21
Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS [email protected] Kathi Hopkins Robinson HS kathopkins @ aol .com

Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS [email protected] Kathi Hopkins

Embed Size (px)

Citation preview

Page 1: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Introductory Thermodynamics

Virtual Molecular Dynamics InstituteBoston University 2002

Linda Culp

Thorndale HS

[email protected]

Kathi Hopkins

Robinson HS

[email protected]

Page 2: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Introduction

• Students will discover energy relationships & concepts through observation, experimentation, and application using Simulab and traditional wet labs.

• Abstract molecular concepts are quantitatively modeled using graphics, charts, and data lists with variables that can be manipulated.

Page 3: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Our Goal

• Students will gain an understanding of energy relationships through multiple

learning modes.

Page 4: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Major Concepts

• Energy• Potential energy• Kinetic energy• System dynamics• Total energy• Temperature • Law of conservation

of energy

• Energy transfer & pathways

• Exothermic and endothermic reactions.

• Heat• Volume• Work• Heat capacity

Page 5: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

State Curriculum Standards

• Adheres to TEKS (Texas Essential Knowledge & Skills) objective for chemistry, physics, & biology. http://www.tea.state.tx.us/rules/tac/chapter112/ch112c.html

• Assessed by TAKS (Texas Assessment of Knowledge & Skills)

• Follows guidelines of Advanced Placement chemistry, physics, biology

Page 7: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Placement in Curriculum

• Basic concepts of energy required in all sciences

• Replace traditional unit

• Both wet lab and Simulab.

• Prior experience:– Math and reading skills of a typical 9th & 10th grade

student.

– SMD and Excel or Graphical Analysis

Page 8: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Adjustments/Adaptations

• Unit proceeds from basic to advanced concepts.

• Advanced levels proceed to enthalpy and Hess’s Law.

• Without computers, teachers may utilize wet labs, overhead projectors, graph paper, and graphing calculators.

Page 10: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Electronic Equipment-optional

• PC or Mac• CBL with probes• Graphing calculators• Computer lab to accommodate groups of 2-3

students• Data projector to show Simulab demonstrations• VMDL software & Simulab files• Overhead projector• Graphing program: ex: Excel or Graphical

analysis

Page 11: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Teaching Resources

• Wet Labs:– Baggie Reaction

– Production of Gas in a syringe

– Specific Heat of Metals

– Balloon Experiment

– Calcium metal – Ammonium thiocyanate labs

• SimuLabs:– VMDL software &

Simulab files– SMD States of Matter

“Experiment 1A”– SMD player

“temperature.smd”– SMD player “reaction”– SMD “Simulab

Icebreaker”

Page 12: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

References

• Chemistry by Steven Zumdahl (4th edition) Houghton Mifflin Co, Boston, Mass. 1997

• Flinn Scientific http://www.flinnsci.com/ (source for chemicals)• Modern Chemistry Holt Rinehart & Winston, 1993• Shakhashiri, Bassam Z. Chemical Demonstrations (Vol 3)

The University of Wisconsin Press, Madison, WI 1989• TAKS http://www.tea.state.tx.us/rules/tac/chapter112/ch112c.html

• TEKS http://www.tea.state.tx.us/rules/tac/chapter112/ch112c.html

• Virtual Dynamics Laboratory Manuals & Software, Center for Polymer Studies, Boston University, 2002.

Page 13: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Objectives:• Students will be able to:

– Day 1:• Observe changes in energy• Identify different forms of energy• Interpret energy relationships with SMD software

– Day 2: • Discover relationships between potential & kinetic

energy• Collect data through computer simulations to

determine the effects of temperature upon energy• Graphically record & analyze collected data to

predict trends

Page 14: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Objectives:– Day 3

• Analyze computer models in open systems• Prepare & observe effects of gas production• Compare the SMD models of expanding gases to

experimentally obtained data. • Formulate an hypothesis relating work & energy.

– Day 4• Calculate specific heat values

– Day 5• Determine specific heat of known metals• Compare experimentally obtained specific heats with

actual values.• Identify unknown metal using experimentally obtained

data.

Page 15: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Objectives:

– Day 6 • Deduce the effects of high heat capacity of

water on surrounding materials

– Day 7• Compare and contrast exothermic and

endothermic reactions• Design and defend a concept map of terms

within the unit.

Page 16: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Unit Timeline & Instructional Outline

• Day One:Mini Lab Baggie Reaction

Discussion Concepts & observations

SMD-Player Intro to simple E, KE, & PE

• Day Two:Discussion Reflect on prior concepts

Instructions “Experiment 1a Simulab”

Classwork Data table & class average graph

Debrief Simulab results & connections

Page 17: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Unit Timeline• Day Three:

Discussion Connections with Law of Conservation of energy.

SMD Player Expanding gases, work & conservation of Energy

Min-Lab Production of gas in syringe

Debrief Connections between mini lab & Simulab

• Day Four:

Modeling Problem-solving

Assignment Heat capacity problems

Pre-Lab Specific heat of metals

Page 18: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Unit Timeline• Day 5:

Mini Activity Expanding gases

Discussion Connections to prior concepts

Lab Specific heat of metals

Debrief Reflect & make connection

• Day 6:

Mini Activity Balloon Experiment

SMD Activity Virtual Modeling

Debrief Reflect & make connections

Page 19: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Unit Timeline

• Day 7

Mini Lab Calcium metal/ammonium thiocyanate

Debrief Reflect & Make connections

Activity Concept Map

Presentations Student presentations

Page 20: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Assessments

• Learning journals or lab book record

• Student participation rubric

• Problem-solving assignment showing accurate work

• Lab report rubric

• Concept map & presentation

Page 21: Introductory Thermodynamics Virtual Molecular Dynamics Institute Boston University 2002 Linda Culp Thorndale HS lculp@thorndale.txed.net Kathi Hopkins

Extensions

– Biology – Observe the changes in the potential energy of a molecule as it moves through a membrane.

See pot_energy-membrane.umv

– Links:– http://scifun.chem.wisc.edu/HOMEEXPTS/

FIREBALLOON.html– www.science.demon.co.uk/handbook/18.htm– http://bradley.bradley.edu/~campbell/demo.html