52
Ionospheric Modelling and its Challenges due to Space Weather Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP [email protected] The International Space Weather Initiative School on Space Weather and Global Navigation Satellite Systems 8–12 October 2018, Baku, Azerbaijan

Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP [email protected]

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Ionospheric Modelling and its Challenges due to Space Weather

Sandro M. RadicellaHead, Telecommunications/ICT for Development laboratory (T/ICT4D),

The Abdus salam [email protected] 

The International Space Weather Initiative School onSpace Weather and Global Navigation Satellite Systems

8–12 October 2018, Baku, Azerbaijan

Page 2: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Modelling in Geophysics

Page 3: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Measurements, theory, model and prediction

MEASUREMENTS (Past data)

Theory

Model

Prediction (Current 

and Future data)

Page 4: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Empirical models: • descriptive• based on data statistics

Main types of GeophysicalModels 

Physics based models • explain and predict based on 

mathematical representation of physical laws.

• are deterministic.  the other. 

Neither the 

physics‐based nor the 

empirical approach ignores 

the other. 

Page 5: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Physicists rely on observations to develop and validate physical models

Statistical or empirical models are  guided by principles of physics

Because

Page 6: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Limits of geophysical models (1)

Impossibility to perform controlled experiments to study the Earth. 

Page 7: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Limits of geophysical models (2)

Past data are always “uncertain guide” because of our limited data base.

Stochastic nature of many geophysical processes precludes reaching certainty.

Data errors increase the uncertainty in model specifications.

Population

Data

Page 8: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

The limits of geophysical models (3)

The development of geophysical science had to rely entirely upon 

observations of natural phenomena. 

The development of geophysical science had to rely entirely upon 

observations of natural phenomena. 

It is impossible to draw exact conclusions from 

the observations, because it is difficult to separate physical process 

controlling the observation.

It is impossible to draw exact conclusions from 

the observations, because it is difficult to separate physical process 

controlling the observation.

Physical conclusions are uncontrolled synthesis of many mutually dependent physical 

processes. 

Physical conclusions are uncontrolled synthesis of many mutually dependent physical 

processes. 

Page 9: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

But, things are getting better and better! 

Model based Numerical Predictions in geophysics are now a “successful story” 

because: 

Rapid growth of the number of Earth observationsSustained and continous improvements of modelsContinous growth in computing power since the 1970s.

Page 10: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

An outstanding example of success:

Abbe (1901) and Bjerknes (1904) proposed that 

physics laws could be used to forecast weather

Today Numerical Weather prediction

Numerical Weather Predictions impact in science and society is among the greatest of any area of sciences.

Abbe, C. Mon.Weath. Rev. 29,551–561 (1901).Bjerknes, V. Meteorol. Z. 21, 1–7 (1904).

Page 11: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Abbe and Bjerknes ideas

“Predicting the state of the atmosphere could be treated as a problem of mathematical physics, where future weather is obtained by integrating  given partial differential equations, starting from the observed current weather”

But at that time, there were:• few routine weather observations,• no computers, • little understanding of whether the weather could be predicted

Page 12: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

More than 100 years later, systems of nonlinear differential equations are solved routinaly considering: 

• dynamic, • thermodynamic, • radiative,• chemical 

processes working on scales from hundreds of metres to thousands of kilometres and from seconds to weeks.

Today Numerical Weather prediction

Page 13: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Weather forecast skill and supercomputer power growth

P. Bauer, A. Thorpe and G. Brunet, Nature,  525, 47‐55 (2015)

Page 14: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Ionospheric models

Page 15: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

We need Ionospheric Models

To understand and reproduce ionospheric 

variations observed experimentally

To “predict”ionosphere conditions

To specify ionospheric 

conditions needed by technological 

systems

To test and improve our 

knowledge about the ionosphere

Page 16: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Moreover

Ionospheric Models are alternatives to 

direct measurements.

Models are cheaper and more 

convenient to study different processes.

because

Page 17: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Some characteristics of ionospheric models

Main output of Ionospheric models is electron density with the possible addition of other parameters

All ionospheric models need some type of 

input data

There are no all‐purpose ionospheric 

models

Current ionospheric models are constantly 

undergoing improvements and 

validations.

Page 18: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Moreover

Well established databases to test and validate the existing models 

are needed to generate improvements

No model is able to reproduce by itself in a satisfactory way both the “climate” and the “weather” of the 

Earth ionosphere.

Page 19: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

From “climate” to “weather”:the impact of Space Weather

• Lower atmosphere and ionosphere exhibit “climate” and a “weather” variability. 

• Ionospheric “climate” is well represented by models of different types.  

• Ionospheric weather variability is mostly controlled by the “Space Weather conditions”.

• A BIG challenge of ionospheric modelling is to consider the impact of varying Space Weather conditions to reproduce the observations.

Page 20: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Two approaches to model Ionosphere Weather

Systemic approach:coupled 

physics‐based models

Data Assimilation or ingestion in 

models

Page 21: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Ionospheric Climate Models

Page 22: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Different types

Empirical orProfilers Physics‐Based 

Parameterized

Page 23: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Empirical Models or profilers

Analytical description of the ionosphere derived from experimental data.

Model climate ionospheric variation from past data

Data sources are: ionosondes, topside sounders, incoherent scatter radars, rockets and satellites.

Page 24: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Empirical Models or profilers:uses and limitations

Mainly used for assessment and prediction purposes.

Easy to use.

Describe ionospheric climate. Give realistic representation of the 

ionosphere in areas well covered by observations.

Page 25: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

International Reference Ionosphere(1)

IRI is an international project sponsored by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI). 

Empirical standard model of the ionosphere, based on all available data sources. 

Several improved editions of the model have been released. 

Input

probability

InputYear, month, day, hour, geographic or geomagnetic coordinates, various optional input. Basic imput are the ITU‐R coeficients of foF2 and M(3000).

OutputElectron concentration, electron temperature, ion temperature, ion composition (O+, H+, He+, NO+, O+

2), ion drift, ionospheric electron content (TEC), F1 and spread‐F probability

Page 26: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

International Reference Ionosphere(2)

International Reference Ionosphere (IRI)

D. Bilitza, International Reference Ionosphere 2000, Radio Science 36, #2, 261‐275, 2001....Bilitza, D., D. Altadill, V. Truhlik, V. Shubin, I. Galkin, B. Reinisch, and X. Huang , International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions, Space Weather, 15, 418–429, 2017doi: 10.1002/2016SW001593.LAST VERSION OF IRI Web: https://ccmc.gsfc.nasa.gov/modelweb/models iri2016_vitmo.php 

Page 27: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

International Reference Ionosphere (3)

From: “Mitigation of Ionospheric Threats to GNSS: an Appraisal of the Scientific and TechnologicalOutputs of the TRANSMIT Project”, Chapter 3, p. 166,InTech 2014 

Page 28: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

NeQuick (1)

3D time dependent ionospheric electron density model developed at the ICTP, Trieste, Italy and at the University of Graz, Austria.

Quick‐run model particularly tailored for trans‐ionospheric applications.

InputYear, month, day, time, geographic coordinates of lower and higher endpoint , R12 or F10.7 solar flux. Basic imput are the ITU‐R coeficients of foF2 and M(3000).

OutputElectron density  and TEC along any ground‐to‐satellite ray‐path.

Page 29: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

NeQuick (2)

NeQuick

S. M. Radicella, Leitinger, R., 2001. The evolution of the DGR approach to model electron density profiles. Advances in Space Research 27 (1), 35–40. 

B. Nava, P. Coïsson, and S. M. Radicella (2008), A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar‐Terrestrial Physics, 70(15), 1856‐1862. 

NeQuick2WEB –http://t‐ict4d.ictp.it/nequick2/nequick‐2‐web‐model

Page 30: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

NeQuick (3)

From: “Mitigation of Ionospheric Threats to GNSS: an Appraisal of the Scientific and Technological Outputs of the TRANSMIT Project”, Chapter 3, p. 167, InTech 2014 

Page 31: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

An empirical model of Mars ionosphere: NeMars

Sánchez‐Cano, B., Radicella, S.M., Herraiz, M., Witasse, O., Rodríguez‐Caderot, G., NeMars, 2013. An empirical model of the martian dayside ionosphere based on Mars Express MARSIS data. Icarus 225 (1), 236–247. http://dx.doi.org/10.1016/j. icarus.2013.03.021.

NeMars is an empirical model for the martian dayside ionosphere (primary and secondary layers) based on MARSIS AIS data from Mars Express and on radio occultation data from Mars Express and Mars Global Surveyor.The model assumes that the martian ionosphere is in photochemical equilibrium and the two main layers can be represented by the ‐Chapman theory. Other contributions like solar activity and heliocentric distance have been considered. 

Page 32: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Physics‐Based Models

Conservation equations (continuity, momentum, energy, etc.) are solved numerically for electrons and ions as a function of spatial and time coordinates to calculate plasma densities, temperatures and flow velocities.

Data sources are magnetospheric (convection electric field and particle precipitation) and atmospheric parameters (neutral densities, temperatures and winds) 

Page 33: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Physics‐Based Models: uses and limitations

Are mainly used for scientific studies. Can be powerful tools to understand the 

physical and chemical processes of the upper atmosphere.

Accuracy depends on the quality and quantity of input data and their error estimates.

Accuracy depends also on possible missing physics (not enough knowledge of all the physical processes involved)

Page 34: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

SAMI3 (1)

SAMI3 is three‐dimensional global ionospheric model. It calculates the chemical evolution of seven ion species (H+, He+, N+, O+, NO+, N2

+ and O2+) in the altitude 

range 85 km to 20,000 km. An offset, tilted dipole geomagnetic field is used, and the plasma is modeled from hemisphere to hemisphere. The neutral composition and temperature are provided and the neutral winds are obtained from models. SAMI3 uses a unique, nonorthogonal, nonuniform, fixed grid.

Page 35: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

SAMI3 (2)

SAMI3 Huba, J. D., G. Joyce, and J. Krall (2008), Three‐dimensional equatorial spread F modeling, Geophys. Res. Lett., 35, L10102, doi:10.1029/2008GL033509.InputValue of F10.7 (1 day and 3 months average), AP IndexExB Drift velocityOutpution density, ion temperature, ion velocity, electron temperature, NmF2, hmF2,TEC (Total Electron Content)SAMI3 Request a run:https://ccmc.gsfc.nasa.gov/requests/IT/SAMI3/sami3_user_registration.php

Page 36: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

GITM (1)

Global Ionosphere Thermosphere Model (GITM) is a 3‐dimensional spherical code that models the Earth's thermosphere and ionosphere system using a grid in latitude and altitude. The number of grid points in each direction can be specified, so the resolution is extremely flexible. GITM explicitly solves for the neutral densities of O, O2, N(2D), N(2P), N(4S), N2, and NO; and ion species O+(4S), O+(2D), O+(2P), O2+, N+, N2+, and NO+.It uses an altitude grid instead of a pressure grid. The vertical grid spacing is less than 3 km in the lower thermosphere, and over 10 km in the upper thermosphere. GITM allows a more realistic dynamics in the auroral zone. GITM covers all latitudes and a vertical range from about 90 km to 600 km. The latitude resolution is 2.5º, and longitude resolution is 5º.

Page 37: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

GITM (2)

Global Ionosphere Thermosphere Model  GITM)

php

Global Ionosphere Thermosphere Model (GITM)Ridley, A. J., Y. Deng, and G. Toth., 2006, The Global Ionosphere‐Thermosphere Model (GITM). J. Atmos. Solar‐Terrestr. Phys. 68, 839‐864.InputF10.7, Hemispheric Power Index (HPI), Interplanetary Magnetic FieldSolar wind velocity, Solar irradiance (for event runs)OutputTemperatures: neutral, ion, electron (K), Neutral winds: zonal, meridional, vertical (m/s), Plasma velocities: zonal, meridional, vertical (m/s), Neutral mass density (kg/m3), Number densities: neutral (O, O2, N(2D), N(2P), N(4S), N2, and NO), ion (O+(4S), O+(2D), O+(2P), O2+, N+, N2+, and NO+), and electron (m‐3)GITM Request a run: https://ccmc.gsfc.nasa.gov/requests/IT/GITM/gitm_user_registration.php

Page 38: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Parameterized Models

They are based on orthogonal function fits to data that are output of physics‐based models.

Theoretical model runs are performed for various solar‐geophysical conditions and parameterization is usually done in terms of solar activity, geomagnetic activity and season.

Page 39: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Parameterized Models:uses and limitations

Describe the climatology of the ionosphere.

Are computationally fast still retaining physics of theoretical models. 

Cannot accurately reproduce specific situations.

They are suitable only for well‐specified geophysical problems.

Page 40: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

PIM (1)

The Parameterized Ionospheric Model (PIM) is a climatology model built from combining model output from the Global Theoretical Ionospheric Model (GTIM) model for low and middle latitude with output from the TDIM model for high latitudes and from an empirical model for plasmaspheric altitudes Gallagher et al. (1988).

TEC 

September 22

UT=1:39

F10.7= 200. 

Page 41: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

PIM (2)

Parameterized Ionospheric Model (PIM)Daniell, R. E., Jr., L. D. Brown, D. N. Anderson, M. W. Fox, P. H. Doherty, D. T. Decker, J. J. Sojka, and R. W. Schunk (1995), Parameterized ionospheric model: A global ionospheric parameterization based on first principles models, Radio Sci., 30(5), 1499–1510,Gallagher, D. L., P. D. Craven, R. H. Comfort (1988), An empirical model of the earth's plasmasphere, Adv. Space Res., 8(8), 15‐24.InputSolar‐Geophysical conditions (UT,DOY,F10.7,Kp) and geographical  coordinates.OutputElectron density profile from 90 to 25000 Km plus foF2, foE, hmF2, hmE, TEC  Info: https://ccmc.gsfc.nasa.gov/modelweb/ionos/pim.html

Page 42: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

From “climate” to “weather”

Page 43: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

FORCING FROM SUN AND 

MAGNETOSPHERE

FORCING FROM SUN AND 

MAGNETOSPHERE

IONOSPHEREIONOSPHERE

FORCING FROM LOW 

ATMOSPHERE

FORCING FROM LOW 

ATMOSPHERE

From Climate

toWeather

Systemic approach:coupled physics‐based models

Page 44: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

TIEGCM

The Thermospheric General Circulation Model of the High Altitude Observatory at the National Center for Atmospheric Research:• 3D, • time‐dependent ,• numeric simulation of the Earth's upper atmosphere, 

including the upper Stratosphere, Mesosphere, and Thermosphere.

• Includes also a self‐consistent aeronomic scheme for the coupled Thermosphere/Ionosphere system, Thermosphere Ionosphere Electrodynamic General Circulation Model 

• Extension of the lower boundary from 97 to 30 km, including the physical and chemical processes appropriate for the Mesosphere and upper Stratosphere.

Page 45: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

An important result using this model

From the paper:“Day‐to‐day ionospheric variability due to lower atmosphere perturbations” by H.‐L. Liu, V. A. Yudin, and R. G. Roble; GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 665–670.This study demonstrates that TIEGCM constrained in the stratosphere and mesosphere by the hourly Whole Atmosphere Community Climate Model (WACCM) is capable of reproducing observed features of day‐to‐day variability in the thermosphere‐ionosphere. 

Page 46: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

Day‐to‐day variability of NmF2 

Under constant solar minimum and geomagnetically quiet conditions the meteorological driving may contribute comparably with geomagnetic forcing to the ionospheric  day‐to‐day variability. 

Page 47: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

From Climate

toWeather

Data Assimilation or ingestion in models

increasing availability of data:solar data, ionospheric ground and space‐based TEC, ionosonde and radar data

Development of data assimilation/data ingestion techniques to specify ionospheric weather variability mostly induced by Space Weather events

During the last 20 years

due also to

Page 48: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

USU‐GAIM

This was possible also because of the increasing availability of experimental data even in real time (solar data, ground and space‐based GNSS ionospheric, ionosonde and radar data). 

These models and schemes are of different complexity and rely on different kinds of  data.

One of the Utah State University (USU) Global Assimilation of Ionospheric Measurements (GAIM) models uses a physics‐based model of the ionosphere and a Kalman filter as a basis for assimilating real‐time (or near real‐time) bottom‐side Ne profiles, slant TEC ground GPS/TEC stations, in situ Ne from four DMSP satellites, and line‐of‐sight solar UV emissions measured by satellites. 

The main output of the model is a 3‐dimensional electron density distribution at user specified times. In addition, auxiliary parameters are also provided, including NmE, hmE, NmF2, hmF2, slant and vertical TEC. 

Request a run:https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=USU‐GAIM

Page 49: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

IRTAM

IRI Real‐Time Assimilative Modelling (IRTAM) system assimilates digisonde data from the Global Ionospheric Radio Observatory (GIRO) network into the IRI model. 

The IRTAM approach is based on the ITU‐R models for the F2 peak plasma frequency foF2 and the propagation factor M(3000)F2 that are being used in IRI. 

IRTAM uses the CCIR set of functions to describe the global and spatial variation of the difference between the digisonde measurement and the IRI prediction of foF2.

Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO data into a real‐time IRI, Radio Sci., 47, RS0L07, doi:10.1029/2011RS004952.

Page 50: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

A T/ICT4D technique for global specification at a given epoch

From: Nava, B., S. M. Radicella, and F. Azpilicueta (2011), Data ingestion into NeQuick 2, Radio 

Sci., 46, RS0D17, doi:10.1029/2010RS004635.).

Page 51: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it

The real challenge faced by the      models is their ability to forecast and nowcast local and global 

ionospheric effects of Space Weather events.

The models performance show an evident dependence on geomagnetic activity with RMS errors increasing with increasing geomagnetic activity.

The models performance show also a complex dependence with latitude.

Are these types of models 

now able to specify 

ionospheric weather 

conditions?  

Nigussie, M., S. M. Radicella, B. Damtie, E. Yizengaw, B. Nava, and L. Roininen (2016), Validation of NeQuick TEC data ingestion technique against C/NOFS and EISCAT electron density measure‐ ments, Radio Sci., 51, doi:10.1002/ 2015RS005930.

Page 52: Ionospheric Modellingand its Challenges due to Space Weather...Sandro M. Radicella Head, Telecommunications/ICT for Development laboratory (T/ICT4D), The Abdus salam ICTP rsandro@ictp.it