22
Hard Probes 2008 Illa de A Toxa, Spain, June 8-14, 2008 Jet production at low Bjorken-x from HERA S. Levonian HERA and low x physics Inclusive Forward jets Forward jets in multijet configurations Azimuthal correlations in dijet system Low x 5 · 10 3

Jet production at low Bjorken-x from HERA

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jet production at low Bjorken-x from HERA

Hard Probes 2008

Illa de A Toxa, Spain, June 8-14, 2008

Jet production at low Bjorken-x from HERA

S. Levonian

• HERA and low x physics

• Inclusive Forward jets

• Forward jets in multijet configurations

• Azimuthal correlations in dijet system

Low x ≤ 5 · 10−3

Page 2: Jet production at low Bjorken-x from HERA

2 The HERA Collider

Days of running

H1

Inte

grat

ed L

umin

osity

/ p

b-1

Status: 1-July-2007

0 500 1000 15000

100

200

300

400electronspositronslow E

HERA-1

HERA-2

• HERA upgrade: L × 3, Polarised e+/e−

(Exp. improvements: silicon trackers, triggering, ...)

• Final Data samples H1+ZEUS: 2 × 0.5 fb−1

HERA-1 (1993-2000) ≃ 120 pb−1

HERA-2 (2003-2007) ≃ 380 pb−1

last 3 months - low Ep run to measure F p

L

(Ep = 460; 575 GeV, L = 20pb−1)

Page 3: Jet production at low Bjorken-x from HERA

3 Small x domain of HERA

y=1

(HERA √s

=320

GeV

)

x

Q2 (

GeV

2 )

Fixed Target Experiments

D0 Inclusive jets η<3

CDF/D0 Inclusive jets η<0.7

ZEUS

H1

10-1

1

10

10 2

10 3

10 4

10 5

10-6

10-5

10-4

10-3

10-2

10-1

1

p

e

x

Q2

• ep DIS: clean QCD laboratorywith high resolving power Q2 ⇒ 0.001fm

• Low x ≤ 10−3: new kinematic domain at HERA

⇒ any sign of novel parton dynamics?

Page 4: Jet production at low Bjorken-x from HERA

4 Small x domain of HERA

y=1

(HERA √s

=320

GeV

)

x

Q2 (

GeV

2 )

Fixed Target Experiments

D0 Inclusive jets η<3

CDF/D0 Inclusive jets η<0.7

ZEUS

H1

10-1

1

10

10 2

10 3

10 4

10 5

10-6

10-5

10-4

10-3

10-2

10-1

1

p

e

x

Q2

• ep DIS: clean QCD laboratorywith high resolving power Q2 ⇒ 0.001fm

• Low x ≤ 10−3: new kinematic domain at HERA

⇒ any sign of novel parton dynamics?

H1 and ZEUS Combined PDF Fit

HE

RA

Str

uctu

re F

unct

ions

Wor

king

Gro

upA

pril

2008

x = 0.000032, i=22x = 0.00005, i=21

x = 0.00008, i=20x = 0.00013, i=19

x = 0.00020, i=18x = 0.00032, i=17

x = 0.0005, i=16

x = 0.0008, i=15x = 0.0013, i=14

x = 0.0020, i=13

x = 0.0032, i=12

x = 0.005, i=11

x = 0.008, i=10

x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7

x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

σ r(x,

Q2 )

x 2i

HERA I e+p (prel.)Fixed TargetHERA I PDF (prel.)

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 102

103

104

105

• NLO DGLAP is still perfectly OK for F p2 (too inclusive?)

Page 5: Jet production at low Bjorken-x from HERA

5 Small x domain of HERA

y=1

(HERA √s

=320

GeV

)

x

Q2 (

GeV

2 )

Fixed Target Experiments

D0 Inclusive jets η<3

CDF/D0 Inclusive jets η<0.7

ZEUS

H1

10-1

1

10

10 2

10 3

10 4

10 5

10-6

10-5

10-4

10-3

10-2

10-1

1

p

e

x

Q2

• ep DIS: clean QCD laboratorywith high resolving power Q2 ⇒ 0.001fm

• Low x ≤ 10−3: new kinematic domain at HERA

⇒ any sign of novel parton dynamics?

H1 and ZEUS Combined PDF Fit

HE

RA

Str

uctu

re F

unct

ions

Wor

king

Gro

upA

pril

2008

x = 0.000032, i=22x = 0.00005, i=21

x = 0.00008, i=20x = 0.00013, i=19

x = 0.00020, i=18x = 0.00032, i=17

x = 0.0005, i=16

x = 0.0008, i=15x = 0.0013, i=14

x = 0.0020, i=13

x = 0.0032, i=12

x = 0.005, i=11

x = 0.008, i=10

x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7

x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

σ r(x,

Q2 )

x 2i

HERA I e+p (prel.)Fixed TargetHERA I PDF (prel.)

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 102

103

104

105

• NLO DGLAP is still perfectly OK for F p2 (too inclusive?)

0

0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 10

0.2

0.4

0.6

0.8

1

HERA-I PDF (prel.)

exp. uncert.

model uncert.

x

xf 2 = 10 GeV2Q

vxu

vxd

0.05)×xS (

0.05)×xg (

vxu

vxd

0.05)×xS (

0.05)×xg (

HE

RA

Str

uctu

re F

unct

ions

Wor

king

Gro

upA

pril

2008

H1 and ZEUS Combined PDF Fit

0

0.2

0.4

0.6

0.8

1

• There is a lot of glue in proton at low x!⇒ gluodynamics in high energy limit of QCD (W 2 ≈ Q2/x)

Page 6: Jet production at low Bjorken-x from HERA

6 QCD at low x

e+

p

e+

γ*

q

q

Q2

x

x0, k⊥ 0

xi, k⊥ i

xi+1, k⊥ i+1

Lots of glue in the proton ⇒ long gluon cascade at low x. Perturbative expansion

of evolution equations ∼∑

mn Amn ln(Q2)m ln(1/x)n hard to calculate explicitely

⇒ approximations needed

DGLAP: resums ln(Q2)n terms, neglecting ln(1/x)n terms

strong kT ordering in partonic cascade

BFKL: resums ln(1/x)n terms

no kT ordering in partonic cascade ⇒ more hard gluons

are radiated far from the hard interaction vertex

CCFM: angular ordered parton emission ⇒

reproduces DGLAP at large x and BFKL at x → 0

• How long is partonic cascade at HERA, at small x?

• Do the ln(1/x)n terms play a major role in parton dynamics as suggested by BFKL?

⇒ Look at (multi)jet final states at low x in different configurations

Page 7: Jet production at low Bjorken-x from HERA

7 Low x phenomenology

NLO 2-jet NLO 3-jet

, ..., , ...,DISENT, NLOJET++ NLOJET++

Fixed order

QCD calculations

Rapgap Dir Rapgap Res Cascade Lepto (CDM)

DGLAP

DGLAP

DGLAP

CCFM

CDM

LO ME + PS

MC models

kt−ordered gluon radiation angular ordering random walk in kt

(DGLAP) (BFKL like)(DGLAP ⇐⇒ BFKL)

Page 8: Jet production at low Bjorken-x from HERA

8 Forward jets

xBj

evolution from large

forward jet

x = Ejet

jetEp

Bj (small)x

to small x

(large)p

e e’

γ Strategy

Eventselection

(Ejett )2 ≈ Q2 ⇒ suppress phase space

for DGLAP evolution

large xjet >>xBj ⇒ enhance BFKL evolution

10−4 <x<4·10−3 5 < Q2 < 85GeV2

Ejett >3.5GeV 7o < θjet < 20o

xjet > 0.035 0.5 < (Ejett )2/Q2 < 2

Page 9: Jet production at low Bjorken-x from HERA

9 Forward jets

xBj

evolution from large

forward jet

x = Ejet

jetEp

Bj (small)x

to small x

(large)p

e e’

γ

H1

E scale uncert

NLO DISENT 1+δHAD0.5µr,f<µr,f<2µr,f

PDF uncert.

LO DISENT1+δHAD

H1 forward jet data

xBj

/ dx B

j (n

b)

a)

0

500

1000

0.001 0.002 0.003 0.004

H1E. scale uncert.RG-DIR

CDMRG-DIR+RES

H1 forward jet data

xBj

/ dx B

j (n

b)

c)

0

500

1000

0.001 0.002 0.003 0.004

Strategy

Eventselection

(Ejett )2 ≈ Q2 ⇒ suppress phase space

for DGLAP evolution

large xjet >>xBj ⇒ enhance BFKL evolution

10−4 <x<4·10−3 5 < Q2 < 85GeV2

Ejett >3.5GeV 7o < θjet < 20o

xjet > 0.035 0.5 < (Ejett )2/Q2 < 2

• Huge improvement from

LO to NLO, but still

insufficient at low x

• Resolved γ component in

DGLAP MC helps

(”breaks” kt ordering)

• CDM and RG(d+r) provide

similar description

⇒ inconclusive

Page 10: Jet production at low Bjorken-x from HERA

10 Forward jets against CCFM Monte Carlo

ZEUS

0

10

20

50 100

Q2 (GeV2)

dσ/d

Q2 (

pb/G

eV2 )

(a)

CASCADE s.1

CASCADE s.2

0

1000

2000

3000

x 10 2

0.0025 0.005

xBjdσ

/dx B

j (pb

)

Energy Scale UncertaintyZEUS 82 pb-1

(b)

1

10

10 2

5 10

(c)

Ejet

T (GeV)

dσ/d

Eje

t T (

pb/G

eV)

0

200

400

600

2 4

(d)

ηjet

dσ/d

ηjet (

pb)

3

• extended forward range

2 < ηjet < 4.3

Ejett > 5GeV, xjet > 0.036

• Jet rate is OK, butshapes of the distributionsare not described

• Clear sensitivity to uPDF

Page 11: Jet production at low Bjorken-x from HERA

11 Jet multiplicity

5 < Q2 < 80 GeV2

10−4 < x < 10−2

Jets: E∗t,jet > 4 GeV

−1 < η < 2.5

Njet ≥ 3

• Gluon radiation is frequent at low x

• O(α3s) QCD can only predict up to 4 jets

• RG d+r (DGLAP type of MC)

underestimates high jet multiplicities

• CDM (BFKL like MC) is just perfect!

10−2

10−1

1

10

10 2

10 3

10 4

1 2 3 4 5 6

Datacorr. errorO(αs

3)

NJet

dσ/

dNJe

t [pb

]

CDMRG d+r

H1

Page 12: Jet production at low Bjorken-x from HERA

12 Two and Three Jet production vs NLO QCD

01

Bjx-410×2 -310 -310×2

-1

01

(p

b)

Bj

/dx

σd

310

410

510

610

) < 1T

2E+2/(Q

r2µ1/16 <

jet energy scale uncertainty

-1ZEUS 82 pb

dijets

trijets

had C⊗) s2αNLOjet: O(

had C⊗) s3αNLOjet: O(

theo

ryd

ata

- th

eory

Bjx-410×2 -310 -310×2

-0.2

0

0.2

dije

tσ/

trije

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

) < 1T

2E+2/(Q

r2µ1/16 <

jet energy scale uncertainty

-1ZEUS 82 pbtri-/dijets

)s2α)/O(s

3αNLOjet: O(

theo

ryd

ata

- th

eory

• NLO QCD is OK in this domain (x > 2·10−4, Ej1t > 7GeV, E

j2(3)t > 5GeV)

⇒ Try even higher jet multiplicities and look for specific jet topologies

Page 13: Jet production at low Bjorken-x from HERA

13 3-jet samples with different topologies

1 forward jet + 2 central jets

10 3

10 4

10 5

10−4

10−3

Datacorr. errorO(αs

3)O(αs

2)

x

dσ/

dx [p

b] H1

2 forward jets + 1 central jet

10 3

10 4

10 5

10−4

10−3

Datacorr. errorO(αs

3)O(αs

2)

x

dσ/

dx [p

b] H1

Jet Jet

Jet Jet

Jet Jet

Central jets:

−1 < ηjet < 1

Forward jets:

ηfj1 > 1.73

xfj1 > 0.035

ηfj2 > 1

All jets:

E∗t,jet > 4 GeV

• Large deficit at small x for 2-forward jet topology! There O(α3s) calculation is insufficient

Page 14: Jet production at low Bjorken-x from HERA

14 3- and 4-jet distributions vs LO+PS Monte Carlo

3-jet

4-jet

10−2

10−1

1

10

10 20 30 40 50 60

corr. error Data

corr. errorCDM (norm.)RG d+r (norm.)

H1

p*T1 [GeV]

dσ/

dp* T

1 [p

b⋅ G

eV−1

]

10−3

10−2

10−1

1

10

5 10 15 20 25 30 35 40 45

corr. error Data

corr. errorCDM (norm.)RG d+r (norm.)

H1

p*T1 [GeV]

dσ/

dp* T

1 [p

b⋅ G

eV−1

]

0

50

100

150

−3 −2 −1 0 1 2 3

corr. error Data

corr. errorCDM (norm.)RG d+r (norm.)

H1

η1− η2

dσ/

d(η 1−

η 2) [p

b]

0

5

10

15

20

25

−3 −2 −1 0 1 2 3

corr. error Data

corr. errorCDM (norm.)RG d+r (norm.)

H1H1

η1− η4

dσ/

d(η 1−

η 4) [p

b]

0

100

200

300

400

−1 −0.5 0 0.5 1

corr. error Data

corr. errorCDM (norm.)RG d+r (norm.)

H1

cos θ’

dσ/

dcos

θ’ [p

b]

0

10

20

30

40

50

60

70

−1 −0.5 0 0.5 1

corr. error Data

corr. errorCDM (norm.)RG d+r (norm.)

H1

cos θ’

dσ/

dcos

θ’ [p

b]

• CDM describes well all distributions except high pT tail where it is too hard

• DGLAP MC (RG dir+res) fails both in shapes and normalization (3j×1.55, 4j×2.9)

Page 15: Jet production at low Bjorken-x from HERA

15 Azimuthal correlations in di-jet system

0 0.5 1 1.5 2 2.5 3-1

0

1

2

|dx

(pb

)H

CM

jet1

,2φ∆

/d|

σ2d

210

310

410

510

610

710 < 0.0003Bj0.00017 < x

theo

ryd

ata

- th

eory

0.5 1 1.5 2 2.5 3

< 0.0005Bj0.0003 < x

|HCM

jet1,2φ ∆|

0.5 1 1.5 2 2.5 3

< 0.001Bj0.0005 < x

) < 1T

2E+2/(Q

r2µ1/16 <

jet energy scaleuncertainty

-1ZEUS 82 pbdijets

had C⊗) s2αNLOjet: O(

had C⊗) s3αNLOjet: O(

Collinear factorisation scheme:

jets are back-to-back at LO, hence

∆Φ∗ < 180o are only possible at higher orders

kt factorisation scheme:

∆Φ∗ < 180o already at LO

Sensitive to details of parton dynamics

ZEUS vs NLO DGLAP

O(α3s) calculations

describes the data

reasonably well

(although with still large

scale uncertainty)

Page 16: Jet production at low Bjorken-x from HERA

16 Azimuthal correlations vs CCFM

10 2

10 3

10 4

10 5

10 6

10 7 d

2 σ/d

xd|∆

φ| (

pb

)

1.7 10-4 < x < 3 10-4 3 10-4 < x < 5 10-4 5 10-4 < x < 1 10-3

-2

0

2

1 2 3

∆φ

(th

eo-d

at)/

dat

1 2 3

∆φ

1 2 3

∆φ * (n

b/d

eg.)

φ∆dB

j/d

xσ2

d

1

10

210

-410× < 3Bj < x-510× 8H1 data (prel.)

Cascade (A0)

Cascade (J2003)

* (n

b/d

eg.)

φ∆dB

j/d

xσ2

d

1

10

210

0

1

2

* (deg.)φ∆0 20 40 60 80 100 120 140 160 180

MC

/Dat

a

H1 data vs CCFM based MC

• Although Cascade fail to describe the shape

of ∆Φ∗, 2 sets of uPDF (both describing

HERA F2) essentially cover the data

• large sensitivity to uPDF

ZEUS data vs CCFM based MC

• ”collinear approach” (HERWIG) fails

• Cascade based on kt factorisation

describes data much better

Page 17: Jet production at low Bjorken-x from HERA

17 Implications for LHC predictions

• Large part of LHC phase space

is at low x

• Tevatron is at large x

⇒ SM predictions based on

fixed order calculations and

on DGLAP MC may not work

even if tuned to Tevatron data

• Low x dynamics has to be

implemented

• CDM and Cascade MC after

additional tuning are promissing

tools for LHC

Page 18: Jet production at low Bjorken-x from HERA

18 Summary

� There is a lot of gluon radiation at small x.Hard gluons are often radiated forward, with large rapidity separation fromhard interaction vertex. This has an important implications for LHC!

� Fixed order QCD predictions based on DGLAP approachgive large improve-ment with every order in αs. Presently available calculations describe basicproperties of multijet production in DIS, however it still fails at lowest x andfor specific configurations with very forward jets.

� Color Dipole Model gives best description of jet production at HERA downto lowest x while models with kt-ordered gluon radiation fail completely.This provides a substantial indication for unordered gluon radiation at smallx as expected from ln(1/x) terms in evolution equations.

� Forward jet data and azimuthal correlations in dijet system show sensitivityto unintegrated PDFsand therefore can be used for their extraction.

Page 19: Jet production at low Bjorken-x from HERA

BACKUP SLIDES...

Page 20: Jet production at low Bjorken-x from HERA

20 H1 Forward jets: triple differential cross sections

0

5

10

0

0.5

1

1.5

2

0

0.02

0.04

0.06

0

1

2

0

0.2

0.4

0

0.01

0.02

0

0.05

0.1

0

0.01

0.02

5<Q2<10

12.2

5<p

t2 <35 H1

E scale uncert

1.2<r<7<r>=3.5

a)

NLO DISENT1+δHAD

0.5µr,f<µr,f<2µr,fPDF uncert.

10<Q2<20

0.6<r<3.5<r>=1.8

b)

LO DISENT1+δHAD

20<Q2<85

0.1<r<1.8<r>=0.8

c)

35<p

t2 <95

3.5<r<19<r>=8.1

d)

/ dxd

Q2 d

pt2

(nb

GeV

-4)

1.8<r<9.5<r>=4.2

e) 0.4<r<4.8<r>=1.8

f)

0.1 0.5 1

95<p

t2 <40

0

9.5<r<80<r>=22.2

g)

xBj × 1030.1 1 2

4.8<r<40<r>=11.3

h)

xBj × 1031 2 3 4

1.1<r<20<r>=4.9

i)

xBj × 103

0

0.001

0.002

Page 21: Jet production at low Bjorken-x from HERA

21 H1 Forward jets vs NLL BFKL

(C.Royon, DIS-2008) d σ/dx dpT2 d Q2 - H1 DATA

0

2

4

6

8

0.025 0.05 0.075 0.1x 10

-2

5<Q2<10

12.2

5<p T

2 <35

.

x

0

0.2

0.4

0.6

0.8

0.05 0.1 0.15 0.2x 10

-2

10<Q2<20

x

0

0.01

0.02

0.03

0.04

0.05

0.001 0.002 0.003 0.004

20<Q2<85

x

0

0.5

1

1.5

2

0.025 0.05 0.075 0.1x 10

-2

x

35.<

p T2 <

95.

0

0.1

0.2

0.3

0.05 0.1 0.15 0.2x 10

-2

x

0

0.005

0.01

0.015

0.02

0.001 0.002 0.003 0.004x

0

0.05

0.1

0.025 0.05 0.075 0.1x 10

-2

x

95.<

p T2 <

400.

0

0.01

0.02

0.05 0.1 0.15 0.2x 10

-2

x

0

0.05

0.1

0.15

0.2

0.25

x 10-2

0.001 0.002 0.003 0.004x

Page 22: Jet production at low Bjorken-x from HERA

22 Azimuthal correlations: Data vs NLOJET++

• NLO 3-jet is not in agreement with H1 data