40
Introduction to Relativistic Hydrodynamics Heavy Ion Collisions and Hydrodynamics modified from B.Schenke, S.Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011), http://www.physics.mcgill.ca/˜schenke/, Nov 17, 2012 Daniel Nowakowski TU Darmstadt, Institut für Kernphysik Seminar “Relativistische Schwerionenphysik”, WS 12/13 November 22nd, 2012 | TUD - IKP | D.Nowakowski | 1

Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

  • Upload
    others

  • View
    26

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Introduction to Relativistic HydrodynamicsHeavy Ion Collisions and Hydrodynamics

modified from B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011), http://www.physics.mcgill.ca/˜schenke/, Nov 17, 2012

Daniel NowakowskiTU Darmstadt, Institut für Kernphysik

Seminar “Relativistische Schwerionenphysik”, WS 12/13

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 1

Page 2: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

MotivationHeavy ion collisions

����

���

���

���

���

���

����

� �� �

��

������

���

�����

��������

���������������

����

������

� !

�� ����������� �"#�

�� ������������ � ��

��

���������������� ������

$ �� �� �� %� $� ��� ��� %��

&'(�

!'�

�#�

)(&

�������*�� �

!+ �����

����� ������ ��

����

����

����

���%

���,

-.

*��

/#�

-.

0�������

����

��� ����*�1����

���� ��2�3

K. Heckmann, TU Darmstadt, Nov. 2011

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 3

Page 3: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsA very naive picture(?)

Vapour

Pressure

Temperature

Solid Liquid

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 4

Page 4: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

MotivationHeavy ion collisions

Question:

Do we discover deconfined matter in these collisions; can we extract informationabout the properties of quarks and gluons?

Possible answer:

Hydrodynamics

I extract local temperatures, energy densitiesI describe collective effectsI no / little detailed knowledge of microscopic physics needed, if relevant input

provided externallyI analyse experimental data in this framework

Applicable to detect signatures of deconfined matter with a hydrodynamical model?

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 5

Page 5: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsIntroduction

I matter produced in heavy ion collisions has varying degrees of freedom; applicability for hydrodynamical description? Limited! No clear startingpoint

I strong correlations in quark matter in vicinity of the phase transition boundary; ideal-fluid like behavior of the Quark Gluon Plasma

taken from U. Heinz, arXiv: nucl-th/0901.4355; Ref. therein: J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 92, 052302 (2004)

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 6

Page 6: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Classical hydrodynamics and thermodynamicsA short glance

HydrodynamicsI continuous media with collective behaviorI pressure and temperature slowly varying

ThermodynamicsI change from extensive to intensive variables

ε =EV

, s =SN

, n =NV

ε + P = Ts + µn , dε = Tds + µdn , c2s =

∂P∂ε

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 7

Page 7: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsBasic equations

I system characterized by 4-velocity (~ = c = kB = 1)

uµ =(γ, γ~v

), uµuµ = 1 (flat spacetime)

I local thermal equilibrium is requiredI energy-momentum conservation yields

∂µTµν = 0 ⇒ 4 equations

I current conservation (Baryon number, ...) requires

∂µNµi = 0 ⇒ 1 equation

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 8

Page 8: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsParametrization of hydrodynamical quantities

I energy-momentum tensor Tµν (10 independent components)

Tµν = εuµuν − P∆µν + Wµuν + W νuµ + πµν

uµ,∆µν = gµν − uµuν “projection vector, tensor”ε energy densityP = PS + Π hydrostatic + bulk pressureWµ energy / heat currentπµν shear stress tensor

I conserved current Nµi (4 · k independent components)

Nµi = niuµ + Vµ

i

ni = uµNµi charge density

Vµi = ∆µ

νNνi charge current

gµν = diag(1,−13×3)

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 9

Page 9: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsBasic equations

I projection vector and tensor are orthogonal to each other

uµ∆µν = 0

I each term of Tµν and Nµi can be obtained by contraction of these quantities

with uµ and ∆µν or combinations of them, like

P = −13∆µνTµν

ε = uµTµνuν

I need initial / boundary conditions and equation of state

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 10

Page 10: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsWhat is flow?

Two definitions of flow

1. Flow of energy, Wµ = 0 (Landau)Landau, Lifshitz, Fluid mechanics, Pergamon Press (1959)

uµL =Tµν uνL√

uαL TβαTβγuγL

=1ε

Tµν uνL

2. Flow of conserved charge, Vµ = 0 (Eckart)Eckart, Phys. Rev. 58, 919 (1940)

uµE =Nµ

√NνNν

uLμ

uEμ

Both definitions are related to each other by Lorentz transformations

uµE = ΛµνuνL , uµL ≈ uµE + Wµ

ε+Ps, uµE ≈ uµL + Vµ

n

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 11

Page 11: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsOverview

∂µTµν = 0, ∂µNµi = 0

Continuity equation: ∂∂t (γn) +∇

(γn~v

)= 0

Conservation of energy: ∂∂t T

00 +∇iT i0 = 0

Euler equation: ∂∂t (ε + p) γ2v i +∇j (ε + p) γ2v iv j = −∇iP

Problem11 + 4k unknown variables, only 5 equations.

Solution1. choose suited frame→ Landau: Wµ = 0, but now uµ dynamical variable

2. only ideal fluids: 5 + 1k unknowns

3. additional input needed!

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 12

Page 12: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsIdeal hydrodynamics and dissipative effects

I separate ideal and dissipative parts (Landau frame)

Tµν = Tµν0 + δTµν

Nµ = Nµ0 + δNµ

Ideal DissipativePressure P = Ps + Π Π = 0 Π 6= 0Energy / heat current Wµ Wµ = 0 Wµ = 0Shear stress tensor πµν πµν = 0 πµν 6= 0Charge current Vµ

i Vµi = 0 Vµ

i 6= 0

I consider only ideal hydrodynamics for now1. local thermal equilibrium

2. isotropy for the pressure

3. unique flow uµL = uµ

E

4. no viscous corrections

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 13

Page 13: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic ideal hydrodynamicsLocal rest frame

Tµν0 = (ε + Ps) uµuν − Ps gµν , Nµ0 = nuµ

in the local rest frame (LRF) with uµ = (1, 0, 0, 0)I uµuν (∆µν ) project time (space)-like quantitiesI the energy-momentum tensor is given by

T LRF = ε(u · u) + P∆ =(ε

Ps13×3

)

I 4 + 1 + 1 equations for 7 free variables (ε, P, n, uµ)

∂µTµν0 = 0, ∂µNµ0 = 0, uµuµ = 1⇒ another equation needed!

I equation of state P = P(ε, n) gives constraints

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 14

Page 14: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic ideal hydrodynamicsSummary

Energy-momentum tensor and conserved current

Tµν0 = (ε + Ps) uµuν − Ps gµν = εuµuν − Ps∆µν ,

Nµ0 = nuµ

Basic equations

∂µTµν0 = 0, ∂µNµ0 = 0

I local rest frame simplifies equations, e. g.

∂µTµνLRF = 0 ⇒ ∂0ε + ∂iP i = 0

I entropy density s resp. entropy current Sµ = suµ conservation

uν∂µTµνLRF = 0 ⇒ ∂µSµ = 0

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 15

Page 15: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic viscous hydrodynamicsGradient expansion

Energy-momentum tensor

Tµν = Tµν0 + δTµν

I δTµν can contain first, second,... spatial gradientsI hierarchy of orders

1. Zeroth order: Ideal Hydrodynamics2. First order: Viscous Hydrodynamics (“Navier-Stokes”)3. Second order: Viscous Hydrodynamics (“Israel-Müller-Stewart theory”)

I corresponds to modifying the entropy current according to

Sµ = suµ +O (δTµν ) +O(

(δTµν )2)

+ ...

I. Müller, Zeitschrift f. Physik 198, 329-344 (1967)

W. Israel, J. M. Stewart, Phys. Lett. A 58, 4 (1976), 213-215

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 16

Page 16: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic viscous hydrodynamicsBasic equations

I allow dissipative terms, but no charge in the systemI assume entropy current has additional linear dissipative terms (first-order

theory)

Sµ = suµ + αVµ

I phenomenological definitions resp. so called constitutive equations for theshear stress tensor πµν and for the bulk pressure Π

πµν = 2η(

12

(∆µα∆

νβ + ∆µ

β∆να

)− 1

3∆µν∆αβ

)∆ακ∂κuβ

Π = −ξ∂µuµ

I transport coefficients: η shear viscosity, ξ bulk viscosity, ...I characterize deviation from thermal equilibrium

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 17

Page 17: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic viscous hydrodynamicsTransport coefficients

I Shear viscosity: fluid’s resistance to shear forces

I Bulk viscosity: fluid’s resistance to compression

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 18

Page 18: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic viscous hydrodynamicsSummary

I entropy current conserved or increasing for viscous hydrodynamics

T∂µSµ = T(uµ∂µs + s∂µuµ

), ∂µNµ = 0, n = 0

= uν∂µTµν0 , Ts = ε + P − µn

= −uν∂µ (δTµν ) , ∂µTµν = 0,

inserting definitions from constitutive equations yields

∂µSµ =πµνπ

µν

2η+Π2

ξ⇒ ∂µSµ ≥ 0

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 19

Page 19: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsEquations of motion

Describing dynamics of the system

1. From uν∂µTµν = 0

ε = −(ε + Ps + Π)θ + πµν

(12

(∆µα∆

νβ + ∆µ

β∆να

)− 1

3∆µν∆αβ

)∆ακ∂κuβ

2. From ∆µα∂βTαβ = 0

(ε + Ps + Π)uµ = ∆µν∂ν (Ps + Π)−∆µα∆βγ∂γπαβ + πµαuα

where

θ = ∂µuµ expansion scalar (u V/V )a = uµ∂µa substantial (co-moving) time derivative

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 20

Page 20: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Relativistic hydrodynamicsEquations of motion

First equation of motion

ε = −(ε + Ps + Π)θ + πµν

(12

(∆µα∆

νβ + ∆µ

β∆να

)− 1

3∆µν∆αβ

)∆ακ∂κuβ

= −(ε + Ps)θ︸ ︷︷ ︸a.

+ ξθ2 + 2η((

12

(∆µα∆

νβ + ∆µ

β∆να

)− 1

3∆µν∆αβ

)∆ακ∂κuβ

)2

︸ ︷︷ ︸b.

Time evolution of the energy density in the co-moving system

a. change of energy density and hydrostatic pressure due to expansion / dilutionresp. changing volume

b. production of entropy due to dissipative effects ; heating of the system

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 21

Page 21: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisions

http://cdsweb.cern.ch/record/1305398, Oct 30, 2012

Idea: study heavy ion collisions with hydrodynamicsE. Fermi, Prog. Theor. Phys. 5 (1950) 570; Phys. Rev. 81 (1951) 683.

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 22

Page 22: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsSchematic time line

z

t

I proper time

τ =√

t2 − z2

I space-time rapidity

ηs = 1/2 · ln (t + z)(t − z)

Coordinates: t = τ cosh ηs and z = τ sinh ηs, vz = zt

red: τ = const, green: ηs = const

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 23

Page 23: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsSchematic time line

z

t

I heavy ions collideI quark gluon plasmaI freeze out

pre-equilibrium | hydrodynamics | free-streaming

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 23

Page 24: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsSchematic time line

z

t Different stages of a HIC

1. initial stage→ initial conditions

2. intermediate stage→ equation of state

3. final stage→ decoupling

hydrodynamical description?

pre-equilibrium | hydrodynamics | free-streaming

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 23

Page 25: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsInitial conditions

I dynamics of particle production cannot be described in hydrodynamicsI specify thermodynamical state of matter and initial velocityI two sets of initial conditions:

1. Landau: nuclei stopped by collision, no initial dependence Landau, Izv. Akad. Nauk Ser. Fiz. 17 51

2. Bjorken: particle production is frame-independent, boost invariance of initialconditions

Aad, G. and Gray, H. M. and Marshall, Z. and Mateos, D. Lopez and Perez, K. et al., ATLAS collaboration, Phys. Lett. B710 (2012) 363-382

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 24

Page 26: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model (Bjorken, Phys. Rev. D 27, 140-151 (1983))

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 25

Page 27: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model

I early thermalizationI vanishing Baryon number for the fluidI one-dimensional expansion

z

t

I boost symmetry of initial conditionsI no initial dependence on rapidity y because no

dependence on Lorentz boost angleI fluid rapidity is the same as spacetime rapidity

(E large)

ηs = y

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 26

Page 28: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model (Bjorken, Phys. Rev. D 27, 140-151 (1983))

I valid for times of the order from τ ≈ 1 fm/c to τ ≈ 5− 10 fm/cI specify to expansion along z directionI introduce a boost-invariant four-velocity

uµ =xµ

τ=

(1, 0, 0,

zt

)=

1√t2 − z2

(t , 0, 0, z)

I due to Lorentz-symmetry and initial conditions

ε = ε(τ , y )→ ε(τ )

P = P(τ , y )→ P(τ )

T = T (τ , y )→ T (τ ) = β−1(τ )

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 27

Page 29: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model

I first equation of motion simplifies to

dεdτ

= −ε + Ps

τ+

43

1τ 2

(ε + Ps) ηTs

+ε + Ps

Tsξ

τ 2

= −ε + Ps

τ

(1− 4

3τTη

s− 1τT

ξ

s

)

a. time-evolution of energy density is governed by the sum e + Ps per proper time τfor ideal hydrodynamics

b. last two terms on the RHS are viscous corrections with appearing dimensionlessquantities

η/s and ξ/s

which characterize intrinsic properties of the fluid

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 28

Page 30: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model

I first equation of motion simplifies to

dεdτ

= −ε + Ps

τ

I description of the time evolution of the system in a simple (solvable) wayI good approximation, but for detailed calculations viscous effects need to be

considered

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 28

Page 31: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model and an equation of state

I simple equation of state

P = γε, γideal gas =13

I solutions for equations of motion

ε(τ ) = ε0

(τ0

τ

)1+γ

T (τ ) = T0

(τ0

τ

)γand

s0τ0 = sτ

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 29

Page 32: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model and observables

I energy change per unit of rapidity can be measured and calculated

dEdy

=d3Vdy

ε(τf ) = πR2︸︷︷︸d2x

τf ε0

(τ0

τf

)1+γ

= πR2ε0τ0

(τ0

τf

)γI assume no hydrodynamical expansion any more (τ ≥ τf )

ε0 =1

πR2τ0

dEdy

=〈mt〉πR2

dNdz|z=0 =

〈mt〉πR2

dydz|z=0︸ ︷︷ ︸

1/τ0

dNdy

I allows to estimate the initial energy density

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 30

Page 33: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model: Does a QGP occur in HICs?

I energy density @ RHIC

0 100 200 300

2

4

200 GeV130 GeV19.6 GeV

pN

[GeV

fm-2c-

1 ]τ

Bj

S. S. Adler et al. (PHENIX collaboration), Phys. Rev. C 71, 034908 (2005)

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 31

Page 34: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsElliptic flow

bx

y

I initial geometric anisotropy gets transformed to anisotropies in particlemomenta spectrum

I expanding system develops flow patternI azimuthal distribution of emitted particles with respect to reaction plane

dNdpT dφdy

=∑

n

vn(pT ) cos nφ

I elliptic flow v2 sensitive to viscous effects

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 32

Page 35: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collisionsBjorken model: Elliptic flow

I Euler equation for vx

∂tvx = − 1e + P

∂P∂x

= −c2s∂ ln s∂x

I assume gaussian entropy profile from the collision

s(x , y ) = s0 exp

(−1

2

(σ2

y x2 + σ2x y2

σ2xσ

2y

))I solution of Euler equation

vx (t) =c2

s

σ2x

tx + vx ,0, vy (t) =c2

s

σ2y

ty + vy ,0

I non-central collision (σx < σy ) implies |vx | > |vy |I anisotropy in particle spectrum→ details next week

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 33

Page 36: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Bjorken modelViolation of causality in first order theory

I linearized Euler equation for small perturbations of vy → vy + δvy

∂t(δvy)− η

ε + P∂2

x

(δvy) = 0

I allow sinusoidal perturbation of the form

δvy (t , x) ∝ exp (ωt − ikx)

I “dispersion relation” with wave-number k is given by

ω =η

ε + Pk2

I estimate speed of mode with wave-number k

v (k ) =dωdk

=2ηε + P

k →∞ for k →∞

⇒ perturbations with k →∞ propagate with infinite speed

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 34

Page 37: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Heavy ion collision and the Bjorken modelShort summary

Bjorken modelI assumes Boost-invariance of initial conditionsI describes heavy ion collisions within hydrodynamical frameworkI one-dimensional expansion along z for τ ≈ 1− 10 fm/c

Problems in first order theory:I violation of causalityI solutions show instabilities W. A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725-733 (1985)

Solution: Use second-order theory W. Israel and J. M. Stewart, Annals Phys. 118, 341 (1979)

I introduce relaxation time in equations of motionI no acausality

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 35

Page 38: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Summary

HydrodynamicsI offers simple formalism to describe heavy ion collisionsI strong assumption required: local thermal equilibriumI relies on initial conditions, equation of state and freeze-out descriptionI Bjorken modelI experimental data (might) agree well with predictions in a certain range→ see talk next week by J. Onderwaater

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 36

Page 39: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Outlook

“... it is by no means clear that the highly excited, but still small systems producedin those violent collisions satisfy the criteria justifying a dynamical treatment interms of a macroscopic theory which follows idealized laws.”

U. Heinz, arXiv:nucl-th/0901.4355

I systematical improvements of hydrodynamical descriptionI many numerical simulations availableI other (effective) description of heavy ion collisionsI extend to include anisotropies, turbulence, non-equilibrium...

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 37

Page 40: Introduction to Relativistic Hydrodynamicscrunch.ikp.physik.tu-darmstadt.de/nhc/pages/lectures/rhiseminar12-13/... · Relativistic hydrodynamics Ideal hydrodynamics and dissipative

Literature

[1] T. Hirano, N. van der Kolk, A. BilandzicHydrodynamic and FlowarXiv:nucl-th/0809.2684 (2008)

[2] P. Huovinen and P. V. RuuskanenHydrodynamic Models for Heavy Ion CollisionsAnnu. Rev. Nucl. Particle Science 56 (2006), arXiv:nucl-th/0605008

[3] U. HeinzEarly collective expansion: Relativistic hydrodynamics and the transportproperties of QCD matterarXiv:nucl-th/0901.4355 (2009)

November 22nd, 2012 | TUD - IKP | D. Nowakowski | 38