131

Click here to load reader

Introductory lecture on nonlinear acoustics (PDF)

  • Upload
    ngoque

  • View
    270

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear Acoustics

Laboratoire d’Acoustique de l’Université du Maine (LAUM)UMR-CNRS 6613, Le Mans, France

Vincent TOURNATResearch Scientist at CNRS

[email protected]

Oléron 02/06/2014

Page 2: Introductory lecture on nonlinear acoustics (PDF)

Main goals of the lecture

➪ A basic culture on nonlinear acoustics for researchers

➪ Basic theory : derivations of the main equations

➪ Overview of some nonlinear effects and applications

➪ Basic theory : some resolution methods, some solutions

21. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 2

Main sources for this lecture

Introductory lectures of the previous summer schools on nonlinear acoustics O. Bou Matar (fluids 2007), C. Barrière (solids 2007), F. Coulouvrat (Fluids & Solids 2010)

Textbooks Nonlinear acoustics, M.F. Hamilton, D.T. Blackstock Ed., Academic Press, AIP (2008). Theoretical foundations of nonlinear acoustics, O.V. Rudenko and S.I. Soluyan, Studies in Soviet Science - Physical Sciences (1977). Nonlinear underwater acoustics, B.K. Novikov, O.V. Rudenko, V.I. Timoshenko, ASA, AIP (1987).

Page 3: Introductory lecture on nonlinear acoustics (PDF)

1. Introduction

2. Constitutive equations of nonlinear acoustics in fluids

3. Burgers equation, resolution methods, solutionsApproximated solutions, shock formation, harmonic generation…

Towards Westervelt equation

4. KZK equation, generalized Burgers equations, and related problems

Fluids

6. Analysis of the nonlinear propagation equation in isotropic solids

7. Nonclassical nonlinearities in solids

5. Constitutive equations of nonlinear acoustics in solidsLagrangian description, specificities of solids, similarities with fluids

Solid

s

Introductory Lecture on Nonlinear Acoustics

Case study of the parametric emitting antenna

31. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 3

Various fundamental effects and examples

Page 4: Introductory lecture on nonlinear acoustics (PDF)

The «system» approach of nonlinearity

LinearInput Output

e1(t) = E1 sin(!1t) s1(t) = S1 sin(!1t+ �1)

e2(t) = E2 sin(!2t) s2(t) = S2 sin(!2t+ �2)

e1(t) = E1 sin(!1t) s1(t) = S1 sin(!1t+ �1)

↵e1(t) + �e2(t) ↵s1(t) + �s2(t)

Superposition principle

Nonlinear↵e1(t) + �e2(t) 6= ↵s1(t) + �s2(t)

Amplitude dependent effects New frequencies ...

1. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 4

Page 5: Introductory lecture on nonlinear acoustics (PDF)

Another view of nonlinearity

Input, excitation

Output, response

Linear systemSuperposition principle applies

(approximation)

➪ Linearity is an approximation (sometimes good) of any intrinsically nonlinear system

Input, excitation

Output, response

Nonlinear systemAny real systems

51. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 5

Page 6: Introductory lecture on nonlinear acoustics (PDF)

Sounds

10�1 100 101 102 103

Frequency (Hz)

104 105 106 107 108 109 1010 1011

Infrasounds

Phenomenas over a wide frequency range

Ultrasounds Hypersounds

61. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 6

Page 7: Introductory lecture on nonlinear acoustics (PDF)

Shock wave in a trombone

71. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 7

A. Hirschberg, J. Gilbert, R. Msallam, A.P.J. Wijnands, J. Acoust. Soc. Am. 99, 1754-1758 (1996)

Microphone 1, tube entrance

Microphone 2, at a distance of several

wavelengths from the tube entrance

Page 8: Introductory lecture on nonlinear acoustics (PDF)

Medical imaging with harmonics

http://www.msdlatinamerica.com/ebooks/CoreCurriculumTheUltrasound/sid102252.html#F25-1

➪ A better contrast (scattering and first reflexions are lowered)➪ A better resolution (smaller wavelength)➪ Less effects of spurious sidelobes

81. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 8

Image at the emitted frequency Image at twice the emitted frequency

Page 9: Introductory lecture on nonlinear acoustics (PDF)

!1

!2

⌦ = !1 � !2

Parametric emitting antenna (difference frequency generation / self-demodulation)

Emitter

➪ Underwater acoustics in the 1950s

➪ Long range and high directivity

91. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 9

Page 10: Introductory lecture on nonlinear acoustics (PDF)

Parametric receiving antenna

!

! ± ⌦

Emitter Receiver

101. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 10

Page 11: Introductory lecture on nonlinear acoustics (PDF)

DC effects, streaming, levitation radiation pressure,…

Particle trapping, segregation, levitation Fluid flow, micro-fluidics

111. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 11

➪ CR7 : Microfluidique (M. Baudouin)

➪ CR1 : Pression de radiation et interfaces (R.Wunenberger)

➪ CR10 : Thermo-acoustique (G. Penelet)

Page 12: Introductory lecture on nonlinear acoustics (PDF)

Thermal expansion in solids: nonlinear phonons

Distance

Potential

Inter-atomic potential

Low amplitude phonons(thermal agitation)

Harmonic potential

Distance

Potential

Inter-atomic potential

Larger amplitude phonons(Larger T)

Anharmonic potential

Shifted average position = dilatation

121. Introduction PageV. Tournat - Introductory lecture on nonlinear acoustics 12

Page 13: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear AcousticsFlu

ids1. Introduction

2. Constitutive equations of nonlinear acoustics in fluids

3. Burgers equation, resolution methods, solutionsApproximated solutions, shock formation, harmonic generation…

Towards Westervelt equation

4. KZK equation, generalized Burgers equations, and related problems

6. Analysis of the nonlinear propagation equation in isotropic solids

7. Nonclassical nonlinearities in solids

5. Constitutive equations of nonlinear acoustics in solidsLagrangian description, specificities of solids, similarities with fluids

Solid

s

Case study of the parametric emitting antenna

Various fundamental effects and examples

Page 14: Introductory lecture on nonlinear acoustics (PDF)

14

Constitutive equations up to the second order in acoustic quantities

⇢ = ⇢0 + ⇢a

~v = ~v0 + ~va

P = P0 + pa

Acoustic quantities are usually very small compared to the static ones

Mach number

2. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 14

➪ Second order equations are most of the time sufficient for nonlinear acoustics in fluids

(154 dB in air ➪ M~0.01)

Page 15: Introductory lecture on nonlinear acoustics (PDF)

Equation of motion (momentum conservation)

⇢D~v

Dt= �~rP

⇢ = ⇢0 + ⇢a ~v = ~v0 + ~va P = P0 + pa

1st order 2nd order

⇢0@~va@t

+ ~rpa = �⇢a@~va@t

� ⇢0(~va.~r)~va

152. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 15

D

Dt=

@

@t+ ~v.~r Total (material) derivative over time

Convective term, Eulerian description

Page 16: Introductory lecture on nonlinear acoustics (PDF)

L = Ec � Ep =1

2⇢0~v

2a �

p2a2⇢0c20

Introducing Lagrangian energy density

162. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 16

1st order 2nd order

⇢0@~va@t

+ ~rpa = �⇢a@~va@t

� ⇢0(~va.~r)~va

Using plane wave relations

⇢a@~va@t

= �~r✓

p2a2⇢0c20

⇢0@~va@t

+ ~rpa = �~rL ➪ Equation of motion

Page 17: Introductory lecture on nonlinear acoustics (PDF)

Mass conservation law

@⇢

@t+ ~r.(⇢~v) = 0

@⇢a@t

+ ⇢0~r.~va = �⇢a~r.~va � ~va.~r⇢a

1st order 2nd order

(exact development)

172. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 17

⇢ = ⇢0 + ⇢a ~v = ~v0 + ~va

Page 18: Introductory lecture on nonlinear acoustics (PDF)

182. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 18

Equation of state, fluid comportment law

Taylor expansion of the pressure-density relationship

A = ⇢0

✓@P

@⇢

⇢0,s

= ⇢0c20 Inverse of compressibility coefficient

Variation of the sound celerity due to a surpression

B = ⇢20

✓@2P

@⇢2

⇢0,s

= 2⇢20c30

✓@c

@p

⇢0,s

Page 19: Introductory lecture on nonlinear acoustics (PDF)

@⇢a@t

+ ⇢0~r.~va = �⇢a~r.~va � ~va.~r⇢a

192. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 19

⇢0@~va@t

+ ~rpa = �~rL ➪ Equation of motion

Constitutive equations up to the second order

➪ Continuity equation

➪ Equation of state

Page 20: Introductory lecture on nonlinear acoustics (PDF)

20

Navier-Stokes equation (momentum conservation)

⇢D~v

Dt= ~r(�P I+ ⌧ )

202. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 20

Viscous stress tensor

Strain rate tensor

⇢0@~va@t

+ ~rpa �✓⇣ +

4

3⌘

◆~�~va = �~rL

Page 21: Introductory lecture on nonlinear acoustics (PDF)

Equation of state, fluid comportment law

P = P0 +

✓@P

@⇢

⇢0,s

⇢a +1

2

✓@2P

@⇢2

⇢0,s

⇢2a +

✓@P

@s

⇢,s0

sa +O(⇢3a, s2a)

A Taylor expansion around values at rest ⇢0 s0

212. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 21

⇢a ' pac20

� B

2A

p2a⇢0c40

+

⇢0c40

✓1

CV� 1

CP

◆@pa@t

After resolution of the heat equation, acoustic temperature propagation equation,

Specific heat at constant volume and pressure

Thermal conductivity

Page 22: Introductory lecture on nonlinear acoustics (PDF)

@⇢a@t

+ ⇢0~r.~va = �⇢a~r.~va � ~va.~r⇢a

222. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 22

➪ Equation of motion

Constitutive equations up to the second order

➪ Continuity equation

➪ Equation of state

⇢0@~va@t

+ ~rpa �✓⇣ +

4

3⌘

◆~�~va = �~rL

⇢a ' pac20

� B

2A

p2a⇢0c40

+

⇢0c40

✓1

CV� 1

CP

◆@pa@t

Page 23: Introductory lecture on nonlinear acoustics (PDF)

⇢0@~va@t

+ ~rpa �✓⇣ +

4

3⌘

◆~�~va = �~rL

⇢a ' pac20

� B

2A

p2a⇢0c40

+

⇢0c40

✓1

CV� 1

CP

◆@pa@t

@⇢a@t

+ ⇢0~r.~va = �⇢a~r.~va � ~va.~r⇢a

232. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 23

Derivation of the nonlinear propagation equation

@

@t

Page 24: Introductory lecture on nonlinear acoustics (PDF)

Nonlinear propagation equation

�pa �1

c20

@2pa@t2

+b

c20

@3pa@t3

= � �

⇢0c40

@2p2a@t2

�✓�+

1

c20

@2

@t2

◆L

� = 1 +B

2A➪ Parameter of quadratic nonlinearity

From convection From material behavior

242. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 24

b =1

⇢0c20

✓⇣ +

4

3⌘

◆+

⇢0c20

✓1

CV� 1

CP

Dissipation (just an imaginary part in the wave number for monochromatic waves)

Attenuation coefficient

↵(!) =b!2

2c0=

1

`a

Acoustic diffusivity

Page 25: Introductory lecture on nonlinear acoustics (PDF)

Parameter of quadratic nonlinearity

� = 1 +B

2A

From convection From material

Medium B/A

Distilled water (20°C) 5.0

Methanol (20°C) 9.6

Monoatomic gas (20°C) 0.67

Biological media 5-12 (typ.)

252. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 25

Page 26: Introductory lecture on nonlinear acoustics (PDF)

Simplification of the nonlinear propagation equation

�pa �1

c20

@2pa@t2

+b

c20

@3pa@t3

= � �

⇢0c40

@2p2a@t2

�✓�+

1

c20

@2

@t2

◆L

For plane waves, at the first order: va =pa⇢0c0

2 reasons to neglect this term

L = 0➪

The effect is local and not cumulative

262. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 26

Page 27: Introductory lecture on nonlinear acoustics (PDF)

Westervelt equation (1963)

�pa �1

c20

@2pa@t2

+b

c20

@3pa@t3

= � �

⇢0c40

@2p2a@t2

(PJ Westervelt 1919- )

273. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics

Page 28: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear Acoustics

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 28

Fluids

1. Introduction

2. Constitutive equations of nonlinear acoustics in fluids

3. Burgers equation, resolution methods, solutionsApproximated solutions, shock formation, harmonic generation…

Towards Westervelt equation

4. KZK equation, generalized Burgers equations, and related problems Case study of the parametric emitting antenna

Page 29: Introductory lecture on nonlinear acoustics (PDF)

�pa �1

c20

@2pa@t2

+b

c20

@3pa@t3

= � �

⇢0c40

@2p2a@t2

Westervelt equation

✓@

@z� 1

c0

@

@t+

b

2c0

@2

@t2+

�pa⇢0c30

@

@t

◆✓@

@z+

1

c0

@

@t� b

2c0

@2

@t2� �pa

⇢0c30

@

@t

◆pa = 0

Backward propagation Forward propagation

In one dimension (plane waves), factorizing the operators,

Simplifications of Westervelt equation

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 29

➪ One way approximation

Page 30: Introductory lecture on nonlinear acoustics (PDF)

Burgers equation (1948)

@pa@z

+1

c0

@pa@t

� b

2c0

@2pa@t2

� �pa⇢0c30

@pa@t

= 0

@pa@z

+1

c

@pa@t

� b

2c0

@2pa@t2

= 0

Factorizing these two terms, we

obtain

c = c0

✓1 +

�pa⇢0c20

◆with an amplitude dependent wave velocity:

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 30

Page 31: Introductory lecture on nonlinear acoustics (PDF)

31

Shock formation, harmonic generation

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 31

Page 32: Introductory lecture on nonlinear acoustics (PDF)

32

Shock formation, harmonic generation

-0.5 0 0.5-1

-0.5

0

0.5

1

o

p a

Positive part arrives earlier

Negative part arrives later

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 32

c = c0

✓1 +

�pa⇢0c20

Page 33: Introductory lecture on nonlinear acoustics (PDF)

⌧ = t� z

c0z0 = µz

Method of the slowly varying profile

The profile changes slowly in spaceµ ⌧ 1

The coordinate system moves with the wave

@

@z= � 1

c0

@

@t+ µ

@

@z0@

@⌧=

@

@t

@pa@z0

� b

2c0

@2pa@⌧2

� �pa⇢0c30

@pa@⌧

= 0

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 33

Page 34: Introductory lecture on nonlinear acoustics (PDF)

Normalizing the equation variables by: ⇠ =z0

`nl✓ = !⌧ P =

pap0

pa = p0 sin(!⌧)Considering a monochromatic wave excitation of the form:

With the characteristic nonlinear length: `nl =⇢0c30!�p0

=1

k0�M

The characteristic nonlinear length

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 34

Page 35: Introductory lecture on nonlinear acoustics (PDF)

Normalization

Normalized Burgers’ equation

`nl =⇢0c30!�p0

=1

k0�M� =

`a`nl

=b!k20�M

2=

bk30�p02⇢0c0

Gol’dberg number

`a =2c0b!2

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 35

Page 36: Introductory lecture on nonlinear acoustics (PDF)

Some few characteristic numbers

Sonic boom in air: pa ' 100 Pa

pa ' 5 MPaClose to a jet engine:

Lithotripsy (water): pa ' 108 Pa

M ' 7.10�4

M ' 5.10�2

M ' 5.10�2 `nl ' 0.15 m

`nl ' 60 m

`nl < 1 m

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 36

Page 37: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation

Without dissipation:@pa@z

+1

c0

@pa@t

� �pa⇢0c30

@pa@t

= 0

@pa@z

+1

c

@pa@t

= 0

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 37

Monochromatic source

➪ Implicite solution (Poisson’s solution, exact)

c = c0

✓1 +

�pa⇢0c20

Page 38: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation

pa(z, ⌧) = p0 sin

✓!

✓⌧ +

z

c0

�M

1 + �M

◆◆

This implicit function takes non unique values for ⇠ =z

`nl> 1

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 38

Page 39: Introductory lecture on nonlinear acoustics (PDF)

Shock formation, harmonic generation

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 39

Page 40: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation

Several ways to describe the profile distortion, shock formation and shape evolution

➪ The Fubini solution

➪ The Rankine-Hugoniot relations➪ The rule of equal surfaces (Landau)

➪ The Hopf-Cole transformation (exact solution)

➪ The Fay solution (old age solution)

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 40

➪ The Poisson solution

➪ The quasi-linear approximation (successive approximations)

➪ The Burgers-Hayes method

➪ …

Page 41: Introductory lecture on nonlinear acoustics (PDF)

➪ The Hopf-Cole transformation

The adequate variable change

➪ A 1D linear diffusion equation

➪ Many well-known solutions

Solving Burgers equation: exact solution

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 41

(E. Hopf, 1950)(J.D. Cole, 1951)

Page 42: Introductory lecture on nonlinear acoustics (PDF)

0 5 10 15 200

0.2

0.4

0.6

0.8

1

➪ The Hopf-Cole transformation(E. Hopf,1950)(J.D. Cole, 1951)

Monochromatic source (J.S. Mendousse, 1953)

Solving Burgers’ equation: exact solution

Modified Bessel functions

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 42

Page 43: Introductory lecture on nonlinear acoustics (PDF)

0 5 10 15 200

0.2

0.4

0.6

0.8

1

Solving Burgers’ equation: exact solution

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 43

Page 44: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: exact solution

(Cole 1951, Mendousse 1953)

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 44

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Page 45: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: exact solution

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 45

Shock formation distance Maximum shock amplitude

Sawtooth shape Frequency dependent attenuation Old age profile

Initial profile

Pre-shock region Transition region

Sawtooth region

Page 46: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: Fubini solutionHarmonic balance method + slowly varying profile

We search solutions in the form of a sum of harmonic functions (a Fourier serie):

pa = p0

+1X

n=1

Bn(⇠) sin(n!⌧)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Bn

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 46

Bn(⇠) =2Jn(n⇠)

n⇠

(Fubini 1935)

Page 47: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: quasi-linear approximation

The successive approximation method

pa(z, ⌧) = µp(1)a (z, ⌧) + µ2p(2)a (z, ⌧)

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 47

(weak waves, second harmonic generation)

At the first order in µ

At the second order in µ

➪ 2 linear problems

Nonlinear source term

(Gol’dberg 1957)

Page 48: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: quasi-linear approximation

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 48

Primary wave / pump wave

(Gol’dberg 1957)

Using the boundary condition at

General solution Particular solution

Secondary wave

Page 49: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: quasi-linear approximation

➪ Could be continued, third harmonic, cascade process

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 49

(Gol’dberg 1957)

↵z ⌧ 1Close enough to the source

➪ Fubini solution for

➪ Accurate approximation for or and

Page 50: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: Fay solution

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 50

⇠ � � � 1

(strong waves, harmonic generation, old age) (Fay 1931)

➪ Independent of the excitation amplitude !

➪ Nonlinear saturation mechanism

(exact solution)

Asymptotic expansion in the case

Page 51: Introductory lecture on nonlinear acoustics (PDF)

Solving Burgers’ equation: N waves

3. Model equations PageV. Tournat - Introductory lecture on nonlinear acoustics 51

-0.5 0 0.5-1

-0.5

0

0.5

1

➪ Profile shape typical of supersonic objects (sonic boom), electric sparks, bursting balloons…

A pulse starting with a compression

➪ CR11 : Ondes de choc Atm. (F. Coulouvrat)

Page 52: Introductory lecture on nonlinear acoustics (PDF)

52

Introductory Lecture on Nonlinear Acoustics1. Introduction

2. Constitutive equations of nonlinear acoustics in fluids

3. Burgers equation, resolution methods, solutionsApproximated solutions, shock formation, harmonic generation…

Towards Westervelt equation

4. KZK equation, generalized Burgers equations, and related problems

Fluids

Case study of the parametric emitting antenna

Page 53: Introductory lecture on nonlinear acoustics (PDF)

Diffraction Dissipation Nonlinearity

Parabolic equation of diffraction

Other model equations: the KZK equation

z0 = µz

x

0 =pµx

y0 =pµy

⌧ = t� z

c0

➪ The coordinate system is changed for this one, in the 3D Westervelt equation

@2pa@z0@⌧

=c02�?pa +

b

2c0

@3pa@⌧3

+�

2⇢0c30

@2p2a@⌧2

4. KZK, Generalized Burgers… PageV. Tournat - Introductory lecture on nonlinear acoustics 53

Page 54: Introductory lecture on nonlinear acoustics (PDF)

KZK equation

@2pa@z0@⌧

=c02�?pa +

b

2c0

@3pa@⌧3

+�

2⇢0c30

@2p2a@⌧2

➪ A very important equation for beam problems in nonlinear acoustics and for numerics

Zabolotskaya & Khokhlov 1969, Kuznetsov 1971

`d =k0a2

2

N =`nl`d

Khokhlov number

PageV. Tournat - Introductory lecture on nonlinear acoustics 54

Near fieldFresnel zone

Far fieldFraunhofer zone

Rayleigh distance

Characteristic diffraction length

Focal distance

Focal zone

4. KZK, Generalized Burgers…

Page 55: Introductory lecture on nonlinear acoustics (PDF)

Solutions of KZK equation

PageV. Tournat - Introductory lecture on nonlinear acoustics 55

➪ Successive approximation method depending on the orders of magnitude

➪ Decomposition of the source pattern in a sum of Gaussian functions

➪ Simple Gaussian source or piston

� =`a`nl

=b!k20�M

2=

bk30�p02⇢0c0

N =`nl`d

4. KZK, Generalized Burgers…

Page 56: Introductory lecture on nonlinear acoustics (PDF)

Solutions of KZK equation

PageV. Tournat - Introductory lecture on nonlinear acoustics 56

➪ Second harmonic generation, Gaussian beam, quasi-linear approximation

Source signal

First order equation

Primary wave solution(Green’s function method)

Second order equation

4. KZK, Generalized Burgers…

Page 57: Introductory lecture on nonlinear acoustics (PDF)

Solutions of KZK equation

PageV. Tournat - Introductory lecture on nonlinear acoustics 57

Primary wave solution(Green’s function method)

Second harmonic wave solution(Green’s function method)

For vanishing attenuation

➪ A beam narrower by a factor

➪ A maximum efficiency on the z-axis

4. KZK, Generalized Burgers…

Page 58: Introductory lecture on nonlinear acoustics (PDF)

Example of the emitting parametric antenna

!1

!2

⌦ = !1 � !2

Emitter

PageV. Tournat - Introductory lecture on nonlinear acoustics 58

Firstly used in underwater acoustics from the 1950s

➪ Low frequency sound (low attenuation) radiated with a high directivity using

indirectly a relatively small size emitter

Virtual sources for the LF sound

4. KZK, Generalized Burgers…

Page 59: Introductory lecture on nonlinear acoustics (PDF)

➪ In 1D, the solutions are straightforward (successive approximations, Burgers’ equation)

At the first order in µ

At the second order in µ

PageV. Tournat - Introductory lecture on nonlinear acoustics 59

Nonlinear source term

Difference frequency generation

Example of the emitting parametric antenna

4. KZK, Generalized Burgers…

Page 60: Introductory lecture on nonlinear acoustics (PDF)

➪ For wave packets or arbitrary modulation function

P�(z, ⌧) =�p202b!2

(1� e�2z/`a)@f2(⌦⌧)

@⌧

f(⌦⌧)

➪ The wave profile is the derivative of the pump intensity envelope

PageV. Tournat - Introductory lecture on nonlinear acoustics 60

Example of the emitting parametric antenna

Self-demodulation

4. KZK, Generalized Burgers…

Page 61: Introductory lecture on nonlinear acoustics (PDF)

PageV. Tournat - Introductory lecture on nonlinear acoustics 61

Example of the emitting parametric antenna

M.A. Averkiou, Y.S. Lee, M.F. Hamilton, Self-demodulation of amplitude and frequency modulated pulses in a thermoviscous fluid, J. Acoust. Soc. Am 94, 2876-2883 (1993).

4. KZK, Generalized Burgers…

Page 62: Introductory lecture on nonlinear acoustics (PDF)

➪ For diffracting beams (KZK equation with successive approximation method and Gaussian beams)

Westervelt regime

Berktay regime

Generation in the pump wave near field, before diffraction

`nl < `a < `d

Generation by diffracted pump waves

`d < `nl < `a

PageV. Tournat - Introductory lecture on nonlinear acoustics 62

Example of the emitting parametric antenna

Pump waves Demodulated waves

Pump waves Demodulated waves

4. KZK, Generalized Burgers…

Page 63: Introductory lecture on nonlinear acoustics (PDF)

Parametric antenna: beam width

PageV. Tournat - Introductory lecture on nonlinear acoustics 63

Westervelt regime

`nl < `a < `d

LF wavelength

Effective length of the NL sources, limited by absorption

Berktay regime

`d < `nl < `aDiffraction length of the pump waves (~effective length of the NL sources)

(at small angles)

➪ The directivity depends on the effective length of the NL virtual sources

4. KZK, Generalized Burgers…

Page 64: Introductory lecture on nonlinear acoustics (PDF)

Parametric antenna in air

PageV. Tournat - Introductory lecture on nonlinear acoustics 64

http://www.lradx.com/site/

4. KZK, Generalized Burgers…

Page 65: Introductory lecture on nonlinear acoustics (PDF)

Parametric antenna in air: audible frequency range

PageV. Tournat - Introductory lecture on nonlinear acoustics 65

Pump waves Demodulated waves

4. KZK, Generalized Burgers…

Page 66: Introductory lecture on nonlinear acoustics (PDF)

Generalized Burgers’ equations

➪ For cylindrical and spherical waves

@pa@r

+m

rpa �

b

2c0

@2pa@⌧2

� �pa⇢0c30

@pa@⌧

= 0

For cylindrical wavesFor spherical waves

➪ Also for horns and tubes with slowly varying section

m = 1 m = 1/2

@qa@z

=�qa⇢0c30

@qa@⌧

qa = (r/r0)pa qa = (r/r0)1/2pa

z = ±r0 ln(r/r0) z = ±2(pr �

pr0)

pr0

PageV. Tournat - Introductory lecture on nonlinear acoustics 664. KZK, Generalized Burgers…

Page 67: Introductory lecture on nonlinear acoustics (PDF)

Converging cylindrical shock waves in liquids

PageV. Tournat - Introductory lecture on nonlinear acoustics 67

T. Pezeril et al., Direct Visualization of Laser-Driven Focusing Shock Waves, Phys. Rev. Lett. 106, 214503 (2011).

4. KZK, Generalized Burgers…

Page 68: Introductory lecture on nonlinear acoustics (PDF)

Generalized Burgers’ equations➪ For different types of linear or nonlinear processes

@pa@z

=�pa⇢0c30

@pa@⌧

+ L(pa)

PageV. Tournat - Introductory lecture on nonlinear acoustics 68

L(pa) /@3pa@⌧3

Pure dispersion ➪ Korteweg-de-Vries equation

N. Sugimoto et al., Experimental demonstration of generation and propagation of acoustic solitary waves in an air-filled tube. Phys. Rev. Lett. (1999) vol. 83 (20) pp. 4053

4. KZK, Generalized Burgers…

Page 69: Introductory lecture on nonlinear acoustics (PDF)

Generalized Burgers’ equations➪ For different types of linear or nonlinear processes

@pa@z

=�pa⇢0c30

@pa@⌧

+ L(pa)

L(pa) /@3pa@⌧3

Pure dispersion ➪ Korteweg-de-Vries equation

L(pa) /@2p2a@⌧2

Nonlinear dissipation

L(pa) =m

2c0

@

@⌧

Z ⌧

�1e�(⌧�⌧ 0)/⌧R @pa(z, ⌧ 0)

@⌧ 0d⌧ 0 Relaxation process

L(pa) = �b

r2

Z ⌧

�1

@pa(z, ⌧ 0)

@⌧ 0d⌧ 0p⌧ � ⌧ 0

Viscous and thermal losses at the walls of a tube

L(pa) = ↵@n

@⌧n

Z ⌧

�1

@pa(z, ⌧ 0)

@⌧ 0d⌧ 0

(⌧ � ⌧ 0)�Complex visco-elastic media, biological media

PageV. Tournat - Introductory lecture on nonlinear acoustics 694. KZK, Generalized Burgers…

Page 70: Introductory lecture on nonlinear acoustics (PDF)

Distributed physical and geometrical vs

Localized nonlinearities

PageV. Tournat - Introductory lecture on nonlinear acoustics 70

Side holes in tubes (nonlinear dissipation by vortices)Helmholtz resonatorsHoles in plates, porous materials (Forcheimer’s nonlinearity)Gaz bubbles, soft shells in liquids

4. KZK, Generalized Burgers…

Page 71: Introductory lecture on nonlinear acoustics (PDF)

Mach number

Characteristic nonlinear length

Attenuation length

Diffraction length

Khokhlov number

Gol’dberg number

Summary of the characteristic parameters

`nl =⇢0c30!�p0

=1

k0�M

`a =2c0b!2

M =vac0

=pa⇢0c20

� =`a`nl

=b!k20�M

2=

bk30�p02⇢0c0

N =`nl`d

`d =k0a2

2

PageV. Tournat - Introductory lecture on nonlinear acoustics 714. KZK, Generalized Burgers…

Page 72: Introductory lecture on nonlinear acoustics (PDF)

Summary

PageV. Tournat - Introductory lecture on nonlinear acoustics 72

Constitutive equations of nonlinear acoustics in fluids

One-way and 1D approximation of Westervelt equation ➪ Burgers equation

Shock formation, harmonic generation…

Second order in acoustic quantities, cumulative nonlinear terms

KZK equationCase study of the parametric emitting antenna

➪ Westervelt equation

Some resolution methods, solutions

Generalized Burgers equations

Nonlinear beams, diffraction

Various processes, geometries

Page 73: Introductory lecture on nonlinear acoustics (PDF)

Various effects (frequency domain)

f

A

Harmonic cascade f

A

Nonlinear modulationSuppression of sound by sound

f

A

Self-demodulation

f

A

DC effects, streaming f

A

Subharmonic generation f

A

Transfer of modulation

73PageV. Tournat - Introductory lecture on nonlinear acoustics 73

Page 74: Introductory lecture on nonlinear acoustics (PDF)

And many other processes, not presented

74PageV. Tournat - Introductory lecture on nonlinear acoustics 74

Reflexion of shock waves, by shock wavesNonlinear coupling with viscous and thermal effects (boundary layers)

Parametric reception

Dynamic / temporal interactions

Standing waves, interaction of counter-propagating waves

Inhomogeneous media, bubbly media

Parametric amplification

Phase singularities…

Statistical phenomena, interactions with noise

➪ CR5 : Aéroacoustique (C. Bailly) ➪ CR9 : Bulles, mousses (V. Leroy)

Page 75: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear Acoustics

Laboratoire d’Acoustique de l’Université du Maine (LAUM)UMR-CNRS 6613, Le Mans, France

Vincent TOURNATResearch Scientist at CNRS

[email protected]

Oléron 02/06/2014

Page 76: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear Acoustics1. Introduction

2. Constitutive equations of nonlinear acoustics in fluids

3. Burgers equation, resolution methods, solutionsApproximated solutions, shock formation, harmonic generation…

Towards Westervelt equation

4. KZK equation, generalized Burgers equations, and related problems

Fluids

6. Analysis of the nonlinear propagation equation in isotropic solids

7. Nonclassical nonlinearities in solids

5. Constitutive equations of nonlinear acoustics in solidsLagrangian description, specificities of solids, similarities with fluids

Solid

s

Case study of the parametric emitting antenna

Various fundamental effects and examples

Page 77: Introductory lecture on nonlinear acoustics (PDF)

Solids Fluids➪ Support static shear stress, shear waves ➪ Do not support static shear stress,

and most of the time shear waves➪ No large particle displacement

➪ Fluid particles can go far away

➪ Exhibit Anisotropy

➪ The solid has a particular shape at rest

➪ Liquids take the shape of the container

775. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 77

Page 78: Introductory lecture on nonlinear acoustics (PDF)

Lagrangian description

Eulerian description

➪ We follow the material particle displacement relative to its position at rest

➪ We observe the medium change at a given fixed geometrical position

Mt

x1

x2

O

M0

~x

f(~x, t)

Df

Dt=

@f

@t+ ~v.~rf

~a

x1

x2

O

M0

~x

Mt

~U

~

U = ~x� ~a

~x = ~x(~a, t)

785. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 78

Page 79: Introductory lecture on nonlinear acoustics (PDF)

➪ For nonlinear acoustics in solids the Lagrangian description is usual

x

aU = x� a

Natural (equilibrium)

position

Current coordinate of a particle

Lagrange displacement (displacement relative to the

natural position)

~v =@U

@t=

DU

Dt

➪ The total (particular) derivative is equal to the partial derivative

795. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 79

Page 80: Introductory lecture on nonlinear acoustics (PDF)

Deformation gradient tensor~a

x1

x2

O

~x

d~a

d~x

Green strain tensor (Lagrangian)

E =1

2(FT.F� I) Eij =

1

2

✓@Ui

@aj+

@Uj

@ai+

@Uk

@ai

@Uk

@aj

F =@x

@a=

@(a+U)

@a= I+

@U

@a

805. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 80

Page 81: Introductory lecture on nonlinear acoustics (PDF)

The mass conservation law

dV = (detF)dV0

⇢dV = ⇢0dV0

⇢0=

1

detF

815. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 81

Deformed state State at rest

Page 82: Introductory lecture on nonlinear acoustics (PDF)

Harmonic potential Nonlinear term(linear elastic behavior) (quadratic elastic behavior)

⇢0W =1

2!CijklEijEkl +

1

3!CijklmnEijEklEmn + . . .

Taylor expansion of the elastic strain energy

The material behavior : elastic energy as a function of strain

825. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 82

Second order elastic coefficients

Third order elastic coefficients

21 at most 56 at most

Cijkl Cijklmn

Page 83: Introductory lecture on nonlinear acoustics (PDF)

⇢0@2U

@t2= ra.P

Piola-Kirchhoff stress tensor (Lagrangian)

P =⇢0⇢�.(F�1)T = ⇢0F.

@W

@E

Equation of motion in Lagrangian coordinates

Pij = Cijkl@Uk

@al+

1

2Mijklmn

@Uk

@al

@Um

@an+

1

3Mijklmnpq

@Uk

@al

@Um

@an

@Up

@aq

Quadratic nonlinearity Cubic nonlinearity

Mijklmn = Cijklmn + Cijln�km + Cjnkl�im + Cjlmn�ik

Material nonlinearity Geometric nonlinearity (linear elastic constants)

835. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 83

Page 84: Introductory lecture on nonlinear acoustics (PDF)

⇢0@2Ui

@t2=

@Pij

@aj

⇢0@2Ui

@t2=

@2Uk

@aj@al

✓Cijkl +Mijklmn

@Um

@an

Propagation equation in the general case

84PageV. Tournat - Introductory lecture on nonlinear acoustics 84

Mijklmn = Cijklmn + Cijln�km + Cjnkl�im + Cjlmn�ik

Material nonlinearity Geometric nonlinearity (linear elastic constants)

5. Constitutive equations

Page 85: Introductory lecture on nonlinear acoustics (PDF)

➪ Voigt’s notation can be usedCijklmn

Cijkl C↵�

C↵��

0

@A11 A12 A13

A21 A22 A23

A31 A32 A33

1

A

0

@A1 A6 A5

A6 A2 A4

A5 A4 A3

1

A

AIf is symmetric, then we can write

Aij A↵

i, j = 1� 3 ↵ = 1� 6

85PageV. Tournat - Introductory lecture on nonlinear acoustics 856. Analysis of the propagation

Page 86: Introductory lecture on nonlinear acoustics (PDF)

Case of the isotropic solids

➪ 3 third order elastic constants

C111 C456C166

➪ 2 second order elastic constants

C11 C44

C11 = C22 = C33

C44 = C55 = C66

C12 = C23 = C13 = C11 � 2C44

86PageV. Tournat - Introductory lecture on nonlinear acoustics 866. Analysis of the propagation

Page 87: Introductory lecture on nonlinear acoustics (PDF)

The elastic strain energy expansion can be written in several manners using other expressions of the elastic constants and

invariants of the strain tensor

The material behavior : elastic energy as a function of strain

87PageV. Tournat - Introductory lecture on nonlinear acoustics 87

Principal invariants Landau invariants

6. Analysis of the propagation

Page 88: Introductory lecture on nonlinear acoustics (PDF)

Relations between the third order elastic constants

88PageV. Tournat - Introductory lecture on nonlinear acoustics 88

Landau & Lifshitz (1986)

Toupin & Bernstein

(1961)

Murnaghan (1951)

Bland (1969)

Eringen & Suhubi (1974) Standard

6. Analysis of the propagation

Page 89: Introductory lecture on nonlinear acoustics (PDF)

Propagation operator

cl =

sC11

⇢0

L-wave nonlinear term

Plane waves in isotropic solids~U = (U1, U2, U3) ~a = (a1, 0, 0)Propagation along direction

⇢0@2U1

@t2= C11

@2U1

@a21+ (3C11 + C111)

@U1

@a1

@2U1

@a21+ (C11 + C166)

✓@U2

@a1

@2U2

@a21+

@U3

@a1

@2U3

@a21

Nonlinear generation of longitudinal plane waves (component )U1

S-wave nonlinear term

Asynchronous (non cumulative)

! 2! a1

A(2!)

89PageV. Tournat - Introductory lecture on nonlinear acoustics 896. Analysis of the propagation

Page 90: Introductory lecture on nonlinear acoustics (PDF)

Longitudinal plane waves

@2U1

@t2= c2l

@2U1

@a21

1 +

✓3 +

C111

C11

◆@U1

@a1

@2U1

@a21� 1

c2l

@2U1

@t2= �

✓3 +

C111

C11

◆@U1

@a1

@2U1

@a21

@2U1

@a21� 1

c2l

@2U1

@t2= �

✓3

2+

C111

2C11

◆@2U2

1

@a21

�l = �✓3

2+

C111

⇢0c2l

◆Parameter of quadratic nonlinearity for longitudinal waves

U2 = 0 U3 = 0Considering only the longitudinal component

90PageV. Tournat - Introductory lecture on nonlinear acoustics 906. Analysis of the propagation

Page 91: Introductory lecture on nonlinear acoustics (PDF)

Longitudinal plane waves

@2U1

@a21� 1

c2l

@2U1

@t2= �

✓3

2+

C111

2C11

◆@2U2

1

@a21

Equivalent to the Westervelt equation for fluids

91PageV. Tournat - Introductory lecture on nonlinear acoustics 91

➪ Same methodology than in fluids, Burgers’ equation and its solutions, KZK equation, acoustic diffusivity, wave distortion, shock…

6. Analysis of the propagation

Page 92: Introductory lecture on nonlinear acoustics (PDF)

Parameter of quadratic nonlinearity

�l

Medium

Duraluminium 5.5

Silica -3.75

Titanium 2.5

BK7 glass -1

�l

92PageV. Tournat - Introductory lecture on nonlinear acoustics 926. Analysis of the propagation

Page 93: Introductory lecture on nonlinear acoustics (PDF)

Shear plane waves in isotropic solids

⇢0@2U2

@t2= C66

@2U2

@a21+ (C11 + C166)

✓@U1

@a1

@2U2

@a21+

@U2

@a1

@2U1

@a21

➪ Without a longitudinal component ( ),no nonlinear quadratic terms

U1 = 0

ct =

sC66

⇢0➪ The first nonlinear terms for pure shear waves are cubic

93PageV. Tournat - Introductory lecture on nonlinear acoustics 936. Analysis of the propagation

Page 94: Introductory lecture on nonlinear acoustics (PDF)

Shear plane waves in soft solids

94PageV. Tournat - Introductory lecture on nonlinear acoustics 94

S. Catheline et al., Observation of shock transverse waves in elastic media, Phys. Rev. Lett. 91, 164301 (2003)

Modified Burgers equation

Cubic nonlinear term

6. Analysis of the propagation

Page 95: Introductory lecture on nonlinear acoustics (PDF)

Digression on Acousto-elasticity➪ Static stress dependence of the wave speed

through the 3rd order elastic constants

F0

cl,s(F0)

F0

95PageV. Tournat - Introductory lecture on nonlinear acoustics 95

Static force (or quasi-static)

Ultrasonic probing

➪ A method to measure the third order elastic constants

Pulse-echo method

Resonance method

Coda wave interferometry

6. Analysis of the propagation

Page 96: Introductory lecture on nonlinear acoustics (PDF)

Digression on Acousto-elasticity

96PageV. Tournat - Introductory lecture on nonlinear acoustics 96

Isotropic solid, propagation along axis 1

"

�i Principal strain components

vij = v0ij(1 + �"ij · ")

Wave velocity when a static strain is applied

�1 = " �2 = �3 = �⌫"Uni-axial loading along axis 1:

L wave

S wave

S wave

6. Analysis of the propagation

Page 97: Introductory lecture on nonlinear acoustics (PDF)

Summary

➪ For simplified cases, the tools and equations (Burgers, KZK...) of fluids can be applied

➪ For nonlinear acoustics in solids the Lagrangian description is usual

U = x� a

➪ A propagation equation similar to the Westervelt equation is obtained

⇢0@2Ui

@t2=

@2Uk

@aj@al

✓Cijkl +Mijklmn

@Um

@an

➪ For symmetry reason, no quadratic nonlinearity for pure shear waves

➪ Pure shear waves can interact to generate longitudinal waves but not efficiently (non cumulative, asynchronous)

a1A(2!)

97PageV. Tournat - Introductory lecture on nonlinear acoustics 976. Analysis of the propagation

Page 98: Introductory lecture on nonlinear acoustics (PDF)

Nonlinear surface waves

98PageV. Tournat - Introductory lecture on nonlinear acoustics 98

A. M. Lomonosov, P. Hess, and A. P. Mayer,Observation of solitary elastic surface pulses,

Phys. Rev. Lett. 88, 076104-1-4 (2002).

Dispersive SAW due to the presence of the thin layer on top of the substrate

Under some conditions, the wave can obey to a KdV equation

6. Analysis of the propagation

Page 99: Introductory lecture on nonlinear acoustics (PDF)

Many other effects, processes

➪ Non-collinear interactions, S/L mixing

➪ Heterogeneous media, multiple scattering

99PageV. Tournat - Introductory lecture on nonlinear acoustics 99

➪ Anisotropic solids (QL and QT waves, more couplings, more constants)

➪ Rayleigh, Lamb, Love, Sholte, Stoneley waves…

➪ Plates, bars (geometrical NL)…, buckling, tensegrity

http://bertoldi.seas.harvard.edu/

6. Analysis of the propagation

➪ CR2 : Diffusion multiple (A. Derode)

➪ CR8 : Turbulence d'onde (C. Touzé)

➪ CR6 : Vibrations non linéaires (B. Cochelin)

Page 100: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear Acoustics1. Introduction

2. Constitutive equations of nonlinear acoustics in fluids

3. Burgers equation, resolution methods, solutionsApproximated solutions, shock formation, harmonic generation…

Towards Westervelt equation

4. KZK equation, generalized Burgers equations, and related problems

Fluids

6. Analysis of the nonlinear propagation equation in isotropic solids

7. Nonclassical nonlinearities in solids

5. Constitutive equations of nonlinear acoustics in solidsLagrangian description, specificities of solids, similarities with fluids

Solid

s

Case study of the parametric emitting antenna

Various fundamental effects and examples

Page 101: Introductory lecture on nonlinear acoustics (PDF)

« Mesoscopic solids », nonclassical nonlinearities

Granular media Rocks, sandstones Cracked solids Media with internal contacting surfaces

1017. Nonclassical nonlinearities PageV. Tournat - Introductory lecture on nonlinear acoustics 101

➪ Excitation of large local strains from moderate stresses in the solid matrix

Soft inclusions Defect resonance

Cracks, solid contactsFluid squeezing

➪ A very high level of nonlinearity and different types of nonlinearities

➪ CR9 : Nonlinear acoustic NDE (I. Solodov)

Page 102: Introductory lecture on nonlinear acoustics (PDF)

One origin of mesoscopic material strong nonlinearities

Crack

Considering a small nonlinearity for the springs

The quasi-static behavior of the chain is characterized by

-1 0-2-3-5 -4-6-7

0

-1

-2

1

2

Soft inclusion density (Log)

Chain parameter value (Log)

102PageV. Tournat - Introductory lecture on nonlinear acoustics 102

Linear effects

NL effects/

methods

7. Nonclassical nonlinearities

Page 103: Introductory lecture on nonlinear acoustics (PDF)

Examples of soft features and non classical behaviors

103PageV. Tournat - Introductory lecture on nonlinear acoustics 103

Frictional contacts and interfaces, short range adhesion, fluid squeezing

➪ Hysteresis➪ Nonlinear dissipation➪ Nonlinear softening

Tapping, clapping contacts and contacting surfaces, local singular stress-strain behavior

➪ CAN➪ Super-harmonics, chaos➪ Sinc modulation spectrum

Delaminations, cracks, imperfectly

contacting surfaces…

7. Nonclassical nonlinearities

Page 104: Introductory lecture on nonlinear acoustics (PDF)

Imperfectly contacting surfaces

104PageV. Tournat - Introductory lecture on nonlinear acoustics 104

O. Buck, W.L. Morris, J.M. Richardson, Appl. Phys. Lett. 33, pp. 371 (1978).

➪ 2nd harmonic generation at a solid interface

7. Nonclassical nonlinearities

Page 105: Introductory lecture on nonlinear acoustics (PDF)

D.J. Holcomb, Memory, Relaxation and microfracturing in dilatant rock, J. Geophys. Res. 86, 6235-6248 (1981)

➪ Hysteresis in the time of arrival of waves for increasing and decreasing static load

+ conditionning and slow dynamics...

R. Guyer, P. Johnson, Phys. Today 52 (1999)

Hysteresis in an acousto-elastic test

http://www.ees.lanl.gov/ees11/geophysics/nonlinear/nonlinear.shtml

105PageV. Tournat - Introductory lecture on nonlinear acoustics 1057. Nonclassical nonlinearities

Page 106: Introductory lecture on nonlinear acoustics (PDF)

Nonlinear resonances

Peculiar processes specific to mesoscopic solids or

damaged solids

➪ Softening

➪ Dissipation ➚

−60

−50

−40

−30

−20

−10

0

10

14000 15000 16000 17000 18000 19000 20000Frequency (Hz)

Am

plitu

de (d

B, a

rb. r

ef.)

Increasing excitation amplitiude

106PageV. Tournat - Introductory lecture on nonlinear acoustics 106

�f

f0=

f(⇥A)� f0f0

= ��f⇥A1

Q(⇥A)� 1

Q0= �

✓1

Q(⇥A)

◆= �Q⇥A

r = ⇥�(1/Q)

|�f/f | = ⇥�Q

�f

Read parameter

Relative frequency shift Shift in inverse quality factor

7. Nonclassical nonlinearities

Page 107: Introductory lecture on nonlinear acoustics (PDF)

Odd-symmetry nonlinearity

➪ Preferential generation of odd harmonics (even for L-waves)

➪ Quadratic dynamics in amplitude

G.D. Meegan, Jr., P.A. Johnson, R.A. Guyer, and K. R. McCall, J. Acoust. Soc. Am. 94, 3387 (1993)

107PageV. Tournat - Introductory lecture on nonlinear acoustics 1077. Nonclassical nonlinearities

Page 108: Introductory lecture on nonlinear acoustics (PDF)

Hysteretic loop

�/�A

" = "A cos(✓)

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

h > 0

�H = �hE

⇥A⇥+

1

2(⇥2 � ⇥2A)sign(⇥)

�H

hE⇥2A

Strain excitation signal

Contribution of hysteresis to stress

Quadratic hysteresis

108PageV. Tournat - Introductory lecture on nonlinear acoustics 108

�W =

I⇥H(�)d⇤(�) > 0

➪ Lost energy in one cycle = surface of the loop

➪ Parabolic curves➪ Odd symmetry

�E = �hE [�A + � sign(�)]

➪ Instantaneous elastic modulus

7. Nonclassical nonlinearities

Page 109: Introductory lecture on nonlinear acoustics (PDF)

Phenomenological model of hysteresis: Preisach-Mayergoyz model

F. Preisach, Z. Phys. 57, 3803 (1935)M.A. Krasnosel’skii, A.V. Pokrovskii, “Systems with hysteresis”, Nauka/Springer, Moscow/Berlin, 1983/1989I.D. Mayergoyz, J. Appl. Phys. 57, 3803 (1985), & Phys. Rev. Lett. 56, 1518 (1986)

"1 "2

�2

�1

"

Hysteron

Individual hysteretic elements �� = �1 � �2 = cste > 0

➪ Instantaneous transitions

➪ Non dispersive model

➪ Open state / Close state

K.R. McCall, R.A. Guyer, J. Geophys. Res. 99, 23987 (1994)

R.A. Guyer, K.R. McCall, G.N. Boitnott, Phys. Rev. Lett. 74, 3491 (1995)

109PageV. Tournat - Introductory lecture on nonlinear acoustics 1097. Nonclassical nonlinearities

Page 110: Introductory lecture on nonlinear acoustics (PDF)

Phenomenological model of “Preisach-Mayergoyz”"1

"2

�(�1, �2)

�(�1, �2) Distribution of hysterons

�T =Z �2

�1d⇥1

Z +1

�1

�(⇥1, ⇥2, ⇥)�(⇥1, ⇥2)d⇥2

Contribution to the total stress

110PageV. Tournat - Introductory lecture on nonlinear acoustics 1107. Nonclassical nonlinearities

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

"

�400 hysterons40 hysterons10 hysterons

Quadratic hysteresis�(�1, �2) = cste

Page 111: Introductory lecture on nonlinear acoustics (PDF)

1D nonlinear propagation equation

⇤ = E{⌅+ �⌅2 + ⇥⌅3 � h[⌅A⌅+1

2(⌅2 � ⌅2A)sign(⌅)]}

Nonlinear stress-strain relation in 1D

�0⇤2u

⇤t2=

⇤⇥

⇤xMotion equation / Euler � =

⇥u

⇥xStrain

QNL / ⇥�NL

⇥x➪ Nonlinear source term

Propagation equation⇤2u

⇤x2� 1

c20

⇤2u

⇤t2= � 1

�0c20

⇤⇥NL

⇤x

111PageV. Tournat - Introductory lecture on nonlinear acoustics 1117. Nonclassical nonlinearities

Page 112: Introductory lecture on nonlinear acoustics (PDF)

Hertz nonlinearity� = C"3/2

�2 =1

4�0� 103

Parameter of quadratic nonlinearity

�� =32E�⇥1/2

0 �⇥(1 +1

4⇥0�⇥ + . . .)

�0 + �� = C(⇥0 + �⇥)3/2H(⇥0 + �⇥)

uT

= {1 + (1� Tmax

)2/3 � 2

"1� T

max

+ Tsign(T )

2

#2/3

} sign(T )

Hertz-Mindlin nonlinearity in shear motion

➪ At the first order, a quadratic hysteretic nonlinearity

➪ The weaker the contact, the higher its nonlinearity

Contact between two spheres

112PageV. Tournat - Introductory lecture on nonlinear acoustics 1127. Nonclassical nonlinearities

Page 113: Introductory lecture on nonlinear acoustics (PDF)

Noncascade processes in a 3D unconsolidated granular medium

Difference frequency

Non cascade

Pump waves

10 50[kHz]

−70

−60

−50

403020

−100

−90

−40

−80

0

Mag

nitu

de [d

B]

f

σt0

T/2

t

−T/2

113PageV. Tournat - Introductory lecture on nonlinear acoustics 1137. Nonclassical nonlinearities

Page 114: Introductory lecture on nonlinear acoustics (PDF)

Granular chains, sonic vacuum

unun�1 un+1

n+ 1nn� 1

➪ CR3 : Milieux granulaires (G. Theocharis)

➪ Rich (strongly) nonlinear wave phenomena

114PageV. Tournat - Introductory lecture on nonlinear acoustics 1147. Nonclassical nonlinearities

Page 115: Introductory lecture on nonlinear acoustics (PDF)

Compressed granular chains

md2un(t)

dt2= ↵(un+1 � 2un + un�1)�

2(un+1 � 2un + un�1)(un+1 � un�1)]

2R

2R-δ0

F0

(a)

(b)

T (f)

f

➪ A nonlinear phononic crystal

!⇤

115PageV. Tournat - Introductory lecture on nonlinear acoustics 1157. Nonclassical nonlinearities

Page 116: Introductory lecture on nonlinear acoustics (PDF)

Second harmonic generation in a granular chain

20 40 60 800.97

0.98

0.99

1

1.01

1st

ha

rmo

nic

0 20 40 60 80 1000

0.05

0.1

0.15

n (bead position)

2n

d h

arm

on

ic

0

0.5

1

1.5

dc

mo

de

20 40 60 80 2 4 6 80

0.1

0.2

0.3

0.4

dc mode

2 4 6 8

0.998

0.999

1

0 2 4 6 8 100

0.01

0.02

0.03

0.04

(bead position)

No

rma

lize

d a

mp

litu

de

Fundamental

Harmonic 2

2! < !⇤ 2! > !⇤

V.J. Sanchez-Morcillo et al. Second harmonic generation for dispersive elastic waves in a discrete granular chain, Phys. Rev. E 88, 043203 (2013).

5. Constitutive equations PageV. Tournat - Introductory lecture on nonlinear acoustics 116PageV. Tournat - Introductory lecture on nonlinear acoustics 1167. Nonclassical nonlinearities

Page 117: Introductory lecture on nonlinear acoustics (PDF)

Pure rotational waves in a granular chain

Electro-dynamic shaker

Accelerometers

Fixed bead

A B

19 mm

n=0

n=15

J. Cabaret, P. Béquin, G. Theocharis, V. Andreev, V.E. Gusev, and V. TournatHysteretic Nonlinear Rotational Waves in Granular Chain, Submitted (this week…)

➪ A pure hysteretic nonlinearity

117PageV. Tournat - Introductory lecture on nonlinear acoustics 1177. Nonclassical nonlinearities

Page 118: Introductory lecture on nonlinear acoustics (PDF)

The interaction force: torsional momentGa2

µF0�� =

✓1� 3

2

(M⇤z �Mz)

2µF0a

◆1/2

� 1

2

"1 +

✓1� 3

2

M⇤z

µF0a

◆1/2#� 3

16

Mz

µF0a

Ga2

µF0�+ = �

✓1� 3

2

(M⇤z +Mz)

2µF0a

◆1/2

+1

2

"1 +

✓1� 3

2

M⇤z

µF0a

◆1/2#� 3

16

Mz

µF0a

Increasing moment

Decreasing moment

H. Deresiewicz, Contact of elastic spheres under an oscillating torsional couple, J. of Appl. Mech., 21 :52–56, (1954).

Mn = M linn +Mh

n = �Kt

⇢� + h

�⇤� +

1

2

��2 � �⇤2�sign(�)

��

Kt = d(1� ⌫)F0

At the leading order of nonlinearity, for an oscillating moment and inverting the relation:

h = Ea2/(1 + ⌫)µF0

118PageV. Tournat - Introductory lecture on nonlinear acoustics 1187. Nonclassical nonlinearities

Page 119: Introductory lecture on nonlinear acoustics (PDF)

Nonlinear resonances

119PageV. Tournat - Introductory lecture on nonlinear acoustics 1197. Nonclassical nonlinearities

Page 120: Introductory lecture on nonlinear acoustics (PDF)

Linear propagation of rotational waves

50 100 150 200 250 300 350-60

-40

-20

0

20

ModelExperiment

(Hz)fA 15

(dB,

nor

m.)

(Hz)

ModelExperiment

Electro-dynamicshaker

Accelerometer

Fixedbead

19 mm

n=0

n=15

00

100

200

300

(a)

(b)

(c)

120PageV. Tournat - Introductory lecture on nonlinear acoustics 1207. Nonclassical nonlinearities

Page 121: Introductory lecture on nonlinear acoustics (PDF)

Distortion of the pulses in a 70 bead-long chain

0 0.02 0.04 0.06 0.08 0.1

−1

−0.5

0

0.5

1

Time [s]

Acce

lera

tion

[nor

m.]

0.02 0.04 0.06 0.08 0.1−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]Ac

celer

ation

[nor

m.]

Increasing excitation level

Signal at bead 1 Signal at bead 18

Signal at ~100Hz

➪ NL velocity decrease

➪ NL attenuation and distortion121PageV. Tournat - Introductory lecture on nonlinear acoustics 1217. Nonclassical nonlinearities

Page 122: Introductory lecture on nonlinear acoustics (PDF)

Modeling of the distortion

0 2 4 6 8-2

-1

0

1

2Experimental signalApproximated signal

0 1 2 3 4-1.5

-1

-0.5

0

0.5

1

Normalized timeNo

rmali

zed

veloc

ity

@✓v@⇠

� 1

2

@Mh

@✓v

@✓v@⌧

= 0

Evolution equation for angular velocity:

Moment-Angle relationship calculated with the Preisach-

Mayergoyz formalism

Increasing

122PageV. Tournat - Introductory lecture on nonlinear acoustics 1227. Nonclassical nonlinearities

Page 123: Introductory lecture on nonlinear acoustics (PDF)

A good agreement model-experiments

➪ Observation of pure rotation wave propagation and dispersion

➪ Observation and modeling of the nonlinear distortion of a pulse by a pure quadratic hysteresis

(a) (b)

(c) (d)

0 1 2 3 40 1 2 3 4

-1.5-1

-0.50

0.51

0 0.5 1 1.5 2 2.5

0.60.8

11.21.41.61.8

2

0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

-1.5-1

-0.50

0.51

Norm

alize

d am

plitu

de

Norm

alize

d tim

e

123PageV. Tournat - Introductory lecture on nonlinear acoustics 1237. Nonclassical nonlinearities

Page 124: Introductory lecture on nonlinear acoustics (PDF)

Example of a NDT application

Nonlinear modulation method

➪ Global inspection of the sample, crack detection, monitoring

Coda wave interferometry (CWI) in a multiple scattering medium

Concrete, complex shape systems...

! + � � ! ± �

!

A

! ± ⌦

⌦Selectively sensitive to defects

124PageV. Tournat - Introductory lecture on nonlinear acoustics 1247. Nonclassical nonlinearities

Page 125: Introductory lecture on nonlinear acoustics (PDF)

Analysis of multiply scattered signals

CC(t1,t2)(h0,h1)

(⌧i) =

R t2t1

h0[t(1 + ⌧i)] · h1[t]dtqR t2t1

h20[t(1 + ⌧i)]dt ·

R t2t1

h21[t]dt

Stretching cross-correlation coefficient Stretching parameter

↵ = (v1 � v0)/v0 = �v/v0

CC

(t1,t2)(h0,h1)

(↵) = max[CC

(t1,t2)(h0,h1)

(⌧i)] Kd = 1� CC(↵)

Relative change in velocity Shape modification

2 parameters

⌧i

Coda signal

125PageV. Tournat - Introductory lecture on nonlinear acoustics 1257. Nonclassical nonlinearities

Page 126: Introductory lecture on nonlinear acoustics (PDF)

The method of coda nonlinear modulation

➪ We compare the coda signals received when the pump wave is excited and in the absence of pump wave

> 15 excited resonant modes

126PageV. Tournat - Introductory lecture on nonlinear acoustics 1267. Nonclassical nonlinearities

Page 127: Introductory lecture on nonlinear acoustics (PDF)

Coda nonlinear modulation

127PageV. Tournat - Introductory lecture on nonlinear acoustics 1277. Nonclassical nonlinearities

Y. Zhang, V. Tournat, O. Abraham, O. Durand, S. Letourneur, A. Le Duff, B. Lascoup, Nonlinear mixing of ultrasonic coda waves with lower frequency-swept pump waves for a global detection of defects in multiple scattering media, J. Appl. Phys. 113, 064905 (2013).

Page 128: Introductory lecture on nonlinear acoustics (PDF)

Coda analysis results

Step number

Step number

Step number

IntactDamaged

IntactDamaged

(a)

(b)

(c)

0.002-0.002

-0.014-0.010-0.006(%

)

Kd (%

)0

4

8

12

0 2 4 121086 1614

0 2 4 121086 1614

0 2 4 121086 1614

0

20

40

60(dB)

↵ = (v1 � v0)/v0 = �v/v0

Kd = 1� CC(↵)

Relative velocity change

Shape (attenuation) modification

128PageV. Tournat - Introductory lecture on nonlinear acoustics 1287. Nonclassical nonlinearities

Page 129: Introductory lecture on nonlinear acoustics (PDF)

Numerous possible effects for NDT

NL effect Principle Involved nonlinearities Advantages Drawbacks

Harmonic generation Simple Residual NL

Attenuating media

Nonlinear resonances

Robust Weakly sensitive to

residual NL

Attenuating media Insensitive to qudratic

NL

Self-demodulation

Simple High directivity

Attenuating media

Residual NL Non-odd NL

NL modulation Dynamic AE

Weakly sensitive to residual NL

Very different frequencies

Modulation transfer NL absorption Complex to implement

Sub and super-harmonics

CAN Imaging

Require strong amp. Measurement chain

NL

NL CWIComplexe geometries

and media SHM

Requires weak absorption

Pulse inversion Simple Temporal domain Particular cases

s

s

s

s

+ relaxation, slow dynamics, conditioning

! + � � ! ± �

!2 � !1 ! ⌦

! ! !

! + ! ! 2!

!1 ± �+ !2 � !2 ± �

� ! �/2, 3�

Page 130: Introductory lecture on nonlinear acoustics (PDF)

To conclude, one thing to remember

Non linéaire

Non-linéarité

Page 131: Introductory lecture on nonlinear acoustics (PDF)

Introductory Lecture on Nonlinear Acoustics

Laboratoire d’Acoustique de l’Université du Maine (LAUM)UMR-CNRS 6613, Le Mans, France

Vincent TOURNATResearch Scientist at CNRS

[email protected]

Oléron 02/06/2014