28
SEMINARSKI, DIPLOMSKI I MATURSKI RADOVI SEMINARSKI, DIPLOMSKI I MATURSKI RADOVI IZ SVIH OBLASTI, POWERPOINT PREZENTACIJE I DRUGI EDUKATIVNI MATERIJALI. WWW.DIPLOMSKI-RAD.COM WWW.SEMINARSKI-RAD.COM AKO VAM TREBA EDUKATIVNI MATERIJAL BILO DA JE TO SEMINARSKI, DIPLOMSKI , MATURSKI RAD, ILI POWERPOINT PREZENTACIJA NA NASIM SAJTOVIMA CE TE NACI SVE NA JEDNOM MESTU . SVI VAM PRUZAJU SAMO IME ZA SEMINARSKI, DIPLOMSKI ILI MATURSKI RAD A MI VAM DAJEMO DA POGLEDATE SVAKI RAD NJEGOV SADRŽAJ I PRVE TRI STRANE U PDF-U TAKO DA MOŽETE TACNO DA ODABERETE PRAVI RAD BEZ PROMASAJA. NASA BAZA SADRZI SVAKI GOTOV SEMINARSKI, DIPLOMSKI I MATURSKI RAD KOJI CE VAM IKADA ZATREBATI, MOŽETE GA SKINUTI I UZ NJEGOVU POMOC

Izvod funkcije

  • Upload
    -

  • View
    526

  • Download
    16

Embed Size (px)

DESCRIPTION

seminarski rad

Citation preview

Page 1: Izvod funkcije

SEMINARSKI, DIPLOMSKI I MATURSKI RADOVISEMINARSKI, DIPLOMSKI I MATURSKI RADOVI IZ SVIH OBLASTI, POWERPOINT PREZENTACIJE I

DRUGI EDUKATIVNI MATERIJALI.

WWW.DIPLOMSKI-RAD.COM

WWW.SEMINARSKI-RAD.COM

AKO VAM TREBA EDUKATIVNI MATERIJAL BILO DA JE TO SEMINARSKI, DIPLOMSKI , MATURSKI RAD, ILI POWERPOINT PREZENTACIJA NA NASIM SAJTOVIMA CE TE NACI SVE NA JEDNOM MESTU . SVI VAM PRUZAJU SAMO IME ZA SEMINARSKI, DIPLOMSKI ILI MATURSKI RAD A MI VAM DAJEMO DA POGLEDATE SVAKI RAD NJEGOV SADRŽAJ I PRVE TRI STRANE U PDF-U TAKO DA MOŽETE TACNO DA ODABERETE PRAVI RAD BEZ PROMASAJA. NASA BAZA SADRZI SVAKI GOTOV SEMINARSKI, DIPLOMSKI I MATURSKI RAD KOJI CE VAM IKADA ZATREBATI, MOŽETE GA SKINUTI I UZ NJEGOVU POMOC NAPRAVITI JEDINISTVEN I UNIKATAN RAD. AKO U BAZI NE NADJETE SEMINARSKI, DIPLOMSKI ILI MATRUSKI RAD KOJI VAM JE POTREBAN, U SVAKOM MOMENTU MOZETE NARUCITI DA SE IZRADI NOVI POTPUNO UNIKATAN SEMINARSKI, DIPLOMSKI ILI MATURSKI RAD NA LINKU NOVI RADOVI. SVA PITANJA I ODGOVORE MOŽETE DOBITI NA NAŠEM FORUMU KAO I BESPLATAN SEMINARSKI, PREPRICANE LEKTIRE, PUSKICE I

Page 2: Izvod funkcije

POMOC. ZA BILO KOJI VID SARADNJE ILI REKLAMIRANJA MOZETE NAS KONTAKTIRATI NA KONTAKT FORMI.

S a d r ž a j

1.Uvod 3.

2.Izvod funkcije 4.1.Geometrijsko značenje izvoda 6.2.Osobine diferencijalnih funkcija 9.3.Osnovne teoreme diferencijalnog računa 10.4.Pravila diferenciranja 11.5.Izvodi nekih elementarnih funkcija 13.6.Tablica osnovnih izvoda 16.7.Neki primjeri izvoda 17.

3.Primjena prvog izvoda u ekonomiji 18.

4.Zaključak 20.

5.Literatura 21.

2

Page 3: Izvod funkcije

U v o d

Problemi tangente i brzine, kao i problemi ekstrema, tj. minimuma i maksimuma postepeno su potsticali nastajanje pojma izvoda. Mnogi matematičari još od antičke Grčke uspijevali su da riješe neke od ovih problema za pojedinačne slučajeve.

Tek kada je Dekart pronašao metodu koordinata omogućeno je da se krive predstavljaju jednačinama, tako da je stvoren osnovni preduslov za pojavu opšte metode za analitičko rješavanje problema tangente, odnosno za definisanje pojma izvoda.

Problem tangente prvi je riješio njemački matematičar i filozof Lajbnic definišući novu oblast matematike pod nazivom diferencijalni račun.

U isto vrijeme Njutn je definisao izvod kao posljedicu istrživanja fenomena kretanja.

To su bile dvije idejno i metodolški različite koncepcije koje su dovele do istog rezultata.

Danas, diferencijalni račun, predstavlja nezaobilazno sredstvo u rješavanju mnogih problema savremene nauke i tehnike.

Najpoznatiji spor u istoriji matematike vođen je između Njutna i Lajbnica oko otktića diferencijalnog računa.

Njutn je ima samo 23 godine kada je 1666god. otkrio metod, koji je nazvao metod fluksije. On je prvi shvatio da su integracija i diferenciranje dvije inverzne operacije. Međutim oklijevao je sa objavljivanjem svojih rezultata. U međuvremenu 1675, Lajbnic je samostalno došao do istog metoda koji je nazvao diferencijalni račun. On je svoje rezultate odmah publikovao i zadobio sva priznanja. Sukob ovih matematičara se nastavljao tako da je Londonsko kraljevsko društvo formiralo komitet koji je 1713 god dalo prioreitet Njutnu. Međutim simbolika koju je uveo Lajbnic bila je mnogo jednostavnija i opšte je prihvaćena.

3

Page 4: Izvod funkcije

G. Leibniz ( 1646-1716 ) I. Newton ( 1642-1727 )

I Z V O D F U N K C I J E

Definicija 1. Neka je funkcija y=f(x) definisana u intervalu I = i neka je

I, Ako postoji konačna i određena granična vrijednost

(1) = f '(x)

za funkciju y= f(x) se kaže da ima izvod u tački x ili da je diferencijabilna u tački x.

Pored oznake f '(x) za izvod funkcije y=f(x) se upotrebljavaju i druge oznake, kao naprimjer:

; y ' ; ; .

Na osnovu (1) izvod funkcije y=f(x) se može izraziti u obliku

(2) y '=

odakle slijedi da je izvod funkcije y=f(x) granična vrijednost količnika priraštaja funkcije i priraštaja argumenta kada priraštaj argumenta teži nuli. U definiciji izvoda pretpostavili smo da

može imati proizvoljan znak, + ili - . Ako je tada ćemo izraz

4

Page 5: Izvod funkcije

zvati desni izvod i označavati sa (x). Slično se definiše i lijevi izvod i označava sa (x).

Izvod funkcije jednak je graničnoj vrednosti količnika priraštaja funkcije i priraštaja nezavisno promenljive, kad priraštaj nezavisno

promenljive teži nuli.

Postupak nalaženja izvoda naziva se diferenciranjem.Funkcije koje imaju izvod nazivaju se diferencijabilne funkcije.

Primjer 1. Data je funkcija y=2x. Naći y’ za x=1

Rješenje: Za x=1 je f(1)=2* =2

Za x=1+ je f(1)+ =2(

Odakle je

= =2( -2=(4+ ) .

Po definiciji izvoda je

y’(1)= = =4

Primjer 2. Za funkciju y= naći y’.

5

Page 6: Izvod funkcije

Rješenje: y+ , odakle je

y= - = +3 +3x + - =

= (3 +3x + )

pa je

y'= = =

1.GEOMETRIJSKO ZNAČENJE IZVODA

U ispitivanju ekonomskih pojava ćesto se upotrebljava tzv statička analiza, tj određivanje stanja ekvilibrijuma datog modela. Pri tome se ne dotiče pitanje koliko se taj ekvlibrijum mijenja ukoliko promijenimo početne uvjete. Time se bavi dinamička analiza. U dinamičkoj analizi bavit

ćemo se tzv stepenom promjene određene varijable pri nekoj promjeni varijable .

Taj stepen promjene možemo ispitivati kvalitativno i kvantitativno. Kvalitativno, zanima nas da li sa porastom - sa dolazi do porasta ili smanjivanja y-a i kvantitativno, zanima nas kolika je ta promjena.

6

y

Ox

0f x

0f x x

0x x 0x

x

x

yy

Page 7: Izvod funkcije

Pretpostavimo sada da naša varijabla y zavisi samo od x.

Ukoliko x promijeni svoju vrijednost od do , tada y mijenja svoju vrijednost od

do . Razmjera, ili stepen promjene y po jedinici promjene x-a je

.

Vidimo da je funkcija i (za dato f).

Ako je ugao označen na slici, vidimo da je .

Definicija: Ako postoji kažemo da je funkcija

diferencijabilna u tački (odnosno da ima izvod u ). Izvod funkcije u označavamo sa

.

Pišemo još i .

Dakle, za malo . (ovdje je ¨oznaka za približnu vrijednost).

Geometrijski gledajući, prvi izvod funkcije u tački (dakle, ) jednak je koeficijentu

pravca tangente na krivu u tački .

Prvi izvod nam određuje smjer promjene funkcije. Ako je tu je promjena pozitivna

(s rastom x-a raste i y), a ako je tu je promjena negativna (s rastom x-a y opada).

Proces nalaženja izvoda zovemo diferenciranjem.

Vidjeli smo ranije da ne mora postojati. Međutim mogu postojati lijevi i desni limesi.

Takvi limesi su desni i lijevi izvod funkcije u tački (tu funkcija nije diferencijabilna).

7

Page 8: Izvod funkcije

( Slučaj kada postoje dvije različite tangente (lijeva i desna), tj. kada su desni i lijevi izvod funkcije u tački različiti prikazan je na slici dole lijevo).

Ukoliko je tu funkcija nije

diferencijabilna, ali to geometrijski znači da je

tangenta u tački okomita na x osu.

Možemo reći da izvod funkcije označava "brzinu njene promjene".

Neka je tačka na grafiku krive , tačka na

krivoj koja odgovara apscisi . Neka je C tačka takva da je ugao ACB pravi. Tada je

, a . Povucimo tangentu na krivu u tački A, i neka ona

siječe pravu BC u tački D. Tada je ugao kod vrha A u trouglu ACD jednak uglu kojeg zaklapa tangenta na

krivu u tački A sa x-osom. Kako je , a na

osnovu osobina pravouglog trougla ACD je

, to je , pa je

. Kako je , vidimo da je

, za male .

Primjer . Izračunajmo , koristeći se osobinom da je , za male .

8

x

21 0x

Page 9: Izvod funkcije

Dakle, . Aproksimiramo na slijedeći način:

Stavimo , pa je . Funkcija koju posmatramo je .

Sada imamo: , odakle slijedi

.

Odavde je .

Ostalo je još da izračunamo . Imamo:

, pa je . Kako je još , to

je .

2.OSBINE DIFERENCIJALNIH FUNKCIJA

Teorema1. Ako je funkcija y=f(x) diferencijabilna u tački x=c, tada je ona u toj tački i neprekidna.

Dokaz: Na osnovu pretpostavki date teoreme i teoreme o beskonačno malim funkcijama je

=f ' (c) + (c + x),

gdje je (c + x) 0 kada x 0. Iz predhodne jednakosti se dobije

y = f ' (c) * x + x*α(c+x)

odakle slijedi da y 0 kada x 0

što znači da je funkcija neprekidna u tački x=c.

9

Page 10: Izvod funkcije

Teorema 2. Ako je funkcija y=f(x) injekcija i diferencijabilna u tački x, pri čemu je f ‘(x) 0,

tada je I njena inverzna funkcija diferencijabilna u tčki f(x) i vrijedi

(1) ( (f(x))) ‘ = , ili =

Dokaz: Dokaz kao i u relaciji

y = f ' (c) * x + x*α(c+x) je

(2) f(x+x) – f(x) = x

kako je y+y=f(x+x) to je

(3) x+x= (y+y)

Takođe, iz y=f(x) slijedi jednakost

(4) x= (y)

Zamjenom vrijednosti (3) i (4) u (2) dobijemo

y=[f '(x)+α(x+x) ] * [ (y+y)- (y)]

Ili = .

Ako x 0 tada i y , jer je neprekidna funkcija u tački x , pa je

= ( (f(x)))’ = .

3.OSNOVNE TEOREME DIFERENCIJALNOG RAČUNA

10

Page 11: Izvod funkcije

1) Fermaova teorema

Neka je funkcija y=f(x) definisana na odsječku [a,b] i neka u nekoj tački c (a,b) ima

najveću (ili najmanju) vrijednost. Ako postoji obostrani konačan izvod f `(c) , onda je f’(c) = 0

2) Darbuova teoremaAko funkcija y=f(x) ima konačan izvod u svakoj tački odsječka [a,b] , tada funkcija

y’=f’(x) za x [a,b] uzima bar jednom sve vrijednosti između f ‘(a) i f ‘(b)

3) Rolova teorema Neka je funkcija y=f(x) definisana i neprekidna na odsječku [a,b] i neka postoji konačan izvod y`=f `(x) bar na intervalu (a,b) i neka je f(a) = f(b).

Tada postoji bar jedan broj c (a,b) , takav da je f `(c) = 0

4) Lagranžova teorema Neka je funkcija y=f(x) definisana i neprekidna na odsječku [a,b] i neka postoji konačan izvod y`=f `(x) bar u svakoj tački na intervalu (a,b) .Tada postoji bar jedan broj c∈(a,b) , takav da je :

= f’(c)

5) Košijeva teoremaNeka su funkcije f(x) i g(x) definisane i neprekidne na odsječku [a,b] , neka postoje

konačni izvodi f ‘(x) i g ‘(x) bar na intervalu (a,b) i neka je g ‘(x) ≠ 0, za svako x (a,b).

Tada postoji bar jedan broj c (a,b) takav da je :

=

4.PRAVILA DIFERENCIRANJA

11

Page 12: Izvod funkcije

Izračunavanje diferencijala funkcije također nazivamo diferenciranjem. Pravila diferenciranja su analogna pravilima za izračunavanje izvoda. To su slijedeća pravila:

Teorema 1. Ako je y=c*u(x), c=const, i ako postoji u’(x) tada vrijedi

y’=c*u’(x)

Dokaz:Za y’=c*u’(x) je

y+y=c*u(x)=c[u(x+x)-u(x)]

Po definiciji izvoda je

y’= = =

= =c u'(x),

[c*u(x)] '=c*u'(x), c=const.

Teorema 2. Izvod zbira konačnog broja diferencijabilnih funkcija jednak je zbiru izvoda pojedinih sabiraka, tj,

[ (x) + (x)+…+ (x)]’ = (x)+ (x)+… (x)

Dokaz: Teoremu ćemo dokazati samo za zbir od dva sabirka u(x) i v(x). Neka je y=u(x) + v(x) tada je

y+y=u(x+x)+v(x+x),

a y=u(x+x)+v(x+x)-u(x) – v(x)=

=[u(x+x)-u(x)]+[v(x+x)-v(x)].

Dalje je

y’= = = u'(x)+v'(x).

tj. [u(x)+v(x)]’= u'(x)+v'(x).

12

Page 13: Izvod funkcije

Čime je teorema dokazana. Primjenom matematičke indukcije nije teško dokazati da teorema vrijedi i u opštem slučaju.

Teorema 3. Ako su funkcije u(x) i v(x) diferencijabilne funkcije u tački x tada je diferencijabilnai i funkcija y=u(x)*v(x) i pri tome vrijedi

y’=[u(x) * v(x)]’ = u'(x) * v(x)+u(x)*v'(x)

Dokaz: Kako je y=u(x)*v(x) to je

y+y=(u+u)*(v+v)

pa je y=uv+vu+uv+uv-uv

dijeljenjem sa x dobićemo

= + u +u .

Nakon izračunavanja granične vrijednosti se dobija

y’=u’v+uv’

jer je u = u * = 0

Teorema 4. Ako su funkcije u(x) i v(x) diferencijabilne funkcije u tački x i ako je v(x) 0, tada

je diferencijabilna i funkcija y= , i pri tome vrijedi

y'= [ ]=

Dokaz: Iz y= slijedi

y+y = ,ili y= -

Nakon oduzimanja razlomaka desna strane predhodna jednakost je oblika

13

Page 14: Izvod funkcije

y =

odnosno =

Ako x 0 tada po teoremi kada je funkcija neprekidna I na osnovu pretpostavke

date teoreme i v 0, pa je

y’ = =

5.IZVODI NEKIH ELEMENTARNIH FUNKCIJA

Prije nego navedemo pravila za izračunavanje izvoda, objasnimo kako izračunati izvode nekih elementarnih funkcija. Neke od njih ćemo izračunati po definiciji, a neke ćemo samo navesti.

a) Izvod konstante. Ako je f(x)=c , gdje je c neka konstanta, tada je f(x) +f(x) =f(x+x) =c

pa je

y’= = =0

tj.(c)’=0

b) Izvod funkcije y= , q .Ako argumentu x dodamo priraštaj x tada će vrijednost

funkcije u x+x biti

y+y=

ili

y= -

Dalje je

ili

14

Page 15: Izvod funkcije

Ako se stavi u= , tada je

= =q

pa je

y’= = =q*

tj.

( )’= q* , q .

c) Izvodi funkcija y=sin x i y=cos x. Neka je y=sin x . Vrijednost funkcije u x+x je y + y = sin (x+x)

odakle je prema formuli za razliku funkcije sin x

y=sin(x+x)-sinx= 2*sin cos (x+ )

Po definiciji izvoda je y’= = cos(x+ )= 1*cosx= cos x

(sin x)’ = cos xSlično se dobija i izvod funkcije y=cos x .Tada je

y+y=cos(x+x)ili

y=cos(x+x) – cos x = -2 sin * sin(x+ ),

pa je

y’= = sin(x+ )= -sinx

tj. (cos x)’=-sin x

15

Page 16: Izvod funkcije

d) Izvod funkcije y= tg x i y= ctg x. Kako je

y=

to je prema formuli

y’= = =

tj.

(tgx)’=

Slično se dobija da je

(ctgx)’=

e) Izvod funkcije y= , a . Kako za y= vrijedi

y+y= =

to je

y= - = ( -1)

pa je

=

Iz definicije izvoda slijedi da je

y’= = = Ina

tj. ( )’= Ina

za a=e slijedi da je ( )’= jer je Ine= 1.

f) Izvod funkcije y= . Ako je y= tada je

y+y = +x)

ili

y = = )

16

Page 17: Izvod funkcije

Po definiciji izvoda je

y’= = )=

= ) =

tj.

( )’ =

Ako je a=e tada =In x, pa je

(Inx)’= ,

jer je Ine=1.

g) Izvodi inverznih trigonometrijskih funkcija. Funkcija y= arcsinx za -1 x 1, pri čemu je

- y , ima inverznu funkciju x=siny. Tada je = cosy i vrijedi

= = = =

tj.

(arcsinx)’ =

Analog se dobija

(arccosx)’ =

(arctgx)’ =

17

Page 18: Izvod funkcije

(arcctgx)’=

6.TABLICA OSNOVNIH IZVODA

Izvodi elementarnih funkcija, datih u prethodnom dijelu, mogu se izraziti na sljedeći način:

,

,

,

18

Page 19: Izvod funkcije

7.NEKI PRIMJERI IZVODA

Primjer 1. Naći izvod funkcije y= cos x

Rješenje: Funkcija y= cos x se može posmatrati kao prizvod dvije elementarne

funkcije i to i cos x , pa je

y’= ( )’cos x + (cos x)’ = 2xcos x + =

=2xcosx - sin x = x( 2cos x – x sin x)

Primjer 2. Funkcija y= se može posmatrati kao količnik elementarnih funkcija i tg x,pa je

y’ = = = .

19

Page 20: Izvod funkcije

Primjer 3.Naći y’ ako je y= Inx

Rješenje: y’= ( )’Inx+ (Inx)’ = Ina Inx+ =

(Ina Inx + )

Primjer 4. Ako je y= arctg x tada je

y’ = ( )’arctg x + (arctg x)’ = 4 arctg x +

PRIMJENA PRVOG IZVODA U EKONOMIJI

Kao što smo vidjeli, izvod funkcije nam govori kojom se brzinom i kako funkcija mijenja. Ukoliko je prvi izvod veliki pozitivan broj, to znači da funkcija brzo rasle, ukoliko je malen (po apsolutnoj vrijednosti) negativan broj, to znači da funkcija sporo opada i sl.

Ukoliko je riječ o funkciji koja ima neko ekonomsko značenje, tada nam prvi izvod predstavlja graničnu ili marginalnu funkciju te funkcije.

Primjer 1 . Ako je funkcija troškova (gdje smo sa označili količinu proizvodnje) ,

u ekonomiji se definiše tzv. funkcija marginalnog ili graničnog troška, koju označavamo sa MC(Q) sa

.

20

Page 21: Izvod funkcije

Ako sa označimo funkciju prosječnog troška, tj. , tada je

za male Q.

Primjer 2 . Koeficijent elastičnosti pojave u odnosu na promjenu pojave se definiše sa

. Ekonomski, to znači da, ako se promijeni za 1% (tj. ) tada se varijabla

y promijeni za .

Ako je tada je y elastična na promjenu x, a za kažemo da je y neelastična na

promjenu x. Zapravo kad je riječ o malim promjenama (u ekonomiji su uglavnom takve u

vremenu) , možemo smatrati da je .

(U mikroekonomiji se definišu različite elastičnosti, npr. elastičnost supstitucije proizvodnih faktora – skupljeg faktora jeftinijim, ili elastičnost potražnje u odnosu na dohodak, ...).

Pomoću izvoda možemo, za datu funkciju ukupnih troškova proizvodnje izračunati nivo proizvodnje na kome su jedinični troškovi proizvodnje minimalni.Vidjeli smo da prvi izvod funkcije jedne promjenljive u ekonomiji predstavlja tzv. graničnu ili marginalnu funkciju date ekonomske funkcije. Analogno tome, ukoliko imamo neku ekonomsku funkciju dvije promjenljive (npr. količinu proizvodnje kao funkciju rada i kapitala ili ukupan prihod kao funkciju troškova proizvodnje i količine proizvodnje) tada možemo smatrati da se jedna promjenljiva nalazi na istom nivou i posmatrati kako se mijenja naša funkcija s promjenom druge promjenljive. Brzina te promjene je marginalna funkcija date funkcije, a ona zapravo predstavlja prvi parcijalni izvod te funkcije po posmatranoj promjenljivoj. To ćemo detaljnije

objasniti na primjeru Cobb-Douglasove funkcije proizvodnje 1,Q Q L K A L K .

Ukoliko pretpostavimo da je u nekom kraćem vremenskom intervalu uloženi kapital , povećanje rada za neko dovest će do povećanja proizvodnje za neku količinu

. Porast proizvodnje po jedinici porasta ulaganja faktora rada jednak je . Ukoliko

pustimo da , pribižavamo se početnom vremenskom trenutku. Upravo je 0

limL

Q

L

granična produktivnost faktora (u slučaju da je kapital konstantan). S druge strane, vidimo

21

Page 22: Izvod funkcije

da je '

0lim LL

Q QQ

L L

prvi parcijalni izvod funkcije proizvodnje po varijabli . Dakle,

granična produktivnost proizvodnog faktora je prvi parcijalni izvod funkcije proizvodnje po varijabli .

Ukoliko pretpostavimo da je u nekom kratkom vremenskom intervalu uloženi rad , tada je porast proizvodnje po jedinici porasta ulaganja faktora kapitala jednak

. Ukoliko pustimo da , dobijamo što predstavlja granični (marginalni)

proizvod faktora (u slučaju da je rad konstantan). S druge strane je prvi

parcijalni izvod funkcije proizvodnje po varijabli . Dakle, granični proizvod faktora je prvi parcijalni izvod funkcije proizvodnje po varijabli .

Ukoliko je , tada je marginalna produktivnost faktora jednaka:

.

Odavde vidimo da je marginalna produktivnost faktora jednaka proizvodu broja i prosječne produktivnosti.

Marginalni proizvod faktora jednak je

.

Vidimo da je marginalni proizvod faktora jednak proizvodu broja i prosječnog

proizvoda.

Z A K LJ U Č A K

U ovom seminarskom radu sam pokušao objasniti jednu od interesantnih tema matematike a koja je vezana za ekonomiju kao i razvoj diferencijalnog računa kroz povijest. Newtonov i Leibnizov pristup diferencijalnom računu. Geometrijska interpretacija derivacije funkcije u točki kao nagib tangente u zadanoj točki. Definicija derivacije funkcije u točki. Nužan uvjet za postojanje derivacije u točki je da je ona neprekidna u toj točki. Pravila za deriviranje:

22

Page 23: Izvod funkcije

derivacija zbroja funkcija, derivacija produkta i kvocijenta funkcija, derivacija konstantne funkcije. Dokazi pravila za deriviranje. Primjeri derivacija. Derivacija kompozicije funkcije. Diferencijal funkcije i njegovo geometrijsko značenje.

L I T E R A T U R A

1. Sabahet Drpljanin, Matematika, Univerzitet u Tuzli, Tuzla 1997.

2. Nataša Džubur, Matematika sa zbirkom zadataka za 4.razred srednje škole, IP „Svjetlost“ d.d.Zavod za udžbenike i nastavna sredstva Sarajevo, 1998.god.

3. Prof.dr.ing.Boris Aspen, Repetitorij više matematike, Tehnička knjiga Zagreb, 1963.god,

23

Page 24: Izvod funkcije

24