34
ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case (The Linde Group), Osamu Yamazaki (Sharp), Larry Smith (SEMATECH), Jaeyoung Yang (Dongbu HiTek), Noh Jung Kwak (Hynix), Hyeondeok Lee (Samsung), Gilheyun Choi (Samsung), Scott List (SRC)

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

Embed Size (px)

Citation preview

Page 1: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Interconnect Working GroupInterconnect Working Group

2008 Edition

9 December 2008

Seoul

Republic of Korea

Christopher Case (The Linde Group), Osamu Yamazaki (Sharp), Larry Smith (SEMATECH), Jaeyoung Yang

(Dongbu HiTek), Noh Jung Kwak (Hynix), Hyeondeok Lee (Samsung), Gilheyun Choi (Samsung), Scott List (SRC)

Page 2: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

JapanHideki ShibataNobuo Aoi

TaiwanDouglas CH Yu

USChristopher Case

Europe

Hans-Joachim Barth

Alexis Farcy Korea

Hyeondeok Lee

Sibum Kim

ITWG Regional Chairs

Page 3: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Partial List of Contributors• Robert Geffken• Hans-Joachim Barth• Alexis Farcy• Harold Hosack• Paul Feeney• Rick Reidy• Mauro Kobrinsky• Hideki Shibata• Kazuyoshi Ueno• Michele Stucchi• Eiichi Nishimura• Robin Cheung• Didier Louis• Katsuhiko Tokushige• Masayoshi Imai• JD Luttmer• Morihiro Kada• Akira Ouchi• Greg Smith• Detlef Weber• Thomas Toms• Anderson Liu• Scott List• Osamu Yamazaki

• Nobuo Aoi• Scott Pozder• Koji Ban• Masayuki Hiroi• Manabu Tsujimura• Nohjung Kwak • Hyeon Deok Lee• Sibum Kim• Lucile Arnaud• Sitaram Arkalgud• Azad Naeemi• Dirk Gravesteijn• NS Nagaraj• Mike Mills• Yuichi Nakao• Larry Smith• Skip Berry• Yasushi Igarashi• Gunther Schindler• Chung-Liang Chang• Tomoji Nakamura• Shuhei Amakawa• Eric Beyne• Christopher Case

Page 4: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Agenda• Scope and structure• Technology requirements• Difficult challenges• Energy and performance• Low roadmap• Interconnect for memory

– DRAM wiring roadmap

– Non-volatile interconnect requirements

• Beyond metal/dielectric systems– 3D, optical and carbon nanotubes (CNT)

• High Density TSV Technology• 2009 Preview• Last words

Page 5: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Interconnect scope• Conductors and dielectrics

– Starts at contact– Metal 1 through global levels– Includes the pre-metal dielectric (PMD)

• Associated planarization • Necessary etch, strip and cleans• Embedded passives• Reliability and system and performance issues• Ends at the top wiring bond pads• “Needs” based replaced by – scaled, equivalently

scaled or functional diversity drivers

Page 6: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Technology Requirements• Now restated and organized as

– General requirements• Resistivity• Dielectric constant• Metal levels• Reliability metrics

– Level specific requirements (M1, intermediate, global)• Geometrical

– Via size and aspect ratio– Barrier/cladding thickness– Planarization specs

• Materials requirements– Conductor effective resistivity and scattering effects

• Electrical characteristics– Delay, capacitance, crosstalk, power index

Page 7: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Technology Drivers Expanding• Scaled solutions

– Traditional geometric scaling – Cost– necessary to enable transistor scaling).– Performance

• dielectric constant scaling for delay, and power improvements.– Reliability

• EM• crosstalk

• Functional diversity– Increasing value by adding functionality using CMOS-

compatible solutions:• 3D, optical components, sensors. • Contributing to More than Moore

Page 8: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Difficult challenges (1 of 3)• Meeting the requirements of scaled metal/dielectric systems

– Managing RC delay and power• New dielectrics (including air gap)• Controlling conductivity (liners and scattering)

– Filling small features• Liners• Conductor deposition

– Reliability• Electrical and thermo-mechanical

• Engineering a manufacturable interconnect stack compatible with new materials and processes – Defects– Metrology– Variability

Page 9: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Difficult challenges (2 of 3)• Meeting the requirements with equivalent scaling

– Interconnect design and architecture (includes multi-core benefits)– Alternative metal/dielectric assemblies

• 3D with TSV– Interconnects beyond metal/dielectrics

• 3D• Optical wiring• CNT/Graphene

– Reliability• Electrical and thermo-mechanical

• Engineering a CMOS-compatible manufacturable interconnect system– Non-traditional materials (for optical, CNT etc.)– Unique metrology (alignment, chirality measurements, turning

radius etc)

Page 10: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Difficult challenges (3 of 3)• Adding functional diversity

– Intelligent Interconnect • Active devices embedded in the interconnect BEOL • Mixed technologies Si, GaAs, HgCdTe together

– Mixed signalling approaches• RF and analog• Passive devices• Repeaters in interconnect, combined metallic/semiconducting CNT

interconnects • Back-end memory• Variable resistor via

– Reliability• Electrical and thermo-mechanical

• Engineering a CMOS-compatible manufacturable interconnect system– Non-traditional materials III/V, II/VI – Deposition (low temperature epi)– Unique metrology (composition)

Page 11: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Dynamic Power• Increasing concern about rising dynamic power in the

interconnect stack– Interconnects make a significant contribution to total

dynamic power• Impacts effective k roadmap

– Drives reduction in parasitic capacitance• Dynamic power is a key constraint for high performance MPUs• Alternative interconnect technologies (optical, CNT, RF, etc.)

should be performance competitive in terms of delay and power• Influence of number of functions (N), activity (A) and frequency

(F): P = (NAF)CV2

Page 12: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Table INTC2 (MPU and ASIC Interconnect Technology Requirements—Near-term Years)M1_half_pitch 65 59 52 45 40 36 32 28 25

Power index (W/GHz-cm2) [x]

1.4-1.6

1.4-1.6

1.4-1.6

1.6-1.8

1.8-2.0

1.6-1.8

1.7-2.0

2.0-2.3

1.5-1.8

Power index = C Vdd2 a (1 GHz) ew (1 cm2)/p; p = pitch; Vdd = supply voltage; ew =

wiring efficiency = 1/3; a = activity factor = 0.03.

The calculated values are an approximation for the “power per GHz per cm2 of metallization layer”.

This index scales with the critical parameters that determine the interconnect dynamic power.

NOTES: the values provided are an average for M1, Intermediate and Global interconnects. The range of values results from the maximum and minimum effective dielectric constants.

Page 13: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Eff

ect

ive

Die

lec

tric

Co

ns

tan

t; k

eff

Year of 1st Shipment

ITRS1999

ITRS2001

ITRS2005

ITRS2005ITRS2007-2008

ITRS2003

Historical Transition of ITRS Low-k Roadmap

Page 14: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Homogeneous ILD

without trench etch stop

Embedded low ILD

( 1 >

2 )

C O

N

D

U

C

T O

R

C O

N

D

U

C

T O

R

C O

N

T O

R

C O

N

T O

R

Homogeneous ILD with trench etch stop

Dielectric diffusion barrier

Dielectric diffusion barrier

Etch stop layer

Etch stop layer

C

O N

D

U C

T

O R

C

O N

D

U C

T

O R

2

2

1

1

1

1

1

1

1

1

1 D

U

C

D

U

C

Integration Schemes

Page 15: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Low-k Trend from Conference Papers (2003-2007 IITC, IEDM, VL, AMC)

Slow down of low-k technology development speedand large variation of k values among device companies

Slow down of low-k technology development speedand large variation of k values among device companies

90 nm 65 nm 45 nm 32nm

CVD SiOC DD (k=2.9) CVD SiOC DD (k=2.9)

CVD SiOC DD (k=3.0) CVD SiOC DD (k=2.75) CVD SiOC DD (k=2.45)

CVD SiOC DD (k=3.0) CVD SiOC DD (k=2.7)

CVD SiOC DD (k=2.9)

CVD SiOC DD (k=2.9)NCS/CVD SiOC stack DD

(k=2.25/2.9)NCS/NCS stack DD

(k=2.25/2.25)

CVD SiOC DD (k=2.9)PAr/SiOC hybrid DD

(k=2.6/2.5)P-PAr/p-SiOC hybrid DD

(k=2.3/2.3)

CVD SiOC DD (k=2.65)CVD SiOC stack DD

(k=2.6/3.0)

NCS/NCS stack DD(k=2.25/2.25)?

ULK-PAr/SiOC hybrid DD(k=2.0/2.0)

CVD SiOC DD (k=2.55)? CVD SiOC DD (k=2.2-2.3)?

Company

I

I

T

R

F

T

Page 16: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

90 nm        65 nm      45 nm    32nm

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=3.0)

CVD SiOC DD (k=3.0)

CVD SiOC DD(k=2.75)

CVD SiOC DD(k=3.0)

CVD SiOC DD (k=3.0)

CVD SiOC DD(k=2.8)

Actual introduction in manufacturing of low-k material is one generation delayed and a variation of bulk k range among device makers is narrowing compared with trend from

conference papers

Actual introduction in manufacturing of low-k material is one generation delayed and a variation of bulk k range among device makers is narrowing compared with trend from

conference papers

Actual Low-k Trend from Introduction in Manufacturing

CVD SiOC DD(k=2.8)

CVD SiOC DD(k=2.4)?

CVD SiOC DD(k=2.4)

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=2.6)

CVD SiOC DD(k=2.8)

CVD SiOC DD(k=3.0)

CVD SiOC DD(k=2.75)

CVD SiOC DD(k=2.4)

CVD SiOC DD(k=2.2-2.3)?

CVD SiOC DD(k=2.55)?

CVD SiOC DD(k=2.4)

CVD SiOC DD (k=3.0)

Page 17: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Change maximum bulk k value from 2.9 to 2.8 corresponding to 45nm actual introduction in manufacturing of low-k material.

Beyond 2009, decrease maximum bulk k value by 0.1.

ITRS2008 Low-k Roadmap Update

2.3-2.7  → 2.3-2.6 @2009-20112.1-2.5  → 2.1-2.4 @2012-20141.9-2.3 → 1.9-2.2 @2015-20171.7-2.1 → 1.7-2.0 @2018-20201.5-1.9 → 1.5-1.8 @2021-20232.5-2.9  → 2.5-2.8 @2007-2008

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

2.1-2.4 1.9-2.2 1.9-2.2 1.9-2.2 1.6-1.9 1.6-1.9 1.6-1.9

2.4-2.8 2.1-2.5 2.1-2.5 2.1-2.5 2.0-2.3 2.0-2.3 2.0-2.3 1.7-2.0 1.7-2.0 1.7-2.0

1.8-2.1 1.6-1.9 1.6-1.9 1.6-1.9 1.4-1.7 1.4-1.7 1.4-1.7

2.1-2.4 1.9-2.2 1.9-2.2 1.9-2.2 1.7-2.0 1.7-2.0 1.7-2.0 1.5-1.8 1.5-1.8 1.5-1.8

3.0-3.5 2.6-3.0 2.6-3.0 2.6-3.0 2.4-2.6 2.4-2.6 2.4-2.6 2.1-2.4 2.1-2.4 2.1-2.4

Long-term

Year of Production 2008 2009 2010 2011 2012 2013

WasInterlevel metal insulator – effective dielectricconstant ()

2.7-3.0 2.5-2.8 2.5-2.8 2.5-2.8 2.1-2.4 2.1-2.4

IsInterlevel metal insulator – effective dielectricconstant ()

2.9-3.3 2.6-2.9 2.6-2.9 2.6-2.9 2.4-2.8 2.4-2.8

WasInterlevel metal insulator – bulk dielectricconstant ()

2.3-2.7 2.1-2.4 2.1-2.4 2.1-2.4 1.8-2.1 1.8-2.1

IsInterlevel metal insulator – bulk dielectricconstant ()

2.5-2.8 2.3-2.6 2.3-2.6 2.3-2.6 2.1-2.4 2.1-2.4

IsCopper diffusion barrier and etch-stopper - bulkdielectric constant ()

4.0-4.5 3.5-4.0 3.5-4.0 3.5-4.0 3.0-3.5 3.0-3.5

Near-term

Page 18: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

2008 Low k update

• For those who think changes in k of 0.1 are significant – we aim to please

• For those who don’t – try reaching consensus on low k with 100 people

• Proliferation of air-gap approachesValues of effective k-value down to 1.7 with low crosstalk

levelsLocalized air gaps to maintain good thermal and mechanical

properties

Year of Production 2007 2008 2009 2010 2011 2012 2013 2014 2015

MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)

68 59 52 45 40 36 32 28 25

Interlevel metal insulator – bulk dielectric constant (κ)

2.5–2.9 2.5–2.8 2.3–2.6 2.3–2.6 2.3–2.6 2.1–2.4 2.1–2.4 2.1–2.4 1.9-2.2

Year of Production 2016 2017 2018 2019 2020 2021 2022

MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)

22 20 18 16 14 13 11

Interlevel metal insulator – bulk dielectric constant (κ)

1.9–2.2 1.9–2.2 1.7-2.0 1.7–2.0 1.7–2.0 1.5–1.8 1.5–1.8

Page 19: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

2008 Barrier/Nucleation/Resistivity

• ALD barrier processes and metal capping layers for Cu are lagging in introduction

• Resistivity increases due to scattering and impact of liners•No known practical solutions

Year of Production 2007 2008 2009 2010 2011 2012 2013 2014 2015

MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)

68 59 52 45 40 36 32 28 25

Barrier cladding thickness Metal 1 (nm)

4.8 4.3 3.7 3.3 2.9 2.6 2.4 2.1 1.9

Conductor effective resistivity (µΩ‑cm) Cu Metal 1

3.51 3.63 3.8 4.08 4.30 4.53 4.83 5.2 5.58

Year of Production 2016 2017 2018 2019 2020 2021 2022

MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)

22 20 18 16 14 13 11

Barrier cladding thickness Metal 1 (nm)

1.7 1.5 1.3` 1.2 1.1 1.0 0.9

Conductor effective resistivity (µΩ‑cm) Cu Metal 1

6.01 6.33 6.7 7.34 8.19 8.51 9.84

Page 20: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

DRAMSmall changes in specific via and contact resistivity

Contact A/R (stacked capacitor) rises to >40 in 2014 - a red challenge - associated with the 40 nm DRAM half pitch

High A/R Contact Interconnect and HAC FEP – now matched

Cu implemented in 2007

Latest view - low k with an effective dielectric constant of 3.1 – 3.4 pushed back 3 years to 2011

Plan to distinguish embedded, flash, and traditional DRAM along with alternative memory in the interconnect in the future (2009)

Page 21: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Revised DRAM Year of Production 2008 2009 2010 2011 2012 2013

DRAM ½ Pitch (nm) (contacted) 57 50 45 40 36 32

MPU/ASIC Metal 1 ½ Pitch (nm)(contacted) 59 52 45 40 36 32

MPU Physical Gate Length (nm) 22 20 18 16 14 13

Number of metal layers 4 4 4 4 4 4

Contact A/R – stacked capacitor 18 28 28 31 31 31

Metal 1 wiring pitch (nm) * 114 100 90 80 72 64

Specific contact resistance (Ω-cm2) for n+ Si 1.70E-08 1.40E-08 1.20E-08 9.80E-09 8.20E-09 6.90E-09

Specific contact resistance (Ω-cm2) for p+ Si 2.70E-08 2.20E-08 1.80E-08 1.50E-08 1.30E-08 1.10E-08

Specific via resistance (Ω-cm2) 4.00E-10 3.50E-10 2.90E-10 2.50E-10 2.10E-10 1.70E-10

Conductor effective resistivity (µΩ-cm) assumes no scattering for Cu 2.2 2.2 2.2 2.2 2.2 2.2

Interlevel metal insulator – effective dielectric constant (κ) 3.6–4.1 3.6–4.1 3.6–4.1 3.1–3.4 3.1–3.4 3.1–3.4

Page 22: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Jmax 2008

Critical points for the DC pulse current, where the minimum pitch and via-size are used for high density. Frequency plans matched with design. Currently revising two key inputs to Jmax models: critical wire lengths, load assumptions and validating technology maturity color shading

-Minimum Tr width (Wmin.):

NMOS Gate width= (ASIC Half-pitch)x 4 PMOS Gate width=(NMOS Gate-width) x 2

-Tr-width (Wg):

Wg =Wmin.x 2

-Gate capacitance (Cg)

-Wiring length (Li): IM-Pitch x 400

-Wiring capacitance (Ci): Updated keffCurrent density of

IM-interconnect (Jmax)

= f (Cg*Wg *N+Ci) *Vdd/(Wi*Ti)

Current density of

IM-interconnect (Jmax)

= f (Cg*Wg *N+Ci) *Vdd/(Wi*Ti)

Inverter circuit (F.O=4)

Cg*Wg

Imax

Vdd

Fan out N=4

Cg*Wg

Intermediate wire

Ci

Critical point

Page 23: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

0.1

1.0

10.0

100.0

2005 2010 2015 2020 2025

Year

Jmax

(M

A/c

m2)

Jmax 2008

Jmax 2007

Small changes from 2007 Jmax values

Jmax Update - 2008

Page 24: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Emerging Interconnect (1/2)• Use geometry

– 3D– Air gap

• Use different signaling methods – Signal design – Signal coding techniques

• Use innovative design and package options– Interconnect - centric design– Package intermediated interconnect – Chip-package co-design

Figure From Stanford

Page 25: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Emerging interconnect (2/2)• Use different physics

– Optics (waveguides, emitters, detectors, free space, trans-impedance amps, modulators)

– RF/microwaves (transmitters, receivers, free space, waveguides)

– Terahertz photonics• Radical solutions

– Nanowires/nanotubes/graphene– Molecules – Spintronics – Quantum wave functions

Page 26: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

From low- to no - air gaps• Introduction of air gap architectures

– Creation of air gaps with non-conformal deposition– Removal of sacrificial materials after multi-level interconnects

Values of effective k-value down to 1.7 with low crosstalk levels Localized air gaps to maintain good thermal and mechanical properties

Ultra-low and Air gap (<1.7) (CVD and Spin-on)

Page 27: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Hypothetical On-die Optical Interconnects with WDM

Wavelength specific modulator

Waveguides2

s1

s4

s2

s6

s4

Intel Technology Journal, Volume 8, Issue 2, 2004

s1

s2

s3

s4

s5

s6

Page 28: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

High Density TSV Roadmap or“enabling terabits/sec at femtojoules”

• The Interconnect perspective - examples:– High bandwidth/low energy interfaces between memory and logic– Heterogeneous integration with minimal parasitics (analog/digital, mixed

substrate materials, etc.)– “Re-architect” chip by placing macros (functional units) on multiple tiers

(wafers) and connect using HD TSVs

ØTSV

Øpad

BEOL layers

HSi = thicknessFEOL layersand Si substrate

TSV die/wafer

Die/wafer bonded with TSV die/wafer

STSV

PTSV

ØTSV = Diameter TSV via

∆ = Aligment tolerance (3 sigma)

Øpad = Minimal size bonding pad for TSV

Øpad = ØTSV + 2∆ STSV = minimal spacing between pads

PTSV = Pitch electrically isolated TSV connections

PTSV = Øpad + STSV = ØTSV + 2∆ +STSV

• Model assumptions:– TSV diameter limited by silicon

thickness and TSV Aspect Ratio: – Pitch limited by TSV diameter,

misalignment tolerance, minimum pad spacing

Page 29: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

TSV connects both die directlyTSV connects both die directlyor through RDL interconnect

TSV connectsboth die

TSV through one die only

No Backside patterning thinned TSV die

Si-backside µbump pad and possible interconnect RDL

Si-backside µbump pad and possible interconnect RDL

TSV through FEOL & BEOL

TSV through FEOL only

TSV through FEOL & BEOL

TSV through FEOL only

TSV through FEOL & BEOL

TSV through FEOL only

B2F TSV to pad direct bonding

B2F µbump bondingF2F non-conductive

bonding

F2F µbump bonding

Wafer thinning and TSV process BEFORE bonding

Wafer thinning and TSV process AFTER bonding

TSV connects both die directlyTSV connects both die directlyor through RDL interconnect

TSV connectsboth die

TSV through one die only

No Backside patterning thinned TSV die

Si-backside µbump pad and possible interconnect RDL

Si-backside µbump pad and possible interconnect RDL

TSV through FEOL & BEOL

TSV through FEOL only

TSV through FEOL & BEOL

TSV through FEOL only

TSV through FEOL & BEOL

TSV through FEOL only

B2F TSV to pad direct bonding

B2F µbump bondingF2F non-conductive

bonding

F2F µbump bonding

Wafer thinning and TSV process BEFORE bonding

Wafer thinning and TSV process AFTER bonding

High Density TSV Technology

Page 30: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

High Density TSV Specification• Represents devices that could appear in production, using

at least one approach to 3D integration– ≤10 m Si thickness, wafer-to-wafer integration, wafers thinned

after bonding

TSV roadmap - Wafers thinned AFTER bonding

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2008 2009 2010 2011 2012 2013 2014 2015

Dim

en

sio

n (

µm

)

Minimum contact pitch

Minimum bonding pad

HDTSV Pitch (µm)

HDTSV Diameter (µm)

Bonding overlay accuracy

Page 31: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

INTC6 High Density Through Silicon Specification

2008 2009 2010 2011 2012 2013 2014 2015

HDTSV Diameter, ØTSV (µm) [2], [3] 1.6 1.5 1.4 1.3 1.3 1.2 1.1 1.0

Minimum Interlayer HDTSV Pitch (µm) [4] 3.2 3.0 2.8 2.6 2.6 2.4 2.2 2.0

Minimum Layer Thickness (µm) [5] 10 10 10 10 10 10 10 10

Bonding overlay accuracy, ∆ (3 sigma) (µm) [6] 1.5 1.5 1 1 1 0.5 0.5 0.5

Minimum size bonding pad Øpad =ØTSV +2.∆ (µm) 4.6 4.5 3.4 3.3 3.3 2.2 2.1 2.0

Minimum pad spacing, STSV (µm) [7] 1 1 1 0.5 0.5 0.5 0.5 0.5

Minimum contact pitch, PTSV= Øpad + STSV (µm) [8] 5.6 5.5 4.4 3.8 3.8 2.7 2.6 2.5

Table notes:

[1] Table represents TSV and contact densities that can be achieved using wafer-to-wafer integration, with e.g. wafers thinned after bonding. Example applications include high bandwidth/low energy interfaces between memory and logic; heterogeneous integration (analog/digital, mixed substrate materials, etc.) with minimal parasitics; and chips with functional units split between tiers and connected using HDTSVs. Model assumptions include the TSV diameter being limited by the silicon thickness and TSV aspect ratio; and the contact pitch being limited by the TSV diameter, misaligment tolereance, and minimum pad spacing. See also Table AP7, which is an independent assessment.

[2] Application-based scaling relationships are not well understood requirements; scaling has been assumed to be at half the rate of the MPU/ASIC M1 1/2 pitch.

[3] This refers to the physical size of the TSV only, and does not include any additional "Keep-Out Area" (KOA) from which devices would be excluded.

[4] Assumed to be twice the HDTSV diameter.

[5] Si thickness is limited to avoid shifting transistor characteristics, especially for strained Si. Nominal thickness will be larger, to allow for Total Thickness Variation (TTV). It may eventually become necessary to decrease this thickness in order to decrease the TSV aspect ratio or the form factor.

[6] Aligment accuracy between the die or wafers defines the achievable interconnect contact density using TSV's. Today this is one of the major hurdles for scaling the interconnect pitch of electrically isolated TSV connections.

[7] The spacing between TSV contact pads is mainly lithographically defined, not directly in relation to the via diameter.

[8] Assumes that the contacts are concentric with the TSVs. Contact pitch can differ from TSV pitch for various reasons, including: TSV’s may be used for access to IO pads only, independent of wafer-to-wafer connections (e.g., for face-to-face integrations); multiple TSV’s may connect to a single contact pad, e.g. for power/ground or redundancy; TSV’s may fan out to contacts through a redistribution layer.

Page 32: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Summary of Notable 2008 changes• Low-k slowdown

– New range for MPU/ASIC bulk and eff

– DRAM eff of 3.1-3.4 delayed 3 yrs to 2009

• New Technology Introduction

– ALD barrier processes and metal capping layers for Cu are lagging in introduction.

• No solutions seen for Cu resistivity rise - managed

• Power Metric

– Capacitance per unit length decreases due to decreases of the dielectric constant.

– The dynamic power is expected to increase because of the increased number of metallization layers, larger chip size and increased frequency.

Page 33: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

• 3DIC Definition and Coordination• Work with Design to conduct an industry survey to

determine 3D design requirements by application area• Improve coordination with A&P• Identify factors contributing to yield loss• Work with Design and Test to identify issues with HD TSV

• Emerging Technologies Expansion• Identify new options with ERM TWG

• More than Moore Category Standardization• Work with other TWGs to define a common set of More

than Moore categories

2009 Preview

Page 34: ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK Interconnect Working Group 2008 Edition 9 December 2008 Seoul Republic of Korea Christopher Case

ITRS 2008 Winter Conference – 9 December 2008 Seoul. ROK

Last words• More Moore

– Must manage the power envelope– Must continue to meet requirements of scaled metal/dielectric systems

while developing CMOS-compatible equivalent scaling solutions

– Cu resistivity impact real but manageable

– materials solutions alone cannot deliver performance - end of traditional scaling

• More than Moore– integrated system approach required

– functional diversity enhances value

– Focus on 3DIC and emerging interconnect