95
Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean Institute of Oceanography U.M.R. C.N.R.S. 7249 Case 901 – Campus de Luminy – 13288 Marseille CEDEX 09 [email protected] Leicester – Feb. 2013 athematical formulation of ecological processes : a problem of scal Mathematical approach and ecological consequences

Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean Institute of Oceanography U.M.R. C.N.R.S. 7249

  • Upload
    noel

  • View
    22

  • Download
    0

Embed Size (px)

DESCRIPTION

Mathematical formulation of ecological processes : a problem of scale Mathematical approach and ecological consequences. Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean Institute of Oceanography U.M.R. C.N.R.S. 7249 Case 901 – Campus de Luminy – 13288 Marseille CEDEX 09 - PowerPoint PPT Presentation

Citation preview

Page 1: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Jean-Christophe POGGIALE

Aix-Marseille UniversitéMediterranean Institute of Oceanography

U.M.R. C.N.R.S. 7249

Case 901 – Campus de Luminy – 13288 Marseille CEDEX [email protected]

Leicester – Feb. 2013

Mathematical formulation of ecological processes : a problem of scaleMathematical approach and ecological consequences

Page 2: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Outline

I – Mathematical systems with several time scales : singular perturbation theory and its geometrical framework

I-1) An example with three time scalesI-2) Some mathematical methodsI-3) Some comments on their usefulness : limits and extensions

II – Mathematical modelling – Processe formulation - Structure sensitivity

III – Several formulations for one process : a dynamical system approach

V – Conclusion

Leicester – Feb. 2013

Page 3: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Example

A tri-trophic food chains model

22

11

1

ydcyez

ddz

zyd

cyxb

axeyddy

yxb

axKxrx

ddx

where 1

Deng and Hines (2002) de Feo and Rinaldi (1998)Muratori and Rinaldi (1992)

Leicester – Feb. 2013

Page 4: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Example

Some results

• Under some technical assumptions, there exists a singular homoclinic orbit.

• Under some technical assumptions, there exists a saddle-focus in the positive orthant.

• This orbit is a Shilnikov orbit.

• This orbit is contained in a chaotic attractor

These results are obtained “by hand”, by using ideas of the Geometrical Singular Perturbation theory (GSP)

Leicester – Feb. 2013

Page 5: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Slow-Fast vector fields

yxgddy

yxfddx

,

,

0

0,,y

yxfx yxx * Top – down

,,

,,yxgyyxfx

,,,,

,*

*

yGyyxgy

yxx

Bottom – up

Leicester – Feb. 2013

Page 6: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Example

How to deal with this multi-time scales dynamical system ?

1) Neglect the slow dynamics

2) Analyze the remaining systems (when slow variables are assumed to be constant)

3) Eliminate the fast variables in the slow dynamics and reduce the dimension

4) Compare the complete and reduced dynamics

Leicester – Feb. 2013

Page 7: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Example

How to deal with this multi-time scales dynamical system ?

11

1

xbaxey

ddy

yxb

axKxrx

ddx

0

Leicester – Feb. 2013

Page 8: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

?

?

Example

How to deal with this multi-time scales dynamical system ?

11

1

xbaxey

ddy

yxb

axKxrx

ddx

0

Leicester – Feb. 2013

Page 9: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Example

How to deal with this multi-time scales dynamical system ?

Leicester – Feb. 2013

Page 10: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory (GSP)

Leicester – Feb. 2013

Page 11: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

The fundamental theorems : normal hyperbolicity theory

,,

,,yxgyyxfx

2

1

k

k

IRy

IRx

Def. : The invariant manifold M0 is normally hyperbolic if the linearization of the previous system at each point of M0 has exactly k2 eigenvalues on the imaginary axis.

Leicester – Feb. 2013

Page 12: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

The fundamental theorems : normal hyperbolicity theory

Theorem (Fenichel, 1971) : if is small enough, there exists a manifold M1 close and diffeomorphic to M0. Moreover, it is locally invariant under the flow, and differentiable.

Theorem (Fenichel, 1971) : « the dynamics in the vicinity of the invariant manifold is close to the dynamics restricted on the manifolds ».

Leicester – Feb. 2013

Page 13: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

The fundamental theorems : normal hyperbolicity theory

• Simple criteria for the normal hyperbolicity in concrete cases (Sakamoto, 1991)

• Good behavior of the trajectories of the differential system in the vicinity of the perturbed invariant manifold.

• Reduction of the dimension

• Powerful method to analyze the bifurcations for the reduced system and link them with the bifurcations of the complete system

Leicester – Feb. 2013

Page 14: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Why do we need theorems ?

• Intuitive ideas used everywhere (quasi-steady state assumption, …)

• Complexity of the involved mathematical techniques

Leicester – Feb. 2013

Page 15: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Why do we need theorems ?

11

222121212

1111212121

NebPddP

NrNmNmddN

ParNNmNmddN

21 NNN

11

112121

11112112121

NebPddP

PNaNrNrrddN

ParNNmmNmddN

Slow-fast system

Leicester – Feb. 2013

Page 16: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Why do we need theorems ?

PeaNPdtdP

aNPrNdtdN

11

112121

11112112121

NebPddP

PNaNrNrrddN

ParNNmmNmddN

2112

21*2

2112

12*1 mm

NmNmmNmN

NNr

NNrr

*2

2

*1

1 NNaa

*1

1t

Leicester – Feb. 2013

Page 17: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Leicester – Feb. 2013

Page 18: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Why do we need theorems ?

2112

2121

*2

*1

1 ;mmN

ParrNNPN

PNNPeaPeaNPdtdP

ParrPNNaNPrNdtdN

;

;

11

1211

Fenichel theorem

where

Leicester – Feb. 2013

Page 19: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Leicester – Feb. 2013

Page 20: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Geometrical Singular Perturbation theory

Why do we need theorems ?

• Theorems help to solve more complex cases where intuition is wrong

• Theorems provide a global theory which allows us to extend the results to non hyperbolic cases

• Theorems provide tools to analyse bifurcations on the slow manifold

Leicester – Feb. 2013

Page 21: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

Leicester – Feb. 2013

Page 22: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

A simple example

xyddyddx

x

y

Unstable

Solve the system :

0xx

2

00 2exp xyy

Dynamical bifurcation

? ? ?

Leicester – Feb. 2013

Page 23: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

A simple example

0xx

2

00 2exp xyy

20

0

0 0

2 ln

;

Kxy

y K t x x

0 :n bifurcatio theofDelay x

xK

0x

Leicester – Feb. 2013

Page 24: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

The saddle – node bifurcation

0 if * xxxy(Stable slow manifold)

x

y

0

2yxddyddx

Leicester – Feb. 2013

Page 25: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

The saddle – node bifurcation

2yxddyddx

0 if * xxxy

(Stable slow manifold)

3/2

2

3/21

3/23/1

3/2*

21

0*

000

if 3)

if 2)

if 1)

:such that and , constants someexist there then ;; if :1990) ,. (Jung Theorem

ctx-Lty

ctxty

txtxyty

ccLxyxyxalet

Leicester – Feb. 2013

Page 26: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

The saddle – node bifurcation

3/2

3/1

Leicester – Feb. 2013

Page 27: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

The pitchfork bifurcation

3yxyddyddx

.0 toclose timeaafter axis then thisleavesand 0;0point theuntil axis thisfollows axis,- thetogoesy trajector then the,0)0( and 00 if :Result

xx

yx

x

y

Leicester – Feb. 2013

Page 28: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

The pitchfork bifurcation

Loss of normal hyperbolicity

Leicester – Feb. 2013

Page 29: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

A general geometrical method

Dumortier and Roussarie, 1996, 2003, and now others...

Leicester – Feb. 2013

Page 30: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

A general geometrical method

.hyperbolicnormally not is manifold the whereon point a be 0Let 0M

1 and ,with

;;;,,;;;0:

:ation transforma is A

2

1

2

11

1

n

ii

ki

ki

nn

nn

xrxrx

xxrxxIRS

i

up blowing

.;0on field vector a is ~ field vector The * nSXX

.space phase in the 0 of odneighborho aon 0 smallfor

of dynamics theprovides ;0on ~ ofstudy The 0

ε

n XrSX

Leicester – Feb. 2013

Page 31: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

Example

yxa

xydtdy

xaxyxx

dtdx

1

Blow up

ayvxu

:Let

a

y

x

Leicester – Feb. 2013

Page 32: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

Example

u

v

0;0

Leicester – Feb. 2013

Page 33: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

Example

u

v

1u1v

0;0

Leicester – Feb. 2013

Page 34: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

Example

Ovrara

vdtvd

vrarar

dtdr

u

1

1

: 1chart In the

r

va1

Leicester – Feb. 2013

Page 35: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Loss of normal hyperbolicity

Example

u

v y

x

Leicester – Feb. 2013

Page 36: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects?

Leicester – Feb. 2013

Page 37: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The general model

tttttt

tttttt

dWyxGdtyxgdy

dWyxFdtyxfdx

,,1,',

0 when bounded is '

process Wiener a is 0ttW

Leicester – Feb. 2013

Page 38: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The generic case : normal hyperbolicity

xyyyxM *;

: stableally asymptoticuniformly manifold slow a has system the,0'for : Hypothesis

theorem.Fenichel the viaobtained manifold theLet M

time.longlly exponentiaan during in stays in enteringctory each trajesuch that of

odneighborho a exists There : 2003) Gentz, and (Berglund TheoremBBMB

Leicester – Feb. 2013

Page 39: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The generic case : normal hyperbolicity

0M

M

B

Leicester – Feb. 2013

Page 40: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The saddle node bifurcation

tt

t

dWyxdy

dx

211

Leicester – Feb. 2013

Page 41: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The saddle node bifurcation

Leicester – Feb. 2013

Page 42: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The pitchfork bifurcation

tt

t

dWyxydy

dx

311

Leicester – Feb. 2013

Page 43: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

What’s about noise effects ?

The pitchfork bifurcation

Leicester – Feb. 2013

Page 44: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Conclusions

• It has recently been completed for the analysis of non normally hyperbolic manifolds

• Noise can have important effects when its various is large enough

• Various applications : Food webs models, gene networks, chemical reactors

• GSP theory provides a rigorous way to build and analyze aggregated models

• This advance permits to deal with systems having more than one aggregated model

Leicester – Feb. 2013

Page 45: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Leicester – Feb. 2013

Introduction

Page 46: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Leicester – Feb. 2013

Introduction

Page 47: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

• Complex systems dynamics (high number of entities interacting in nonlinear way, networks, loops and feed-back loops, etc.) - Ecosystems

• Response of the complete network to a given perturbation (contamination, exploitation, global warming, …) on a particular part of the system? (amplified, damped, how and why?)

• processes intensities and variations;• the whole system dynamics;• from individuals to communities and back;

MODELLING:

• How does the formulation of a process in a complex system affect the whole system dynamics? How to measure the impacts of a perturbation?

Leicester – Feb. 2013

Introduction

Page 48: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Individuals

Functional groups

Communities

Ecosystems

Bioenergetics – Genetic properties – Metabolism –

Physiology - Behaviours

Activities – Genetic and Metabolic expressions

Biotic interactions – Trophic webs

Environmental forcing – – Energy assessments –

Human activities

Complexity

Information - Data

Leicester – Feb. 2013

Introduction

Page 49: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

How can we used data got in laboratory experiments to field models? How can we take benefit of the large amount of data obtained at small scales to understand global system functioning?

Can we link different data sets obtained at different scales?

For a given process in a complex system, what is the effect of its mathematical formulation on the whole dynamics? Does it matter if it is well quantitatively validated?

For a given process, we often use functions even if we know that it is a bad representation, because it is simpler : is there a simple alternative?

For an given ecosystem, many models can be developed. How to choose? One of them can be valid during a given time period while another will be efficient for another period : how do we know the sequence of the models to use?

Leicester – Feb. 2013

Introduction

Page 50: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

How can we used data got in laboratory experiments to field models? How can we take benefit of the large amount of data obtained at small scales to understand global system functioning?

Can we link different data sets obtained at different scales?

For a given process in a complex system, what is the effect of its mathematical formulation on the whole dynamics? Does it matter if it is well quantitatively validated?

For a given process, we often use functions even if we know that it is a bad representation, because it is simpler : is there a simple alternative?

For an given ecosystem, many models can be developed. How to choose? One of them can be valid during a given time period while another will be efficient for another period : how do we know the sequence of the models to use?

Leicester – Feb. 2013

Introduction

Page 51: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

How can we used data got in laboratory experiments to field models? How can we take benefit of the large amount of data obtained at small scales to understand global system functioning?

Can we link different data sets obtained at different scales?

For a given process in a complex system, what is the effect of its mathematical formulation on the whole dynamics? Does it matter if it is well quantitatively validated?

For a given process, we often use functions even if we know that it is a bad representation, because it is simpler : is there a simple alternative?

For an given ecosystem, many models can be developed. How to choose? One of them can be valid during a given time period while another will be efficient for another period : how do we know the sequence of the models to use?

Leicester – Feb. 2013

Introduction

Page 52: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

How can we used data got in laboratory experiments to field models? How can we take benefit of the large amount of data obtained at small scales to understand global system functioning?

Can we link different data sets obtained at different scales?

For a given process in a complex system, what is the effect of its mathematical formulation on the whole dynamics? Does it matter if it is well quantitatively validated?

For a given process, we often use functions even if we know that it is a bad representation, because it is simpler : is there a simple alternative?

For an given ecosystem, many models can be developed. How to choose? One of them can be valid during a given time period while another will be efficient for another period : how do we know the sequence of the models to use?

Leicester – Feb. 2013

Introduction

Page 53: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

How can we used data got in laboratory experiments to field models? How can we take benefit of the large amount of data obtained at small scales to understand global system functioning?

Can we link different data sets obtained at different scales?

For a given process in a complex system, what is the effect of its mathematical formulation on the whole dynamics? Does it matter if it is well quantitatively validated?

For a given process, we often use functions even if we know that it is a bad representation, because it is simpler : is there a simple alternative?

For an given ecosystem, many models can be developed. How to choose? One of them can be valid during a given time period while another will be efficient for another period : how do we know the sequence of the models to use?

Leicester – Feb. 2013

Introduction

Page 54: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

STRUCTURE SENSITIVITY

Leicester – Feb. 2013

Page 55: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Page 56: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Sensitivity to function g ? gR : Reference model = MR

gP : Perturbed model = MP

Structure sensitivity

Leicester – Feb. 2013

Page 57: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Page 58: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Page 59: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Page 60: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Ref. formulation= Holling Ref. formulation= Ivlev

Page 61: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Page 62: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Taux

d’a

bsor

ptio

n de

Si (

d-

1 )

Concentration de Si (mol.l-1)

Structure sensitivity

Zooplancton

Phytoplancton

Nutriments

Leicester – Feb. 2013

Page 63: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

Leicester – Feb. 2013

Page 64: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Structure sensitivity

0

0.5

1

1.5

2

2.5

30

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S2 concentration

S1 concentration

j S2

Leicester – Feb. 2013

Page 65: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

PROCESS FORMULATION :FUNCTIONAL RESPONSE

Leicester – Feb. 2013

Page 66: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Process which describes the biomass flux from a trophic level to another one : the functional response aims to describe this process at the population level.

However, it results from many individual properties :

• behavior (interference between predators, optimal foraging, ideal free distribution, etc.)

• physiology (satiation, starvation, etc.)

And population properties as well:

• population densities (density-dependence effects)

• populations distribution (encounter rates, etc.)

How should we formulate the functional response? At which scale?

Leicester – Feb. 2013

Page 67: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Process which describes the biomass flux from a trophic level to another one : the functional response aims to describe this process at the population level.

However, it results from many individual properties :

• behavior (interference between predators, optimal foraging, ideal free distribution, etc.)

• physiology (satiation, starvation, etc.)

And population properties as well:

• population densities (density-dependence effects)

• populations distribution (encounter rates, etc.)

How should we formulate the functional response? At which scale?

Current ecosystem models are sensitive to the functional response formulation.

Leicester – Feb. 2013

Page 68: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Small scale : experiments

Large scale : integrate spatial variability and individuals displacement (behavior, …)

Leicester – Feb. 2013

Page 69: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Small scale : experiments

Large scale : integrate spatial variability and individuals displacement (behavior, …)

Leicester – Feb. 2013

Page 70: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Leicester – Feb. 2013

Page 71: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Leicester – Feb. 2013

Page 72: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Leicester – Feb. 2013

Page 73: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

11 1

11

bxaxey

ddy

ybxax

Kxrx

ddx

Holling idea:

Searching Handling

Functional response

Leicester – Feb. 2013

Page 74: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

11 1

11

bxaxey

ddy

ybxax

Kxrx

ddx

Holling idea:

Searching Handling

Functional response

Leicester – Feb. 2013

Page 75: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

11 1

11

bxaxey

ddy

ybxax

Kxrx

ddx

Holling idea:

Searching Handling

x is assumed constant at this scale of description

Functional response

Leicester – Feb. 2013

Page 76: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

bxaxxg

1

Holling type II (Disc equation – Holling 1959)

Searching Handling

x

Functional response

Leicester – Feb. 2013

Page 77: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

bxaxxg

1

Holling type II (Disc equation – Holling 1959)

Searching Handling

x

Functional response

or yyy

ooro

rrorr

r

yyxyddy

yeaxyyxyddy

axyxxrddx

Leicester – Feb. 2013

Page 78: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

bxaxxg

1

Holling type II (Disc equation – Holling 1959)

Searching Handling

x

ooro

rrorr

r

yyxyddy

yeaxyyxyddy

axyxxrddx

or yyy yx

yr

x

axxg

1

Functional response

Leicester – Feb. 2013

Page 79: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Leicester – Feb. 2013

Page 80: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

2

1

Leicester – Feb. 2013

Page 81: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

2

1

Leicester – Feb. 2013

Page 82: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

2

1

Leicester – Feb. 2013

Page 83: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Leicester – Feb. 2013

Page 84: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Functional response

Local Holling type II functional responses

Global Holling type III functional response

<0

>0

=> Conditions can be found to get the criterion for Holling Type III functional responses

Leicester – Feb. 2013

Page 85: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Dynamical consequences

1 – On each patch separately, the parameter values are such that periodic solutions occur.

2 – With density-dependent migration rates of the predator satisfying the above mentioned criterion for Holling Type III functional response, the system is stabilized

3 – With constant migration rates, taking extreme values observed in the situation described in 2, the system exhibits periodic fluctuations : the stabilization results from the change of functional response type.

Leicester – Feb. 2013

Page 86: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Dynamical consequences

• Global type III FR can emerge from local type II functional responses associated to density-dependent displacements

• The Holling Type III functional response leads to stabilization

• The stability actually results from the type (type II functional responses lead to periodic fluctuations even if they are quantitatively close to the type III FR)

• The Type III results from density-dependence : the effect of density-dependent migration rates on the global functional response can be understood explicitely.

Leicester – Feb. 2013

Page 87: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Dynamical consequences

Functional response in the field : a set of functions instead of one function?

• Shifts between models

• Multi-stability of the fast dynamics

• Changes of fast attractors : bifurcation in the fast part of the system induced by the slow dynamics

• We use functions to represent FR at a global scale even if we know that it is a bad representation, because it is simpler : is there a simple alternative?

Leicester – Feb. 2013

Page 88: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

SHIFTS BETWEEN MODELS : LOSS OF NORMAL HYPERBOLICITY

Leicester – Feb. 2013

Page 89: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Slow-Fast vector fields

yxgddy

yxfddx

,

,

0

0,,y

yxfx yxx * Top – down

,,

,,yxgyyxfx

,,,,

,*

*

yGyyxgy

yxx

Bottom – up

Leicester – Feb. 2013

Page 90: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Fenichel theorem (Geometrical Singular Perturbation Theory)

Leicester – Feb. 2013

Page 91: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Fenichel theorem (Geometrical Singular Perturbation Theory)

Leicester – Feb. 2013

Page 92: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Fenichel theorem (Geometrical Singular Perturbation Theory)

Leicester – Feb. 2013

Page 93: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Fenichel theorem (Geometrical Singular Perturbation Theory)

Leicester – Feb. 2013

Page 94: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

• The jump between two formulations can be described by the Geometrical Singular Perturbation Theory : follow the trajectories of the full system around the points where normal hyperbolicity is lost («Blow up techniques »)

Conclusions (2/2)

• Instead of one function to formulate one process at large scale, several functions can be used.

• Multiple equilibria in the fast dynamics can provide a mechanism for this multiple representation in large scale models.

• Bifurcations of the fast dynamics induced by slow dynamics lead to shifts in the fast variables. This leads to several mathematical expressions of the fast equilibrium with respect to slow variables : each of them provides a mathematical formulation at large scales

Leicester – Feb. 2013

Page 95: Jean-Christophe POGGIALE Aix-Marseille Université Mediterranean  Institute of  Oceanography U.M.R. C.N.R.S.  7249

Thanks to my collaborators…

Roger ARDITI

Julien ARINO

Ovide ARINO

Pierre AUGER

Rafael BRAVO de la PARRA

François CARLOTTI

Flora CORDOLEANI

Marie EICHINGER

Frédérique FRANCOIS

Mathias GAUDUCHON

Franck GILBERT

Bas KOOIJMAN

Bob KOOI

Horst MALCHOW

Claude MANTE

Marcos MARVA

Andrei MOROZOV

David NERINI

Tri NGUYEN HUU

Robert ROUSSARIE

Eva SANCHEZ

Richard SEMPERE

Georges STORA

Caroline TOLLA

… and thanks for your attention!Leicester – Feb. 2013