22
Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science [email protected] Advanced Functional Nanomaterials (metals and metal oxides/polymers) Control of particle morphology/crystallinity via nucleation and growth in solution Colloidal stability and functional properties (ligands and polymers on the surface) Optical, magnetic and catalytic properties = f (morphology) Nanoparticle Interactions with Liquid and Solid Interfaces Oil/water and gas/water interfaces (emulsions and foams) Solid surfaces (adsorption and transport in porous media) Metals and metal oxides on conductive supports for electrocatalysis Nanocluster Self Assembly Platform for Enhanced Properties Protein nanoclusters (new composition of matter) Metals: Au photonic NIR nanoclusters (biodegradable) Metal oxides for subsurface imaging and electrocatalysis 50 nm Φ(h) h vdW, depletion attr. elect. rep. steric h

Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science [email protected] Advanced Functional

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science

[email protected]

Advanced Functional Nanomaterials (metals and metal oxides/polymers) Control of particle morphology/crystallinity via nucleation and growth in solution

Colloidal stability and functional properties (ligands and polymers on the surface)

Optical, magnetic and catalytic properties = f (morphology)

Nanoparticle Interactions with Liquid and Solid Interfaces Oil/water and gas/water interfaces (emulsions and foams)

Solid surfaces (adsorption and transport in porous media)

Metals and metal oxides on conductive supports for electrocatalysis

Nanocluster Self Assembly Platform for Enhanced Properties

Protein nanoclusters (new composition of matter)

Metals: Au photonic NIR nanoclusters (biodegradable)

Metal oxides for subsurface imaging and electrocatalysis

50 nm

Φ(h)

h

vdW, depletion attr.

elect. rep. steric

h

Page 2: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Tools Nano subsurface sci. Foams and Emulsions Oil spills, EOR CO2 sequestration Green Fracturing

Nano Subsurface Electromag Imaging

Electrochem Energy Storage (KS)

Protein Stability/ Delivery

Au Nanoclusters for Biomedical Imaging/Therapy

Materials Chemsistry: Nucleation, growth, passivation(aq., org.)

Colloid interactions/stability (colloid sci./polymer science)

Colloidal assembly nanocluster platform

Nps/surfactants /polymers interfacial phen.

Nps at solid interfaces/transport in porous media

Target morphology to advanced functional properties

Optical properties

Magnetic properties

Catalytic properties

Scientific building blocks to create and advance applications in energy, materials and pharmaceutical/biomedical fields

100 nm

Page 3: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Nanoclusters composed on nanoparticles by tuning colloidal forces

Magnetic nanoclusters for subsurface imaging (high suscept.) – Xue, Foster, Tarkington, Kong

Protein Nanocluster Dispersions(400 mg in 1 mL) – Stable protein and low viscosity for sub Q injection – Borwankar, Dear, Hung, Zhang, Labor

Biodegradable gold nanoclusters for imaging/therapy - Weakly adsorbed polymers to drive cluster formation

Murthy, Stover

Sub-5 nm gold particles

Clustering of gold nanoparticles

mediated by weakly adsorbing polymer

PLA-b-PEG-b-PLA

Gold nanoparticle bound together by

polymerSub-5 nm gold particles

Clustering of gold nanoparticles

mediated by weakly adsorbing polymer

PLA-b-PEG-b-PLA

Gold nanoparticle bound together by

polymer

Capsid of dsRNA virus Junhua Pan et al. PNAS, 106 (09) Hundreds crystallographic X-rays 5 nm protein building blocks

100 nm 50 nm

Φ(h)

h

vdW, depletion attr.

elect. rep.

steric

Page 4: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Subsurface Foams, Emulsions and Colloid Science/Nanotech: (Sequestration, EOR, fracturing, oil spills: energy, water, environmental in massive qtys)

CO2

q q water

CO2

CO2

water

CO2

water

Oil or CO2

Design nps/surf. for low ift and high stability

Np adsorption at interface vs. surface structure

Foam stability: lamellae thickness, disjoining pressure, hole nucleation

Low adsorption on rock: DLVO theory

Oil jets dispersed w/ 1:100 clay

W W CO2

We propose self-healing holes

Deepwater Horizon spill

Page 5: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Magnetic Imaging Agents for Energy Applications

• Electromagnetic imaging – porous media in reservoirs – oil drops coated with adsorbed magnetic np

contrast agents • Magnetic resonance imaging of oil spills

• Synthesize magnetic nanoparticles with

high magnetic susceptibility – Coated with amphiphilic polymers for stability

and transport – Control transport and interfacial activity

• Hz = f(eikr) where k = f(m) mag.

permeability

Bagaria, KPJ et al. ACS Appl. Mat. Interfaces, 2013

Page 6: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

High mag. susceptibility magnetic Nps with grafted polymers: transport and interfacial properties(contrast agents oil reservoirs, spills, fracturing, cancer)

6

Superparamag. IO clusters with amine coated surfaces

50 nm

• Dense clusters for high magnetic susceptibility • Charged copolymers for electrosteric stab. in brine • Low adsorption on sandstone:

Graft density, MW, copolymer composition

-

-

- -

-

-

Amide Bonds PAMPS-PAA grafts

-150

-100

-50

0

50

100

150

-40 -20 0 20 40

Mag

ne

tiza

tio

n [

em

u/g

Fe

]

Field [kOe]

NP 8NP 7NP 5NP 15

0

0.5

1

0 2 4 6C

/C0

Pore Volume Bagaria, KPJ et al. ACS Appl. Mat. Interfaces, 2013

Page 7: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Synergistic efficient dispersants: nps and surfactants

Carbon Black with Corexit-9500 or DTAB

Scale bar = 1 µm

Colloidal silica (30 nm bare) Caprylamidopropyl betaine

• Stable oil/seawater emulsion with only 0.5 wt.% • Surfactant lowers ift • Irreversibly adsorbed nps prevent coalesc.

• High synergy rules: control each amphiphile partitioning into various interfaces • Silica, C, clays, iron oxide with all types of surf.

Bose, John Johnston, Truskett, Bryant, Bielawski, John

Worthen, KPJ et al. Langmuir, 2014

50 mm

Page 8: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Phase Inversion of Emulsions Stabilized with Natural Clay Microparticles and only 10 ppm Ethoxylated Amine Surfactant

natural clay MMT (Montmorillonite)

low HLB, oil soluble

cost effective

• Little surfactant needed for modification of low surf. area 10 micron clay • Phase inversion: attempt to mimic McCormick/Larson/Walker/Anna et al. mechanisms

ethoxylated (2) oleylamine E-O/12 (Ethomeen O/12)

1 10 100 10000

20

40

60

80

100

re

lativ

e v

ol%

size (mm )

t=0

t=1 h

t=24 h

o/w emulsion stable to

coalescence

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.15

0.20

0.25

0.30

0.35

0.40

o/w

0 20 50 100 200 300 400 600

w

[E-O

/12

]/[M

MT

]

w/o

initial droplet size (μm)

E-O

/12 (

wt%

)

MMT ( wt % )

0 1 5 10 15 20 30 40 50

10.50.250.1

0.01

0.001

0.1

creaming stability (min)

1% MMT + 0.001% E-O/12

Page 9: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Self-limiting nanocluster size: attraction balances electrostatic repulsion = f (q)

• Minimization wrt nc

• Bjerrum length λ = e2/4πЄrЄ0kBT

9

Groenewold and Kegel, J.P.C. B, (01) Johnston et al., ACS Nano (13) Borwanker, KPJ et al., Soft Matter (13)

q+

q+ q+

q+

q+

q+

q+ q+

q+ q+

q+ q+ q+

q+ q+

q+ q+

q+

q+

q+

q+

q+

2R 2Rc

2R

Energy gain due to neighbors

Interfacial free energy penalty (γ = ε/surface area)

Coulombic repulsion as q2 grows

Free energy per protein

50 nm Entropy of counterions

Page 10: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Tunable protein nanoclusters: drug delivery and protein stabilization

1. Advance colloid theory, structural characterization: SANS, DLS, SEM

2. Low viscosity at high concentration 3. Protein stabilization in crowded state 4. Extend to new proteins/peptides/crowders 5. Revolutionize health care: cancer, infections

disease, immune disorders 6. Discussions/res with major pharma. companies Johnston et al., ACS Nano (13)

Borwankar, KPJ et al., Soft Matter (13)

11 nm 55 nm

Page 11: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Roadmap for design of protein nanoclusters

• Lyophilization dilution (LD) and conc. filtration produce similar sizes • Clusters dissociate upon dilution of protein/crowder in buffer • Excellent qualitative agreement between theory and experiment

Borwankar et al., Soft Matter, 2013

C 250:100

11

Page 12: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Hierarchy of Intracluster vs Intercluster Interactions near pI

• Separation between particles order of radius (φ ~0.2)

• Monomer to monomer attraction (depletion) dominant with low charge

• Intracluster: (monomer to cluster) attraction balances elect. rep.

• Intercluster electrostatic repulsion dominant

• colloidal stability • low intrinsic viscosity • buried attraction

12

Solution of Monomer Spec. short range dom Dispersion of 200 nm

Nanoclusters

5 nm

55 nm

11 nm 55 nm

q~ 1 (near pI) * 1000 proteins in cluster

q~ 1 near pI

Borwankar et al., Soft Matter, 2013

Protein

concentration

(c, mg/ml)

Trehalose

concentration

(cE, mg/ml)

Viscosity

(η, cP)

𝜙eff Intrinsic

viscosity ([η])

Hydrodynamic

diameter

275 (IgG) 275 63 0.34 7.4 88.0

260 (IgG soln) 0 57 0.19 18 9.66

Page 13: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Control Size and Morphology of Quenched Equilibrium Gold Nanoclusters

• Form “quenched equilibrium” nanoclusters with weakly adsorbed polymer – Tunable size by from 20 to 40 nm varying Au concentration and polymer/Au ratio – Nanoclusters quenched at equilibrium size by polymer adsorption – Semi-quantitatively predict nanocluster size with free energy equil. model

• balance short ranged depletion and vdW attractions with electrostatic repulsion

– Close spacings of primary gold particles produces intense NIR extinction

• Demonstrate reversibility of biodegradable nanoclusters – pH 5 HCl: degrades PLA groups on polymer, removes polymer quenching – Primary particle surface charge sufficient for dissociation to monomer

small enough for potential kidney clearance

Tam, Sokolov, Johnston, Murthy et al., ACS Nano (10) Langmuir (10) Murthy, Johnston, Sokolov, Truskett, Stover ACS Nano (13), JACS (13)

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

400 500 600 700 800 900

Wavelength (nm)

Ab

so

rba

nc

e |

Before evaporation50% evaporation60% evaporation80% evaporation95% evaporation100% evaporationCitrate/lysine-capped colloidal Au

Page 14: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

14

50 nm

100%

50 nm

60%

50 nm 50 nm

0% 50%

100%

50 nm

Cluster Size Increases with Evaporation ()

Polymer shell • 3 mg/ml Au, 50 mg/ml PLA-b-PEG-b-PLA 1K-10K-1K, lysine/citrate ligands on surface

• Greater evaporation higher particle and polymer concentration • greater polymer induced depletion attraction and VDW attraction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

400 500 600 700 800 900

Wavelength (nm)

Ab

so

rba

nc

e |

Before evaporation50% evaporation60% evaporation80% evaporation95% evaporation100% evaporationCitrate/lysine-capped colloidal Au

Tam, KPJ et al. ACS Nano 2010; Langmuir 2010

Page 15: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Nanocluster Size Can Be Predicted Semi-Quantitatively with Free Energy Model

- Size increases with gold concentration (counterion entropy) and polymer concentration (depletion attraction)

- Polymer “quenching” nanoclusters size retained upon dilution - Model is predictive given charge from zeta potential and assumed - Murthy, Stover et al (2013) ACS Nano - e 15

50 nm

20-4.0

Page 16: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Reversibility: Nanoclusters Dissociate Upon Polymer Degradation (polymer: Au = 20)

16

- Incubated in pH 5 HCl (mimic cancer cell pH) - DLS and UV-Vis-NIR spectra indicate monomer - Polymer degradation: charged Au nps dissociate

Page 17: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Mixed Charge Monolayers: “Buried” Charges Result in Reduced Protein Adsorption Even on Charged Nanospheres

Lysine/citrate monolayer Cysteine/citrate monolayer

17

Murthy, Stover, KPJ et al., JACS 2013

-16 mV -22 mV

Page 18: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

[1]Lee, IrO2 and RuO2 OER, JPCL 2011 [2]Suntivich, Perovskite OER, Science 2011 [3]Liang, Co3O4 Graphene Catalyst, Nature Mat. 2011 [4]Hardin, Johnston, K.P. et al. ; Highly Active LaNiO3, J. Phys. Chem. Let. 2013

LaNiO3 generates 3 times more current per mass than the leading precious metal oxide catalyst IrO2 by utilizing lattice oxygen

Oxygen Evolution Reaction (OER)

OH- → OHads + e- OHads + OH- → Oads + H2O + e-

Oads + OH- → OOHads + e-

OOHads + OH- → H2O + e- + O2

LaNiO 3

/AB

NC

Co 3

O 4/N

GO

IrO2

LaNiO 3

/NC

0

20

40

60

80

100

1.56 V RHE

Mass A

ctivity [m

A/m

go

xid

e]

Nanostructured Perovskite Oxides for Electrocatalysis

recharg. Zn-air batteries, supercapacitors, water splitting

Colloidal dispersion of mixed metal hydroxides → thin film freezing → lyophilization → calcination

Phase pure nanostructured perovskites: reverse phase arrested growth precipitation avoids phase segregation

OER

Page 19: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Experimental tools • Scattering: DLS, SLS, SAXS, SANS, XRD

• Spectroscopy: UV-vis/NIR, FTIR, CD, FTIR-ATR,

Flame AAS, XPS, NMR, GCMS, Ind. Coupled Plasma

MS, Energy dispersive x-ray spectroscopy (EDS)

• Microscopy: optical, TEM, SEM, High-resolution

aberration corrected transmission electron, high-

angle annular dark-field imaging

• Electrophoretic mobility/zeta potential

• Chromatography: HPLC, SEC, GC, GPC

• Separations (other): Tangential flow filtration,

Centrifugation, Membrane centrifugation

• Viscometry: capillary viscometer, cone and plate

viscometer, flow through porous media

• Tensiometry: pendant drop, captive bubble,

contact angle

• Ellipsometry

• Magnetic properties: SQUID, Vibrating sample

magnetometry (VSM) susceptometry

• Electrochemistry: CV, Coulometry, Rotating disk

• Thermogravimetric analysis (TGA)

• BET nitrogen sorption (specific surface area)

• Differential scanning calorimetry (DSC)

• Elemental analysis

• Dynamic mechanical analysis (DMA)

• High T and P: foam generation, rheology, stability

measurements, phase behavior

• Homogenization (pore and rotary), Probe

sonication, Lyophilization, thin film freezing

• Hyperspectral imaging and photoacoustic imaging

(BME)

• Mouse studies: in vivo injection/dissection

Page 20: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Johnston group

Bart Dear (Proteins) CPE 5.430, [email protected]

Andrew Worthen (Subsurface energy, CO2 EOR, Oil dispersants) CPE 5.428, [email protected]

Will Hardin (Electrochem.) CPE 5.426, [email protected]

Bobby Stover (Biomedical imaging Au) CPE 5.432, [email protected] Faculty Collaborators: Jennifer Maynard, Tom Truskett, Kostia Sokolov, Chris Bielawski and Keith Stevenson(Chemistry), Steve Bryant, George Hirasaki, and Quoc Nguyen (PGE)

Bart Andrew Will

Bobby

Page 21: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Destination of Recent PhD Students

• Gupta Auburn

• Balbuena Texas A + M

• Meredith Ga. Tech.

• Yates U. Rochester

• Da Rocha Wayne State U.

• Lee U. S. California

• Ziegler U. Florida

• Lu Nat. Univ. Singapore

• Shah Pfizer • Pham Sematech • Chen Abbott • Dickson Exxon-Mobil • Smith Exxon-Mobil • Overhoff Schering-Plough • Engstrom Bristol-Meyers-Squibb • Matteucci Dow • Gupta Exxon-Mobil • Tam Bristol-Meyers-Squibb • Patel Lam Research • Ma Dupont • Miller Medimmune • Slanac Dupont • Murthy Roche

Page 22: Keith Johnston Research Group · 2014. 8. 26. · Keith Johnston Research Group Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science kpj@che.utexas.edu Advanced Functional

Selected References • Worthen, A. J.; Bagaria, H. G.; Chen, Y. S.; Bryant, S. L.; Huh, C.; Johnston, K. P., Nanoparticle-stabilized carbon dioxide-in-water foams with fine

texture. Journal of Colloid and Interface Science 2013, 391, 142-151.

• Murthy, A. K.; Stover, R. J.; Hardin, W. G.; Schramm, R.; Nie, G. D.; Gourisankar, S.; Truskett, T. M.; Sokolov, K. V.; Johnston, K. P., Charged Gold Nanoparticles with Essentially Zero Serum Protein Adsorption in Undiluted Fetal Bovine Serum. J. Am. Chem. Soc. 2013, 135, (21), 7799-7802.

• Murthy, A. K.; Stover, R. J.; Borwankar, A. U.; Nie, G. D.; Gourisankar, S.; Truskett, T. M.; Sokolov, K. V.; Johnston, K. P., Equilibrium Gold Nanoclusters Quenched with Biodegradable Polymers. ACS Nano 2013, 7, (1), 239-251.

• Hardin, W. G.; Slanac, D. A.; Wang, X.; Dai, S.; Johnston, K. P.; Stevenson, K. J., Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J. Phys. Chem. Lett. 2013, 4, 1254-1259.

• Borwankar, A. U.; Dinin, A. K.; Laber, J. R.; Twu, A.; Wilson, B. K.; Maynard, J. A.; Truskett, T. M.; Johnston, K. P., Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter 2013, 9, (6), 1766-1771.

• Bagaria, H. G.; Xue, Z.; Neilson, B. M.; Worthen, A. J.; Yoon, K. Y.; Nayak, S.; Cheng, V.; Lee, J. H.; Bielawski, C. W.; Johnston, K. P., Iron Oxide Nanoparticles Grafted with Sulfonated Copolymers are Stable in Concentrated Brine at Elevated Temperatures and Weakly Adsorb on Silica. ACS Appl. Mater. Interfaces 2013, 5, (8), 3329-3339.

• Yoon, K. Y.; Li, Z.; Neilson, B. M.; Lee, W.; Huh, C.; Bryant, S. L.; Bielawski, C. W.; Johnston, K. P., Effect of Adsorbed Amphiphilic Copolymers on the Interfacial Activity of Superparamagnetic Nanoclusters and the Emulsification of Oil in Water. Macromolecules (Washington, DC, U. S.) 2012, 45, 5157-5166.

• Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J., Atomic Ensemble and Electronic Effects in Ag-Rich AgPd Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media. J. Am. Chem. Soc. 2012, 134, 9812-9819.

• Johnston, K. P.; Maynard, J. A.; Truskett, T. M.; Borwankar, A. U.; Miller, M. A.; Wilson, B. K.; Dinin, A. K.; Khan, T. A.; Kaczorowski, K. J., Concentrated Dispersions of Equilibrium Protein Nanoclusters That Reversibly Dissociate into Active Monomers. Acs Nano 2012, 6, (2), 1357-1369.

• Yoon, K. Y.; Kotsmar, C.; Ingram, D. R.; Huh, C.; Bryant, S. L.; Milner, T. E.; Johnston, K. P., Stabilization of Superparamagnetic Iron Oxide Nanoclusters in Concentrated Brine with Cross-Linked Polymer Shells. Langmuir 2011, 27, (17), 10962-10969.

• Ma, L. L.; Tam, J. O.; Willsey, B. W.; Rigdon, D.; Ramesh, R.; Sokolov, K.; Johnston, K. P., Selective Targeting of Antibody Conjugated Multifunctional Nanoclusters (Nanoroses) to Epidermal Growth Factor Receptors in Cancer Cells. Langmuir 2011, 27, (12), 7681-7690.

• Adkins, S. S.; Chen, X.; Chan, I.; Torino, E.; Nguyen, Q. P.; Sanders, A. W.; Johnston, K. P., Morphology and Stability of CO2-in-Water Foams with Nonionic Hydrocarbon Surfactants. Langmuir 2010, 26, (8), 5335-5348.

• Johnston, K. P.; da Rocha, S. R. P., Colloids in supercritical fluids over the last 20 years and future directions. Journal of Supercritical Fluids 2009, 47, (3), 523-530.

• Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science 2000, 287, (5457), 1471-1473.

• Johnston, K. P.; Harrison, K. L.; Clarke, M. J.; Howdle, S. M.; Heitz, M. P.; Bright, F. V.; Carlier, C.; Randolph, T. W., Water-in-Carbon Dioxide Microemulsions: A New Environment for Hydrophiles Including Proteins. Science 1996, 271, 624.