78
Institut de Recherche en Informatique et Systèmes Aléatoires Inter-Cell Interference Coordination in Wireless Networks PhD Defense, IRISA, Rennes, 2015 Mohamad Yassin *‡ * University of Rennes 1, IRISA, France Saint Joseph University of Beirut, ESIB, Lebanon November 12, 2015

Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Institut de Recherche en Informatique et Systèmes Aléatoires

Inter-Cell Interference Coordination in WirelessNetworks

PhD Defense, IRISA, Rennes, 2015

Mohamad Yassin∗‡

∗University of Rennes 1, IRISA, France‡Saint Joseph University of Beirut, ESIB, Lebanon

November 12, 2015

Page 2: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Background

Mobile data traffic is exponentially increasing• 70% growth in 20121 and 81% growth in 20132

• Mobile data traffic in 2017 will be 13 times that of 2012

METIS project technical objectives3 for 5G networks:• 1,000 times higher mobile data volume per area• 10 to 100 times higher user data rate• 10 to 100 times higher number of connected devices

Need to increase network capacity and spectral efficiency• Network densification• Aggressive frequency reuse

1Cisco Systems. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012-2017.2Cisco Systems. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018.3METIS D6.6. Final Report on the METIS 5G System Concept and Technology Roadmap. 2015.

M. Yassin IRISA, Rennes, November 13, 2015 2 / 39

Page 3: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Frequency Reuse-1 Model

Orthogonal Frequency Division Multiple Access (OFDMA)Frequency reuse-1 model is used• Improve network capacity• Combat spectrum scarcity• Inter-cell interference problems

M. Yassin IRISA, Rennes, November 13, 2015 3 / 39

Page 4: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Frequency Reuse-1 Model

Orthogonal Frequency Division Multiple Access (OFDMA)Frequency reuse-1 model is used• Improve network capacity• Combat spectrum scarcity• Inter-cell interference problems

M. Yassin IRISA, Rennes, November 13, 2015 3 / 39

Page 5: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Frequency Reuse-1 Model

Orthogonal Frequency Division Multiple Access (OFDMA)Frequency reuse-1 model is used• Improve network capacity• Combat spectrum scarcity• Inter-cell interference problems

M. Yassin IRISA, Rennes, November 13, 2015 3 / 39

Page 6: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Inter-Cell Interference Coordination (ICIC)

Negative impact of interference on system performance

Multi-cell radio resource management function4

• Reduce inter-cell interference• Alleviate throughput degradation

3GPP allows non-standardized ICIC techniques

43GPP. E-UTRAN Overall Description, Stage 2. Technical Specification. 3GPP TS 36.300, 2012.

M. Yassin IRISA, Rennes, November 13, 2015 4 / 39

Page 7: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RAN

M. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 8: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RAN

M. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 9: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RAN

M. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 10: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RAN

M. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 11: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques ⇒�� ��Comparison

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RANM. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 12: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques ⇒�� ��Comparison

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RANM. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 13: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques ⇒�� ��Comparison

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RANM. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 14: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques ⇒�� ��Comparison

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RANM. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 15: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Classes of ICIC Techniques ⇒�� ��Comparison

Cooperation

Centralized

Decentralized

Hybrid

Objective

Throughput maximization

Power minimization

Satisfaction maximization

Mathematical tools

Convex optimization

Graph theory

Game theory

TechnologyLTE/LTE-A networks

Cloud-RANM. Yassin IRISA, Rennes, November 13, 2015 5 / 39

Page 16: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Overview

1 Introduction

2 ICIC Techniques Comparison

3 Centralized versus Decentralized ICIC

4 Autonomous ICIC

5 Cooperative ICIC

6 Conclusion

M. Yassin IRISA, Rennes, November 13, 2015 6 / 39

Page 17: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Frequency Reuse Techniques5

Figure 1: Fractional Frequency Reuse (FFR) Figure 2: Soft Frequency Reuse (SFR)

5M. Yassin et al. “Survey of ICIC Techniques in LTE Networks under Various Mobile EnvironmentParameters”. In: Springer Wireless Networks (accepted for publication, 2015).

M. Yassin IRISA, Rennes, November 13, 2015 7 / 39

Page 18: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Simulation ParametersLTE downlink system level simulator6

Seven LTE cells with 10 UEs per cellRandom UE positions and radio conditionsUE Classification• Good Radio (GR) UEs• Bad Radio (BR) UEs

Parameter Value

Inter-eNodeB distance 500 m

Bandwidth 5 MHz

Resource Blocks (RBs) 25

Scheduler Round Robin

Traffic model Full buffer

6J.C. Ikuno, M. Wrulich, and M. Rupp. “System Level Simulation of LTE Networks”. In: IEEE 71st

Vehicular Technology Conf. Taipei, 2010, pp. 1–5.

M. Yassin IRISA, Rennes, November 13, 2015 8 / 39

Page 19: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Mean Throughput per ZoneMean throughput is calculated for 100 simulation runs

GR UEs BR UEs All UEs0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MeanThrough

put[M

bit/s]

Reuse-1Reuse-3FFRSFR

Figure 3: Mean throughput per GR, BR, and all UEs7

The frequency reuse-3 model shows the lowest throughputSFR improves BR UEs throughput and mean UE throughput

7M. AboulHassan et al. “Classification and Comparative Analysis of Inter-Cell Interference Coordination

Techniques in LTE Networks”. In: 7th IFIP Int. Conf. New Technologies, Mobility, and Security. Paris, 2015.

M. Yassin IRISA, Rennes, November 13, 2015 9 / 39

Page 20: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Throughput Cumulative Distribution Function

CDF (x) = P(X < x)

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

Throughput [Mbit/s]

CDF Reuse-1

Reuse-3FFRSFR

Figure 4: Throughput cumulative distribution function

Reuse-3 CDF curve is the first to reach its maximum

Throughput CDF is improved when using SFR

M. Yassin IRISA, Rennes, November 13, 2015 10 / 39

Page 21: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

UE Satisfaction

If Rk is less than 512 kbit/s ⇒ UE k is unsatisfied

0 5 10 15 200

20

40

60

80

100

Nb of UEs per eNodeB

%ofunsatisfied

UEs

Reuse-1Reuse-3FFRSFR

Figure 5: UE satisfaction versus network load

Reuse-3 improves UE satisfaction for low network loads

UE satisfaction is reduced when network load increases

M. Yassin IRISA, Rennes, November 13, 2015 11 / 39

Page 22: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Spectral Efficiency

Spectral efficiency is evaluated for various UE distributions

20 30 40 50 60 70 805

10

15

20

25

% of GR UEs

Spectral

efficien

cy[bit/s/H

z]

Reuse-1Reuse-3FFRSFR

Figure 6: Spectral efficiency versus percentage of GR UEs

Reuse-3 shows the lowest spectral efficiency

SFR improves spectral efficiency for less than 60% GR UEs

M. Yassin IRISA, Rennes, November 13, 2015 12 / 39

Page 23: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Limitations of Static ICIC Techniques

Spectrum underutilization

Non-uniform UE distributions

Figure 7: FFR limitations

UE throughput demands

Throughput fairness

Figure 8: SFR limitations

M. Yassin IRISA, Rennes, November 13, 2015 13 / 39

Page 24: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Overview

1 Introduction

2 ICIC Techniques Comparison

3 Centralized versus Decentralized ICIC

4 Autonomous ICIC

5 Cooperative ICIC

6 Conclusion

M. Yassin IRISA, Rennes, November 13, 2015 14 / 39

Page 25: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Multi-Cell Resource and Power Allocation

State-of-the-art contributions on resource and power allocation• Formulate a single cell problem• Neglect inter-cell interference• Do not guarantee throughput fairness• Introduce suboptimal approaches

Centralized joint resource and power allocation• Formulate a multi-cell problem• Address inter-cell interference• Guarantee throughput fairness• Find the optimal solution

M. Yassin IRISA, Rennes, November 13, 2015 15 / 39

Page 26: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Multi-Cell Resource and Power Allocation

State-of-the-art contributions on resource and power allocation• Formulate a single cell problem• Neglect inter-cell interference• Do not guarantee throughput fairness• Introduce suboptimal approaches

Centralized joint resource and power allocation• Formulate a multi-cell problem• Address inter-cell interference• Guarantee throughput fairness• Find the optimal solution

M. Yassin IRISA, Rennes, November 13, 2015 15 / 39

Page 27: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 28: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 29: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 30: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 31: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

Sum over all thecells and all UEs

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 32: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

Sum over all thecells and all UEs

Proportionalfairness

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 33: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Optimization Variables and Objective Function

Optimization variables:• πi,n: transmit power of cell i on RB n• θk,n: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

σk,i ,n =πi ,nGk,i ,n

N0 +∑

i ′ 6=i πi ′,nGk,i ′,n(1)

Peak rate of UE k associated with RB n on cell i :

ρk,i ,n = log (1 + σk,i ,n) (2)

Objective function:

η =∑i∈I

∑k∈K(i)

log

(∑n∈N

θk,n. log (1 + σk,i ,n)

)(3)

Sum over all thecells and all UEs

Proportionalfairness

Rate of UE k

M. Yassin IRISA, Rennes, November 13, 2015 16 / 39

Page 34: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Problem DecompositionJoint resource and power allocation

maximizeθ,π

η =∑

i∈I∑

k∈K(i) log(∑

n∈N θk,n.ρk,i ,n

)

Centralized power allocationη1 =

∑i∈I

∑k∈K(i)

∑n∈N

log (ρk,i ,n)Per cell resource allocation(η2)i =

∑k∈K(i)

∑n∈N

log(θk,n)

Convex optimization problem Convex optimization problem

Optimal solution to the resource and power allocation problem

M. Yassin IRISA, Rennes, November 13, 2015 17 / 39

Page 35: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Problem DecompositionJoint resource and power allocation

maximizeθ,π

η =∑

i∈I∑

k∈K(i) log(∑

n∈N θk,n.ρk,i ,n

)

Centralized power allocationη1 =

∑i∈I

∑k∈K(i)

∑n∈N

log (ρk,i ,n)Per cell resource allocation(η2)i =

∑k∈K(i)

∑n∈N

log(θk,n)

Convex optimization problem Convex optimization problem

Optimal solution to the resource and power allocation problem

Jensen’s inequality

Absence of binding constraints

M. Yassin IRISA, Rennes, November 13, 2015 17 / 39

Page 36: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Problem DecompositionJoint resource and power allocation

maximizeθ,π

η =∑

i∈I∑

k∈K(i) log(∑

n∈N θk,n.ρk,i ,n

)

Centralized power allocationη1 =

∑i∈I

∑k∈K(i)

∑n∈N

log (ρk,i ,n)Per cell resource allocation(η2)i =

∑k∈K(i)

∑n∈N

log(θk,n)

Convex optimization problem Convex optimization problem

Optimal solution to the resource and power allocation problem

Jensen’s inequality

Absence of binding constraints

Variable Change

M. Yassin IRISA, Rennes, November 13, 2015 17 / 39

Page 37: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Problem DecompositionJoint resource and power allocation

maximizeθ,π

η =∑

i∈I∑

k∈K(i) log(∑

n∈N θk,n.ρk,i ,n

)

Centralized power allocationη1 =

∑i∈I

∑k∈K(i)

∑n∈N

log (ρk,i ,n)Per cell resource allocation(η2)i =

∑k∈K(i)

∑n∈N

log(θk,n)

Convex optimization problem Convex optimization problem

Optimal solution to the resource and power allocation problem

Jensen’s inequality

Absence of binding constraints

Variable Change

Linear and separable

M. Yassin IRISA, Rennes, November 13, 2015 17 / 39

Page 38: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Problem DecompositionJoint resource and power allocation

maximizeθ,π

η =∑

i∈I∑

k∈K(i) log(∑

n∈N θk,n.ρk,i ,n

)

Centralized power allocationη1 =

∑i∈I

∑k∈K(i)

∑n∈N

log (ρk,i ,n)Per cell resource allocation(η2)i =

∑k∈K(i)

∑n∈N

log(θk,n)

Convex optimization problem Convex optimization problem

Optimal solution to the resource and power allocation problem

Jensen’s inequality

Absence of binding constraints

Variable Change

Linear and separable

M. Yassin IRISA, Rennes, November 13, 2015 17 / 39

Page 39: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Centralized Power Allocation Problem

Variable change:

π̂i ,n = log(πi ,n), ∀ i ∈ I, ∀ n ∈ N . (4)

Solved using Lagrange duality properties8

• Constraints are transferred to the objective• Primal and dual optimization problems

Primal iterations of the subgradient projection method:

π̂i ,n(t + 1) = π̂i ,n(t) + δ(t)× ∂L

∂π̂i ,n, ∀i ∈ I, ∀n ∈ N (5)

8M. Yassin et al. “Centralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks”.In: Submitted for publication in IFIP Networking Conf. Vienna, 2016.

M. Yassin IRISA, Rennes, November 13, 2015 18 / 39

Page 40: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Centralized Power Allocation Algorithm

1: Initialization: set t = tprimal = tdual = 0, and πi ,n(0) ≥ πmin.2: Set λk,i ,n(0) and νi (0) ≥ 03: (π̂?(t + 1), ρ̂?(t + 1))← PrimalProblem(ν?(t),λ?(t))4: (ν?(t + 1),λ?(t + 1))← DualProblem(π̂?(t + 1), ρ̂?(t + 1))5: if (∆π̂?(t + 1) > ε) or (∆ρ̂?(t + 1) > ε) or (∆ν?(t + 1) > ε)or (∆λ?(t + 1) > ε) then

6: t ← t + 17: go to 38: end if

M. Yassin IRISA, Rennes, November 13, 2015 19 / 39

Page 41: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Centralized Power Allocation Algorithm

1: Initialization: set t = tprimal = tdual = 0, and πi ,n(0) ≥ πmin.2: Set λk,i ,n(0) and νi (0) ≥ 03: (π̂?(t + 1), ρ̂?(t + 1))← PrimalProblem(ν?(t),λ?(t))4: (ν?(t + 1),λ?(t + 1))← DualProblem(π̂?(t + 1), ρ̂?(t + 1))5: if (∆π̂?(t + 1) > ε) or (∆ρ̂?(t + 1) > ε) or (∆ν?(t + 1) > ε)or (∆λ?(t + 1) > ε) then

6: t ← t + 17: go to 38: end if

Primal variables: π̂, ρ̂Dual variables: ν,λ

M. Yassin IRISA, Rennes, November 13, 2015 19 / 39

Page 42: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Centralized Power Allocation Convergence

Convergence of the primal variables π̂i ,1

0 1000 2000 3000 4000 5000 6000−2.35

−2.3

−2.25

−2.2

−2.15

−2.1

Number of Iterations

π̂i,n

π̂1,1

π̂2,1

π̂3,1

π̂4,1

π̂5,1

π̂6,1

π̂7,1

1120 1140 1160 1180 1200 1220−2.262

−2.26

−2.258

−2.256

−2.254

Figure 9: Convergence of the primal variables π̂i,n

Optimal solution to the power allocation problem

M. Yassin IRISA, Rennes, November 13, 2015 20 / 39

Page 43: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Solution to the Resource Allocation Problem

Theorem

The optimal solution to the resource allocation problem in cell i is:θ?k,n = 1

max(|K(i)|,|N |) , ∀k ∈ K(i),∀n ∈ N ,

|K(i)|: number of active UEs in cell i ,|N |: number of available RBs in cell i .

Example: |K(i)| < |N | ⇒ θ?k,n = 1|N | .

M. Yassin IRISA, Rennes, November 13, 2015 21 / 39

Page 44: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Decentralized Power Allocation

Multi-player game where the players are the cells

Utility function Ui for cell i :

Ui =∑

k∈K(i)

∑n∈N

log (log (1 + σk,i ,n))

A Nash Equilibrium (NE) exists

Subgradient projection method

M. Yassin IRISA, Rennes, November 13, 2015 22 / 39

Page 45: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Decentralized Power Allocation

Multi-player game where the players are the cells

Utility function Ui for cell i :

Ui =∑

k∈K(i)

∑n∈N

log (log (1 + σk,i ,n))

A Nash Equilibrium (NE) exists

Subgradient projection method

Centralized power allocation:η1 =

∑i∈I

∑k∈K(i)

∑n∈N

log (log (1 + σk,i ,n))

M. Yassin IRISA, Rennes, November 13, 2015 22 / 39

Page 46: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Decentralized Power Allocation Convergence9

Optimization variables: πi ,n

Cluster of seven adjacent cells

0 1000 2000 3000 4000 50000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

πi,n[W

]

π1,1π2,1π3,1π4,1π5,1π6,1π7,1

Figure 10: Optimization variables πi,1

0 1000 2000 3000 4000 5000

0.5

1

1.5

2

2.5

x 10−3

Number of Iterations

∆πi

∆π1

∆π2

∆π3

∆π4

∆π5

∆π6

∆π7

Figure 11: ∆πi versus number of iterations9M. Yassin et al. “Centralized versus Decentralized Multi-Cell Resource and Power Allocation for Multiuser

OFDMA Networks”. In: Submitted for publication in IEEE Trans. Wireless Commun. (2015).

M. Yassin IRISA, Rennes, November 13, 2015 23 / 39

Page 47: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Comparison with State-of-the-Art Approaches

Compared techniques:• Reuse-1, reuse-3, FFR, SFR, centralized, and decentralized

Reuse−1Reuse−3 FFR SFR Cent. Decent.0

1

2

3

4

5

6

7

System

Through

put[M

bit/s]

Figure 12: System throughput comparison

Reuse−1Reuse−3 FFR SFR Cent. Decent.0

0.2

0.4

0.6

0.8

1

1.2

1.4x 10

−6

Spectral

Efficien

cy[M

bit/s/H

z]Figure 13: Spectral efficiency comparison

The centralized power allocation outperforms the other approaches

Centralized approach ⇒ high processing load and high complexity

M. Yassin IRISA, Rennes, November 13, 2015 24 / 39

Page 48: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Overview

1 Introduction

2 ICIC Techniques Comparison

3 Centralized versus Decentralized ICIC

4 Autonomous ICIC

5 Cooperative ICIC

6 Conclusion

M. Yassin IRISA, Rennes, November 13, 2015 25 / 39

Page 49: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Autonomous Dynamic ICIC

Self-organized networks ⇒ less signaling messagesOvercome the limitations of static ICIC techniques• Adjust resource allocation between cell zones10

• No additional signaling load is generated

Initial resource and power allocation:

10M. Yassin et al. “Non-Cooperative Inter-Cell Interference Coordination Technique for IncreasingThroughput Fairness in LTE Networks”. In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

M. Yassin IRISA, Rennes, November 13, 2015 26 / 39

Page 50: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Autonomous Dynamic ICIC

Self-organized networks ⇒ less signaling messages

Overcome the limitations of static ICIC techniques• Adjust resource allocation between cell zones10

• No additional signaling load is generated

When BR UEs are unsatisfied:

10M. Yassin et al. “Non-Cooperative Inter-Cell Interference Coordination Technique for IncreasingThroughput Fairness in LTE Networks”. In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

M. Yassin IRISA, Rennes, November 13, 2015 26 / 39

Page 51: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Autonomous Dynamic ICIC

Self-organized networks ⇒ less signaling messages

Overcome the limitations of static ICIC techniques• Adjust resource allocation between cell zones10

• No additional signaling load is generated

When BR UEs are unsatisfied:

10M. Yassin et al. “Non-Cooperative Inter-Cell Interference Coordination Technique for IncreasingThroughput Fairness in LTE Networks”. In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

M. Yassin IRISA, Rennes, November 13, 2015 26 / 39

Page 52: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Autonomous Dynamic ICIC

Self-organized networks ⇒ less signaling messages

Overcome the limitations of static ICIC techniques• Adjust resource allocation between cell zones10

• No additional signaling load is generated

When GR UEs are unsatisfied:

10M. Yassin et al. “Non-Cooperative Inter-Cell Interference Coordination Technique for IncreasingThroughput Fairness in LTE Networks”. In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

M. Yassin IRISA, Rennes, November 13, 2015 26 / 39

Page 53: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Autonomous Dynamic ICIC

Self-organized networks ⇒ less signaling messages

Overcome the limitations of static ICIC techniques• Adjust resource allocation between cell zones10

• No additional signaling load is generated

When GR UEs are unsatisfied:

10M. Yassin et al. “Non-Cooperative Inter-Cell Interference Coordination Technique for IncreasingThroughput Fairness in LTE Networks”. In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

M. Yassin IRISA, Rennes, November 13, 2015 26 / 39

Page 54: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Autonomous ICIC Algorithm

1: Allocate RBs and power according to SFR2: Every T TTIs:3: if (RGR − RBR > ∆th) then4: Borrow the RB with the highest CQI from GR to BR zone5: else if (RBR − RGR > ∆th) then6: Borrow the RB with the lowest CQI from BR to GR zone7: else8: Keep the same RB distribution9: end if

M. Yassin IRISA, Rennes, November 13, 2015 27 / 39

Page 55: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Throughput Cumulative Distribution FunctionSeven adjacent cells with 10 active UEs per cell

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

Throughput [Mbit/s]

CDF

Reuse-1FFRSFRAdaptive ICICAutonomous ICIC

Figure 14: Throughput cumulative distribution function

Negative impact of single cell resource and power allocation11

Autonomous ICIC: lowest CDF for throughput less than 1 Mbit/s

11T.Q.S. Quek, Zhongding Lei, and Sumei Sun. “Adaptive Interference Coordination in Multi-Cell OFDMA

Systems”. In: IEEE 20th Int. Symp. Personal, Indoor and Mobile Radio Communications. 2009.

M. Yassin IRISA, Rennes, November 13, 2015 28 / 39

Page 56: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Fairness IndexJain’s fairness index:• J(R1, ...,RK ) =

(∑K

k=1 Rk )2

K .∑K

k=1 R2k

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

% of GR UEs

Fairnessindex

Reuse-1FFRSFRAdaptive ICICAutonomous ICIC

Figure 15: Fairness index versus UE distribution

FFR and SFR performance depends on UE distributionAutonomous ICIC shows the highest fairness index

M. Yassin IRISA, Rennes, November 13, 2015 29 / 39

Page 57: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Fairness IndexJain’s fairness index:• J(R1, ...,RK ) =

(∑K

k=1 Rk )2

K .∑K

k=1 R2k

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

% of GR UEs

Fairnessindex

Reuse-1FFRSFRAdaptive ICICAutonomous ICIC

Figure 15: Fairness index versus UE distribution

FFR and SFR performance depends on UE distributionAutonomous ICIC shows the highest fairness index

1K ≤ J(R1, ...,RK ) ≤ 1

M. Yassin IRISA, Rennes, November 13, 2015 29 / 39

Page 58: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Overview

1 Introduction

2 ICIC Techniques Comparison

3 Centralized versus Decentralized ICIC

4 Autonomous ICIC

5 Cooperative ICIC

6 Conclusion

M. Yassin IRISA, Rennes, November 13, 2015 30 / 39

Page 59: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative Resource and Power Allocation

X2 interface interconnects adjacent cells

Signaling messages concerning resource usage

Compromise between centralized and decentralized approaches

Figure 16: LTE/LTE-A system architecture

M. Yassin IRISA, Rennes, November 13, 2015 31 / 39

Page 60: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 61: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 62: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 63: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

Reply message:Power allocationUE throughput

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 64: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 65: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 66: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 67: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 68: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 69: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 70: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 71: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Cooperative ICICFirst phase (collaborative)• Request information about neighbors satisfaction• Send Stop messages to the neighbors• Adjust power allocation if needed• Send Release messages to the neighbors

Second phase (autonomous)• Locally adjust resource allocation between cell zones

M. Yassin IRISA, Rennes, November 13, 2015 32 / 39

Page 72: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

UE Satisfaction

Satisfaction function: Sk (t) = 1− exp(−Rk (t)RS

)

0 5 10 15 200

5

10

15

20

25

Nb of UEs per eNodeB

Unsatisfied

UEsat63%

Reuse-1FFRSFRAutonomous ICICCooperative ICIC

Figure 17: UE satisfaction versus network load

Percentage of unsatisfied UEs increases with network load

Cooperative ICIC: lowest percentage of unsatisfied UEs

M. Yassin IRISA, Rennes, November 13, 2015 33 / 39

Page 73: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Energy Efficiency

Crucial need for green networks

20 30 40 50 60 70 800.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

% of GR users

Energy

efficien

cy[M

bit/s/W

]

Reuse−1FFRSFRAdaptive ICICAutonomous ICICCooperative ICIC

Figure 18: Energy efficiency versus UE distribution

Performance comparable to SFR and autonomous ICIC

M. Yassin IRISA, Rennes, November 13, 2015 34 / 39

Page 74: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Overview

1 Introduction

2 ICIC Techniques Comparison

3 Centralized versus Decentralized ICIC

4 Autonomous ICIC

5 Cooperative ICIC

6 Conclusion

M. Yassin IRISA, Rennes, November 13, 2015 35 / 39

Page 75: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Summary

Resource and power allocation in wireless networks

Dense cellular networks with aggressive frequency reuse ⇒ ICI

Overview and classification of ICIC techniques• Cooperation, objectives, tools, technology• Quantitative comparisons

Centralized multi-cell joint resource and power allocation

Decentralized power allocation based on game theory

Autonomous and cooperative ICIC techniques

System level simulations and comparisons

M. Yassin IRISA, Rennes, November 13, 2015 36 / 39

Page 76: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Summary

Centralized versus decentralized ICIC• Centralized: optimal solution, high processing load, high complexity• Decentralized: near-optimal solution and lower complexity

Autonomous ICIC techniques• Efficient for self-organizing networks• Do not generate additional signaling messages• Improve static ICIC techniques performance

Cooperative ICIC techniques• Compromise between centralized and decentralized approaches• Make use of the signaling messages between adjacent cells

M. Yassin IRISA, Rennes, November 13, 2015 37 / 39

Page 77: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Short-Term Perspectives

Interference-aware heterogeneous wireless networks• Co-tier interference• Cross-tier interference

Enhanced ICIC for downlink/uplink imbalance problems• Downlink/uplink decoupling• Handover more UEs to the small cells

M. Yassin IRISA, Rennes, November 13, 2015 38 / 39

Page 78: Inter-Cell Interference Coordination in Wireless Networksvideos.rennes.inria.fr/soutenance-MohamadYassin/... · Inter-Cell Interference Coordination (ICIC) Negative impact of interference

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Long-Term Perspectives

Compromise between spectral efficiency and energy efficiency• Cannot be maximized simultaneously• Crucial need for future green networks

Practical implementation of ICIC algorithms• Limitations: latency, processing time, reliability• Functionality split between access and core networks

M. Yassin IRISA, Rennes, November 13, 2015 39 / 39