędu w czasie to po prostu siła działająca na ściankę.

Sumując po wszystkich cząsteczkach otrzymamy wartość siły wypadkowej Fx, a dzieląc ją przez powierzchnię ścianki L2 otrzymamy ciśnienie p wywierane na tą ściankę:

2L

Fp x

2

2

2

2

2

2

s

mkg

msm

kg

L

mv

vL

mv

t

p x

x

xx

Page 14: KINETYCZNA TEORIA GAZÓW

2223

2

222

2

21

21

N

N

xxx

xxxx

vvvL

mL

LmvLmvLmv

L

Fp

2

2

2

2

2

2

s

mkg

msm

kg

L

mv

vL

mv

t

p x

x

xx

gdzie N oznacza liczbę cząsteczek.

Page 15: KINETYCZNA TEORIA GAZÓW

śrxAxxx

A

vnNvvv

nNN

N

2222

21

śrxA v

L

nmNp 2

3

śrxv2

Ponieważ:

Gdzie jest średnim kwadratem składowych prędkości w kierunku x.

śrxvV

nMp 2

Ponieważ mNA=M, (gdzie M jest masą molową gazu), oraz L3=V, mamy:

Page 16: KINETYCZNA TEORIA GAZÓW

śr

vV

nMp 2

3

W 3D:dla dowolnej cząstki mamy:

2222zyx vvvv

Ponieważ liczba cząsteczek w zbiorniku jest olbrzymia, a wszystkie poruszają się w przypadkowych kierunkach, średnie wartości kwadratów składowych prędkości są sobie równe, a więc:

śrśrx vv 22

3

1

Page 17: KINETYCZNA TEORIA GAZÓW

..2

kwśrśrvv

Pierwiastek kwadratowy z wyrażenia jest pewną średnią prędkością nazywaną prędkością średnią kwadratową cząsteczek i oznaczoną symbolem vśr.kw..

śr

v2

Aby policzyć vśr.kw. podnosimy wszystkie prędkości do kwadratu, obliczamy ich średnią, a na koniec bierzemy pierwiastek kwadratowy obliczonej wartości.

V

nMvv

V

nMp kwśr

śr 33

2..2

śr

vV

nMp 2

3

Page 18: KINETYCZNA TEORIA GAZÓW

V

nMvp kwśr

3

2..

Równanie to mówi nam, że ciśnienie gazu (wielkość makroskopowa) zależy od prędkości cząsteczek (wielkości mikroskopowej).

Page 19: KINETYCZNA TEORIA GAZÓW

Sytuacja odwrotna:ze znajomości ciśnienia p obliczmy vśr.kw..

Korzystając z równania stanu gazu doskonałego: pV=nRT, otrzymamy:

M

RTv

V

nMv

V

nRT

kwśr

kwśr

3

3

..

2..

V

nMvp kwśr

3

2..

Page 20: KINETYCZNA TEORIA GAZÓW
Page 21: KINETYCZNA TEORIA GAZÓW

Z vśr.kw. ściśle związana jest prędkość dźwięku w gazie. W fali dźwiękowej zaburzenie przekazywane jest od cząsteczki do cząsteczki dzięki ich zderzeniom. Fala nie może więc rozchodzić się szybciej niż „przeciętna” prędkość cząsteczek. Jest za to mniejsza, gdyż nie wszystkie cząsteczki poruszają się w tym samym kierunku co fala.

vśr.kw. [m/s] prędkość dźwięku [m/s]

Wodór 1920 1350

Azot 517 350

Page 22: KINETYCZNA TEORIA GAZÓW

Energia kinetyczna ruchu postępowego

W dowolnej chwili energia kinetyczna ruchu postępowego cząsteczki jest równa:

Średnia energia kinetyczna ruchu postępowego cząsteczki w pewnym przedziale czasu wynosi:

2

2

1mvEk

2..

22. 2

1

2

1

2

1kwśrśr

śrśrk mvvmmvE

M

RTv kwśr

3..

M

RTmE śrk

3

2

1.

Page 23: KINETYCZNA TEORIA GAZÓW

M

RTmE śrk

3

2

1.

ANm

M

AN

Rk

Aśrk N

RTE

2

3.

kTE śrk 2

3.

Page 24: KINETYCZNA TEORIA GAZÓW

kTE śrk 2

3.

W danej temperaturze T wszystkie cząsteczki gazu doskonałego – niezależnie od swojej masy – mają taką samą energię kinetyczna ruchu postępowego, równą 3/2 kT.

Mierząc temperaturę gazu, wyznaczamy jednocześnie średnią energię kinetyczną ruchu postępowego cząsteczek.

Page 25: KINETYCZNA TEORIA GAZÓW

Średnia droga swobodna

Parametrem charakteryzującym przypadkowy ruch cząsteczek jest średnia droga swobodna .Określa ona jaką drogę pokonuje średnio cząsteczka między swoimi kolejnymi zderzeniami.

Większa gęstość => mniejsze Większe cząsteczki => mniejsze

VNd 22

1

Page 26: KINETYCZNA TEORIA GAZÓW

Rozkład prędkości cząsteczek

Rozkład Maxwella-Boltzmanna (1852 r.)

RT

Mv

evRT

MvP 22

2

3 2

24

P(v) – funkcja rozkładu prawdopodobieństwa: dla dowolnej prędkości v iloczyn P(v)dv (wielkość bezwymiarowa) wskazuje, jaki ułamek cząsteczek ma prędkość z przedziału o szerokości dv i środku w punkcie v. Całkowite pole pod krzywą określa całkowitą liczbę cząsteczek.

Page 27: KINETYCZNA TEORIA GAZÓW
Page 28: KINETYCZNA TEORIA GAZÓW
Page 29: KINETYCZNA TEORIA GAZÓW
Page 30: KINETYCZNA TEORIA GAZÓW

10

dvvP

dvvPnv

v

vv

2

1

2

1

M

RTdvvvPvśr

8

0

Całkowite prawdopodobieństwo (pole pod krzywą):

Ułamek cząsteczek o prędkości od v1 do v2:

Prędkość średnia:

Page 31: KINETYCZNA TEORIA GAZÓW

M

RTdvvPvv śr

3

0

22

..2

kwśrśrvv

M

RTv kwśr

3..

Średni kwadrat prędkości:

Prędkość średnia kwadratowa:

M

RTvp

2

Prędkość najbardziej prawdopodobna dP/dv=0:

Page 32: KINETYCZNA TEORIA GAZÓW

M

RTvśr

8

M

RTv kwśr

3..

M

RTvp

2

Page 33: KINETYCZNA TEORIA GAZÓW

Molowe ciepło właściwe gazu doskonałego

Jak przypadkowy ruch atomów lub cząstek tworzących gaz przekłada się na energię gazu?

ENERGIA WEWNĘTRZNA

Jednoatomowy gaz doskonały: hel, neon lub argon.

Średnia energia kinetyczna ruchu postępowego pojedynczego atomu zależy tylko od temperatury gazu:

kTE śrk 2

3

Page 34: KINETYCZNA TEORIA GAZÓW

Energia wewnętrzna gazu doskonałego jest równa sumie nergi kinetycznych związanych z ruchem postępowym tworzących go atomów.

Próbka n moli zawiera nNA atomów. Energia wewnętrzna Ew próbki jest więc równa:

kTnNEnNE AśrkAw 2

3

AN

Rk

nRTEw 2

3

Energia wewnętrzna Ew gazu doskonałego zależy TYLKO od temperatury gazu; nie zależy ona od żadnej innej wielkości opisującej jego stan.

Page 35: KINETYCZNA TEORIA GAZÓW

MOLOWE CIEPŁO WŁAŚCIWE GAZU DOSKONAŁEGO PRZY STAŁEJ OBJĘTOŚCI – CV

Page 36: KINETYCZNA TEORIA GAZÓW

dostarczone ciepło => temperatura

TnCQ V

CV – molowe ciepło właściwe gazu przy stałej objętości

Tn

EC

WTnCE

WQE

wV

Vw

w

W=0 ponieważ V=0

Page 37: KINETYCZNA TEORIA GAZÓW

Pamiętając, że energia wewnętrzna Ew gazu jednoatomowego jest równa:

a zmiana energii wewnętrznej:

nRTEw 2

3

TnREw 2

3

Kmol

JR

Tn

EC w

V 5.122

3

Page 38: KINETYCZNA TEORIA GAZÓW

Ostatecznie zmiana energii wewnętrznej gazu zwiazana ze zmianą jego temperatury wynosi:

TnCE Vw

Zmiana energii wewnętrznej gazu doskonałego zamkniętego w zbiorniku zależy TYLKO od zmiany temperatury gazu, nie zależy natomiast od typu procesu, w wyniku którego nastąpiła zmiana temperatury.

Page 39: KINETYCZNA TEORIA GAZÓW

MOLOWE CIEPŁO WŁAŚCIWE GAZU DOSKONAŁEGO PRZY STAŁYM CIŚNIENIU – Cp

Page 40: KINETYCZNA TEORIA GAZÓW

dostarczone ciepło => temperatura

TnCQ p

CP – molowe ciepło właściwe gazu przy stałej objętości (CP>CV)

RCC

RCC

TnRVpW

WQE

Vp

pV

w

TnCE Vw

Page 41: KINETYCZNA TEORIA GAZÓW

STOPNIE SWOBODY A MOLOWE CIEPŁO WŁAŚCIWE

Page 42: KINETYCZNA TEORIA GAZÓW

Możliwe ruchy:

-Ruch postępowy

-Ruch obrotowy

-Ruch drgający (cząsteczka wieloatomowa)

Page 43: KINETYCZNA TEORIA GAZÓW

Każdy rodzaj cząsteczek charakteryzuje pewna liczba STOPNI SWOBODY f, które dają cząsteczce niezależne sposoby przechowywania energii. Na każdy stopień swobody przypada - średnio – energia równa 1/2kT na cząsteczkę (lub 1/2RT w przeliczeniu na mol)

ZASADA EKWIPARTYCZJI ENERGII(równego podziału energii)

nRTf

Ew 2

Page 44: KINETYCZNA TEORIA GAZÓW
Page 45: KINETYCZNA TEORIA GAZÓW

Rozprężanie adiabatyczne gazu doskonałego

Proces przeprowadzany bardzo szybko (jak w przypadku fali dźwiękowej) lub w dobrze izolowanym zbiorniku.

Page 46: KINETYCZNA TEORIA GAZÓW

constpV

gdzie

V

p

C

C

Adiabata opisana jest równaniem:

V

constp

Równanie przemiany adiabatycznej (zmienne p oraz V):

Page 47: KINETYCZNA TEORIA GAZÓW

constVV

nRT

Równanie przemiany adiabatycznej (zmienne T oraz V):

Ponieważ n oraz R są stałymi:

constTV 1

11 kkpp VTVT

Dla gazu podlegającego przemianie od stanu początkowego P do stanu końcowego K można napisać:

Page 48: KINETYCZNA TEORIA GAZÓW

Ponieważ ciśnienie w butelce jest większe od ciśnienia atmosferycznego, po jego otwarciu gaz rozpręża się, co oznacza, że wykonuje on pracę przeciwko ciśnieniu atmosferycznemu. Ponieważ dzieje się to bardzo szybko, przemianę można uznać za adiabatyczną, a więc praca wykonywana jest kosztem energii wewnętrznej. Ponieważ maleje energia wewnętrzna, obniża się również temperatura gazu, co sprawia, że para wodna w gazie ulega kondensacji, tworząc maleńkie kropelki, widoczne w postaci mgiełki.pkpk

kkpp

TTVV

VTVT

11

Page 49: KINETYCZNA TEORIA GAZÓW

ENTROPIA I DRUGA ZASADA TERMODYNAMIKI

c.d.n.