14
Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science [email protected] Protein stability and drug delivery Morphology and protein-protein interactions Rheology: subcutaneous injection Adv. Functional Nanomaterials (metals and metal oxides/polymers) Control morphology/crystallinity via nucleation/growth in sol’n Colloidal stability (ligands and polymers on the surface) Optical, magnetic, electrocatalytic properties = f (morphology) Biodegradable photonic Au nanoclusters for cancer imaging Nanoparticle Interact. with Liq. and Solid Interfaces Oil/water and gas/water interfaces (emulsions and foams) Solid surfaces (adsorption and transport in porous media) Φ(h) h vdW, depletion attr. elect. rep. steric 5 nm 5 nm Collaborators Tom Truskett, Nate Lynd Kostia Sokolov (Photonic nps- imaging) Keith Stevenson (Electrochemistry) Masha Prodanovic, David DiCarlo George Hirasaki, Quoc Nguyen (Petr. Eng.)

Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Keith Johnston Research GroupNanomaterials Chemistry/Colloid and Interface Science/Polymer Science

[email protected]

Protein stability and drug delivery

Morphology and protein-protein interactions

Rheology: subcutaneous injection

Adv. Functional Nanomaterials

(metals and metal oxides/polymers)Control morphology/crystallinity via nucleation/growth in sol’n

Colloidal stability (ligands and polymers on the surface)

Optical, magnetic, electrocatalytic properties = f (morphology)

Biodegradable photonic Au nanoclusters for cancer imaging

Nanoparticle Interact. with Liq. and Solid InterfacesOil/water and gas/water interfaces (emulsions and foams)

Solid surfaces (adsorption and transport in porous media)Φ(h)

h

vdW, depletion

attr.

elect. rep.

steric

5 n m5 n m

CollaboratorsTom Truskett, Nate LyndKostia Sokolov (Photonic nps- imaging)Keith Stevenson (Electrochemistry)

Masha Prodanovic, David DiCarlo George Hirasaki, Quoc Nguyen (Petr. Eng.)

Page 2: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Subcutaneous injection (SC) of concentrated monoclonal antibodies at 300 mg/ml is a major drug delivery challenge

• >20% of all biopharmaceuticals in clinical trials are mAbs

• cancer, allergies, asthma, inflammatory diseases, cardiovascular diseases, infectious diseases, etc.

• At high conc. spacings are small – specific short-ranged attraction cause association and high viscosity

– Hydrogen bonds, anisotropic elect. attraction

– Hydrophobic interactions

Agrawal et al, mAbs (16)Fukuda et al., Pharm Res (2015), Lilyestrom et al., JPCB (2013), Buck, et al., Mol Pharm (2012)

Name Indication Company Conc.ACTEMRA RA, juvenile arthritis Genetech 180mg/mL

Herceptin Breast and gastric cancer Roche 120 mg/mL

Static light scattering

Fv domains: light chain on left sideRed: exposed negative patches

Page 3: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Use co-solutes to mitigate attractive interactions to lower viscosity up to 10 x

3

1

10

100

1000

50 100 150 200 250 300

Vis

co

sit

y (

cP

)

mAb concentration (mg/mL)

15:40 His(HCl):Mannitol

DI water

40:50:17 Tre:His:CitrA

50:50:12 Tre:His:PhosA

Co-solute

Monomer solutionNetwork solution with

interaction sites

Agrawal et al, mAbs (16)), Shukla et al., JPCB (11), Hung et al., J Membr. Sci. (16)

• Local anisotropic electrostatic attraction• Hydrophobic interactions• Depletion attraction

Trehalose

Arginine Histidine

Page 4: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Research Goals• Characterize protein morphology, protein-protein interactions and

network structure for 200-250+ mg/mL mAb

– Static structure: SAXS/SANS, DLS, SLS, cryo-TEM/SEM

– Dynamic structure: DLS, shear and oscillatory rheology

– MD simulations

• Relate viscosity/stability to protein morphology and interactions

– Prot.-prot. interactions : (SAXS/SANS), kD (DLS), B22 (SLS), ζ-Potential

– Conformational stability: Diff. scanning calorimetry, circular dichroism

– Effect of mAb structure, pH, and ionic strength

– Develop design rules for cosolutes to achieve low viscosity (10 – 20 cP) and high stability

• Sponsors: NSF Inspire, Abbvie, Pfizer, Merck

4

Page 5: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Proposed: SAXS- Determine interactions from structure factor S(q) using 12 bead model for form factor P(q)

Godfrin, et al., JPCB (2016)

• Viscosity incr. by network formation of dimers w/ added salt. Dimer Conformations

0

0.001

0.002

0.003

0.004

0.005

0.006

0.001 0.01 0.1

I(q

)/c

Scattering Vector (A-1)

mAb1: 200 mg/ml

No Co-soluteEffective Co-soluteIneffective Co-solute

𝐼 𝑞 = 𝑐 ∗ Δρ 2 ∗ 𝑃 𝑞 ∗ 𝑆(𝑞)

Page 6: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer
Page 7: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Reversible Gold Nanoclusters for Imaging/Therapy

• Reversible equilibrium control of cluster size: self-limited growth

• NIR active nanoclusters with small particle spacing

• Design reversibility and lack of protein adsorption for clearance

Johnston, Sokolov, Truskett, Stover, Moaseri: ACS Nano (13), JACS (13), JPChem (14), Langmuir (16)

7

10

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6

Hyd

rod

ynam

ic D

iam

ete

r(n

m)

Equilibrium Point

Page 8: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Growth of 16 nm Magnetic Nanoparticles with High Crystallinity to Yield Magnetic Susceptibility of 4!

Precise control over particle nucleation/growth to control particle size and crystallinity

Fe(CH3COO)2 dissociates rapidly at 210 C: high supersat.

for focused size distribution

crit. size is small for high monomer conc.

small particles grow faster than large onesarrest growth in focusing region

Applications: imaging- subsurface and biomedical, magnetic separations, sensors

3

𝜒𝑖 =𝑀

𝐻=𝜖𝜇0𝜋𝑀𝑑

2𝐷𝑝3

18𝑘𝐵𝑇

5 n m5 n m

Characterization: XRD (cryst. Structure), TEM: part. size, Mossbauer spectroscopy (Fe valence)

Page 9: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Colloidal stability of inorganic/polyelectrolyte hybrids at high salinity: grafting polymers from, to, and through

Reversible addition-fragmentation chain-transfer (RAFT) polymerization with “controlled” MW distribution

NH2

NH2

NH2H2N

H2N

NH2

NH2

H2N

Silica NP (20-30 nm)

0

20

40

60

80

100

120

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

Hyd

rod

yn

am

ic D

iam

ete

r (nm

)

Ionic Strength (M)

-

-

--

-

-

--

-

-

--

--

----

--

-

-

-

-

-

-

-

-

-

--

-

-

-+ +

-

-+ +

Limited collapse for Ca2+ at high conc. and thus colloidal stability

Page 10: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

10

Wormlike Micelles Impart Viscoelasticity for Ultra Dry Foams

Catanionic micelles:Jamming: slow drainage maintains thick lamellaeFameau et al., Ang. Chem. (11)

Stable foams at only 2% water: low drainage of viscoelastic lamellaethicker lamellae resist Ostwald ripening and coalescence

• 208 trillion m3 of CH4 in shale (world)• 2~5 million gallons of water/well for

disposal

0

20

40

60

80

100

120

140

67 77 87 97

Ap

pare

nt

Vis

co

sit

y c

P

Foam Quality %

90°C

50°C

Page 11: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Hardin, Johnston, K.P. et al. ; Highly Active LaNiO3, J. Phys. Chem. Let. 2013, Mefford, Hardin, Johnston, K.P. et al. ; LaMnO3 Pseudocapacitor, Nature Mater. 2014Hardin, Mefford, Johnston, K.P. et al. ; Perovskite Active Site Variation, Chem. Mater. 2014, Nature Comm. 2016

Oxygen Evolution Reaction (OER)4OH- → 2H2O + 4e- + O2

Nanostructured Perovskite Oxides for Electrocatalysis:

batteries, supercapacitors, water splitting

Subst. of Sr2+ for La3+ creates O vacancies: high covalency of Co-O bond

OER rate correlated to O vacancy conc.

Novel paradigam for supercapacitors: OH- vacancy mediated redox

supercapacitance

High Surface Area to raise activity

Metal 3d and Oxygen 2p density of states should overlap!

Page 12: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Destination of PhD Students

• Gupta Auburn

• Balbuena Texas A + M

• Meredith Ga. Tech.

• Yates U. Rochester

• Da Rocha Virginia Tech.

• Lee U. S. California

• Ziegler U. Florida

• Lu Nat. Univ. Singapore

• Elhag Petroleum Inst. (Abu Dhabi)

• Shah Pfizer• Pham Sematech• Chen Abbott• Dickson Exxon-Mobil• Smith Exxon-Mobil• Overhoff Schering-Plough• Engstrom Bristol-Meyers-Squibb• Matteucci Dow• Gupta Exxon-Mobil• Tam Bristol-Meyers-Squibb• Patel Lam Research• Ma Dupont• Miller Medimmune• Slanac Dupont• Murthy Roche• Chen Dow• Xue Ecolab• Borwankar Bristol-Meyers-Squibb• Worthen Exponent

Page 13: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

Protein therapeuticsJessica HungBart [email protected]

Gold imaging nanoclustersEhsan [email protected]

Subsurface nanotechnologyCarson DaChola DandamudiShehab [email protected]

Energy storage (electrochemistry)Will HardinCaleb [email protected]

NSF Inspire ProgramDOE CFSES, DOE NETLAdvanced Energy Consortium, AbbVie,Pfizer, Merck

Welch FoundationAbu Dhabi Nat. Oil. Co.GOMRI, NSF CBET,NIH

Page 14: Keith Johnston Research Group - che.utexas.eduche.utexas.edu/...ResearchPresentation_Nov2016.pdf · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer

• K. Y. Yoon et al., Control of magnetite primary particle size in aqueous dispersions of nanoclusters for high magnetic susceptibilities. Journal of Colloid and Interface Science 462, 359 (Jan 15, 2016).

• Z. Xue et al., Ultradry Carbon Dioxide-in-Water Foams with Viscoelastic Aqueous Phases. Langmuir 32, 28 (Jan 12, 2016).

• A. J. Worthen, V. Tran, K. A. Cornell, T. M. Truskett, K. P. Johnston, Steric stabilization of nanoparticles with grafted low molecular weight ligands in highly concentrated brines including divalent ions. Soft Matter 12, 2025 (2016).

• E. E. Urena-Benavides et al., Low Adsorption of Magnetite Nanoparticles with Uniform Polyelectrolyte Coatings in Concentrated Brine on Model Silica and Sandstone. Ind. Eng. Chem. Res. 55, 1522 (2016).

• R. J. Stover et al., Formation of Small Gold Nanoparticle Chains with High NIR Extinction through Bridging with Calcium Ions. Langmuir 32, 1127 (2016).

• J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston, K. J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726 (2014).

• W. G. Hardin et al., Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions. Chem. Mater. 26, 3368 (2014).

• L. M. Foster et al., High Interfacial Activity of Polymers "Grafted through" Functionalized Iron Oxide Nanoparticle Clusters. Langmuir 30, 10188 (2014).

• A. K. Murthy et al., Charged Gold Nanoparticles with Essentially Zero Serum Protein Adsorption in Undiluted Fetal Bovine Serum. Journal of the American Chemical Society 135, 7799 (2013).

• A. K. Murthy et al., Equilibrium Gold Nanoclusters Quenched with Biodegradable Polymers. ACS Nano 7, 239 (2013).

• A. U. Borwankar et al., Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter 9, 1766 (2013).

• M. A. Miller et al., Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and In Vivo bioavailability. J. Pharm. Sci. 101, 3763 (Oct, 2012).

• K. P. Johnston et al., Concentrated Dispersions of Equilibrium Protein Nanoclusters That Reversibly Dissociate into Active Monomers. ACS Nano 6, 1357 (Feb, 2012).