110
Institutt for kontinentalsokkelundersøkelser CONTINENTAL SHELF INSTITUTE, NORWAY Håkon Magnussons gt. 1 B • Postboks 1883 • 7001 Trondheim. Norway • Tlf. (07) 920611 Telex 55434 IKU N • Telegram «NORSHELF» • Telefax (07) 920924 (Aut) REG.N0. 84.127 ACCESSIBILITY Confidential REPORT TITLE/ TITTEL HYDROCARBON CHARACTERISATION OF WELL 3 1 / 5 - 2 . CLIENT/ OPPDRAGSGIVER _ ,_ „ Saga Pejpofeum fT.s."~" ~"~~ "- n-*« RESPONSIBLE SÉ?£NTtSTAPBQi5JEKTANSVARUG _ _ .. _ „ ^ Susanmh Betts' v & „•_. -_r 4? ;^ ,, „ ," a DATE/ OATO 5.12.84 05.1750.00/01/84 NO OF PAGES/ ANT SIDER 46 NO OF ENCLOSURES/ ANT BILAG SUMMARY/ SAMMENDRAG One oil and one gas sample from 31/5-2 were analysed. The oil (B-8116) is a mature biodegraded paraffinic oil. The gas (B-8971) associated with the oil is 80% methane and shows dep- letion of n-alkanes of carbon number above (relative to branched and cyclic compounds of similar molecular weight). KEY WORDS/STIKKORD 31/5-2 TROLL Hydrocarbon Characterisation 141/A/anl/l

Institutt for kontinentalsokkelundersøkelser CONTINENTAL ... · Institutt for kontinentalsokkelundersøkelser CONTINENTAL SHELF INSTITUTE, NORWAY Håkon Magnussons gt. 1 B • Postboks

Embed Size (px)

Citation preview

Institutt for kontinentalsokkelundersøkelserCONTINENTAL SHELF INSTITUTE, NORWAYHåkon Magnussons gt. 1 B • Postboks 1883 • 7001 Trondheim. Norway • Tlf. (07) 920611

Telex 55434 IKU N • Telegram «NORSHELF» • Telefax (07) 920924 (Aut)

REG.N0.84.127

ACCESSIBILITYConfidential

REPORT TITLE/ TITTEL

HYDROCARBON CHARACTERISATION OF WELL 3 1 / 5 - 2 .

CLIENT/ OPPDRAGSGIVER _ ,_ „ „

Saga Pejpofeum f T . s . " ~ " ~"~~ "- n - * «RESPONSIBLE SÉ?£NTtSTAPBQi5JEKTANSVARUG _ _ .. _ „ ^

Susanmh Betts' v & „•_. -_r4? ; ^ ,, „ ,"a

DATE/ OATO

5.12.84 05.1750.00/01/84

NO OF PAGES/ANT SIDER

46

NO OF ENCLOSURES/ANT BILAG

SUMMARY/ SAMMENDRAG

One oil and one gas sample from 31/5-2 were analysed.

The oil (B-8116) is a mature biodegraded paraffinic oil.

The gas (B-8971) associated with the oil is 80% methane and shows dep-letion of n-alkanes of carbon number above C» (relative to branchedand cyclic compounds of similar molecular weight).

KEY WORDS/STIKKORD31/5-2 TROLL

Hydrocarbon Characterisation

141/A/anl/l

- 2 -

CONTENTS

INTRODUCTION

Page

3

EXPERIMENTAL PROCEDURES

RESULTS

API gravity

Oil composition

Cp-Cg hydrocarbons

Gas analysis

Isotopic analysis

Gas chromatography results

GC-MS analysis of saturated steranes and terpanes

GC-MS analysis of aromatic hydrocarbons

7

7

7

7

7

7

8

10

11

CONCLUSION 12

TABLES

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Fraction boiling below 210 C.

Weight of oil fractions.

% composition of the oil.

C,-Cg hydrocarbons,yg and %.

Results of gas analysis.

Data from gas analysis.

Results of carbon isotopic analyses.

Sterane/triterpane molecular ratios (maturity),

Sterane/triterpane molecular ratios

(source and maturity).

13

14

15

16

19

20

29

30

31

FIGURES

Figure 1: Gas chromatogram Cp-Cg hydrocarbons.

Figure 2: Gas chromatogram of gas sample.

Figure 3: Saturated fraction gas chromatograms.

Figure 4: Branched/cyclic fraction gas chromatogram.

Figure 5: Aromatic fraction gas chromatogram.

Figure 6: Mass chromatograms - terpanes.

Figure 7: Mass chromatograms - steranes.

Figure 8: Mass chromatograms - aromatic hydrocarbons,

17

21

23

25

27

32

33

37

141/A/anl/2

- 3 -

INTRODUCTION

IKU was supplied with one oil and one gas sample from this well,the two samples together make up a representative reservoir fluid.

The following information on collection of the oil and gas samples wassupplied by GECO.

Flash of reservoir fluid to stock tank conditions

Flash conditionsGas oil ratioBo at 250 bargBo at bubble pointDensity of oil at 15 CMolecular weight of oilStandard conditions

-o250 barg, 67.6 C to atmosphere and 15 C.60.5 sm3/m3.1.158 m3/m3.1.170 m3/m3.

3894.4 kg/m251.for gas volumes = 15°C and 1 atm.for oil volumes = 15°C and atmospheric

pressure.

Saga supplied information on reservoir temperature (67.6°C) and pres-sure 156 barg.

The following analyses were carried out on the oil sample:

) - Measurement of API gravity of the oil.C2-Cg hydrocarbon characterisation.Measurement of the fraction boiling under 210°C.Fractionation of the fraction boiling over 210°C by MPLC (mediumpressure liquid chromatography).Molecular sieving of the saturated fraction into normal andbranched/cyclic al kanes.Gas chromatography of the saturated/branched and cyclic/aromaticfractions.GC-MS of saturated fraction (m/z 191, 217 and 218).GC-MS of aromatic fraction (m/z 231 and 253).6 C isotope analysis of saturated and aromatic hydrocarbon frac-tions.

141/A/anl/3

_ 4 -

EXPERIMENTAL PROCEDURES

Cp-Cg analysis

C4"C10 a n a l y s i s was carried out on a HP 5880 A gas chromatograph equip-ped with a 50m x 0.2mm (I.D.) fused silica column coated with OV-101.Helium was used as carrier gas at lml/min. The inlet split ratio was1:60. The temperature program was 35°C (5 min) - 8°C/min. - 200°C (2min.) which gave good resolution from C- upwards. Quantitation was car-ried out using the same standard gas as for C,-C5+ analysis.

Total orgSftjc carbon

Bulk samples were cra-sjied in a mortar. Aliquots of the samples were thenweighed into Leco crucibt&Sx.and treated three times with hot 10% HC1 toremove carbonate, and washed I^Mmes with distilled water to remove tra-ces of HC1. The crucibles were thenx|rt-aced on a hot plate and dried for24 hours. The total organic carbon (TOC)Content of the dried sampleswas determined using a Leco CR12 carbon analysers

Evaporation of the light components in fluid samples

Prior to chromatographic separation of oil/condensate samples, the frac-tions boiling below 210°C were removed by heating the samples to constantweight at 210°C is obtained. The heating is performed at atmosphericpressure.

The fraction of light components is determined as the weight differencebetween the original sample and the amount that is left after the heat-ing.

Chromatographic separation

The fraction of the oil boiling above 210 C was separated into saturatedfraction, aromatic fraction and non hydrocarbon fraction using a MPLCsystem with hexane as eluant (Radke et al., Anal. Chem., 1980). The vari-ous fractions were evaporated on a Buchi Rotavapor and transferred toglass vials and dried in stream of nitrogen.

141/A/anl/4

- 5 -

Molecular sieve adsorption

The sample containing 2mg of n-alkanes was dissolved in 35ml of cyclo-hexane and lgs of Molecular Sieve pellets (5Å) which had been activatedat 300°C in 24 hours, were added. This mixture was then refluzed forabout 24 hours. While the solution was still hot, the sieve pellets wereremoved from the solution by filtering. The solvent was then removed ona Buchi Rotavapor. GC analysis were performed on the samples, using thesame conditions as for the other GC analysis.

The normal al kanes were recovered from the Molecular Sieve pellets bydestruction of the pellets with hydrofluoric acid. The solution was ex-tracted with boric acid and hexan, and the solvent was then removed ona Buchi Rotavapor. GC analysis were performed on the samples, using thesame conditions as for the other GC analysis.

Gas chromatographic analysis

The C2-Cg hydrocarbons of the oil were determined on a Carlo ErbaFractovap GC. The column used was a 30m fused silica capillary columncoated with SE-54. The temperature program applied was 50°C (2min.) to180°C at 4°C/min.

The saturated, the branched/cyclic and the aromatic hydrocarbon frac-tions were each diluted with n-hexane and analysed on a HP 5730A. TheGC is equipped with a 15m OB-1 fused silica column and hydrogen (ca.2.5 ml/min.) is used as carrier gas. Injections are performed in splitmode (split ratio 1:10). The temperature program applied is 80°C (2 min.)to 280°C at 4°C/min.

The data processing for all the GC analyses was performed on a VG Mul-tichrom lab data system.

Gas chromatography - mass spectrometry (GC-MS)

GC-MS analyses were performed on a VG Micromass 7O-7OH GC-MS-DS system.The Varian Series 3700 GC was fitted with a fused silica 0V-1 capillarycolumn (30m x 0.3mm i.d.). Helium (0.7kg/cm ) was used as carrier gasand the injections were performed in split mode (1.5^1, split ratio 1:15).The GC oven was programmed from 70°C to 280°C at 4°C/min. after an ini-

141/A/anl/5

- 6 -

tial isothermal period of 2 minutes.

The saturated hydrocarbons were analysed in multiple ion mode (MID) at

a scan cycle time of approximately 2 sees. Full data collection was app-

lied for the aromatic hydrocarbons at a scan time of 1 sec/decade. The

mass spectrometer operated at 70eV electron energy and an ion source

temperature of 200°C. Data acquisition was done by VG data systems.

Peak identification was performed applying knowledge of elution patterns

in certain mass chromatograms. Calculation of peak ratios was done from

peak height in the appropriate mass chromatograms.

6 C isotope analysis

13The <$ C isotope analysis was performed by mass spectrometry at Institute

for Energy Technology (IFE) in Oslo according to their method. Their

reference value for the standard NBS-22 is -29.8.

Analyses carried out on the gas sample

Gas analysisCl"C10 a n a l y s i s was carried out on an HP 5880 gas chromatograph equip-

ped with a 50m x 0.2mm (I.D.) column fused silica column coated with 0V

101. Helium was used as a carrier gas at lml/min. The inlet split ratio

was 1:50. The temperature program was -10°C for 2mins., 10°C/min to 160°C,

160°C for 5 mins.

Quantitation was carried out using a standard gas containing methane,

ethane, propane, n-butane, n-pentane and n-hexane. In addition a natural

gas standard obtained from Norsk Hydro was used.

141/A/anl/6

- 7 -

RESULTS

API gravity

The specific gravity of B-8116 at 60°F = 0.8934

API0 gravity = 26.8°

This is a medium gravity oil. The gravity is probably higher now thanit was originally due to biodegradation and consequent loss of lighterhydrocarbons.

Fraction boiling below 210°C (see table 1)

Oil composition (see tables 2 and 3)

A biodegraded paraffinic oil.

Cp-Cg hydrocarbons

The distribution of C2-Cg hydrocarbons shows a similar trend to thatseen in the nC,g+ fraction. The n-alkanes have been depleted by biodegra-dation. Table 4 and figure 1 show the relative weights and percentageweights of C2-Cg compounds present in the sample. The light hydrocarbonratios used by Thompson, 1979 to estimate type of source and maturityare probably not valid for this sample because it is biodegraded. Inaddition to this it has not been possible to determine some of the neces-sary compounds, e.g. heptane.

Gas analysis

The results have been tabulated (table 5). A similar trend of depletionof n-alkanes is also seen in the gas sample (above C.). The iC,/nC. ratiois approximately 6.5 and iC5/nC5 is 4.8. A similar predominance of bran-ched pentanes over n-héxane, and branched hexanes over n-heptane is seen.

Isotopic analyses

The results (table 7) are rather unusual as it is normally the saturatedfraction that is the more depleted of the two. The difference is fairly

141/A/anl/8

- 8 -

large and hard to account for. The samples were analysed twice to checkbut with the same result.

Gas chromatography results

Saturated fractionThe low abundance of lower molecular weight alkanes (below C,g) and pre-dominance of isoprenoid alkanes suggests that the oil is biodegraded.The total alkane range is C,~ to C 3 8 with nC,g to nC,Q being present inthe greatest abundance. The pristane/nC,^ ratio is high, 2.15 but thisprobably indicates biodegradation rather than low maturity. The abun-dance of higher i.e. over C 2 Q alkanes is noteworthy. It is possible thatthe C 3 0 plus alkanes are derived from the biodegrading microorganismsthemselves. Another possibility is the presence of a high molecularweight additive although this seems unlikely and the absence of highermolecular weight compounds in the aromatic fraction chromatogram indi-cates that this is not the case. This range of alkanes is also seen insome of the immature source rock extracts from 31/5-2, e.g. from 1976m(B-226, p.68). Whether the abundance of high molecular weight alkanespersists to higher maturities in source rocks outside the area of thewell is not known.

Branched and cyclic alkanesThe chromatogram is dominated by isoprenoid alkanes which are ubiquitousin extracts and oils and therefore give little specific information onsource. The pristane/phytane ratio is fairly high 1.9 and is within therange to the ratio from the 31/5-2 rock extracts below 2000m (1.4-3.4).

Aromatic fractionThe chromatogram is dominated by methyl and dimethyl naphthalenes withrelatively little higher molecular weight material. The distribution ofthe methyl naphthalenes (i.e. with 2 methyl naphthalene dominant) andthe absence of high molecular weight material indicates that the oil ismature.

Molecular ratios from terpane and sterane mass chromatograms applied a£maturity and source characteristic parameters

Geochemical fossils or biological marker components are characteristicof the type of organic matter present at the time the sediments were

141/A/anl/9

- 9 -

deposited. The biological isomers of these components undergo changes

due to increased maturity in particular, but also to a certain degree

caused by migration and weathering processes.

Source characteristic parameters

In the m/z 191 mass chromatograms, representing terpanes, the hopanes

and moretanes are the major components in most extracts and oils. Of

the hopanes the C 2 7 and C2g-C35 homologs are ubiquitous, while the C ™

bisnorhopane is believed to be typical of certain types of source rocks.

This is also the case for the component, probably gammacerane, sometimes

seen to coelute with the 22S isomer of the C-, 17a(H)-hopanes (H). In

the sterane mass chromatograms, m/z 217 and m/z 218, the molecular weight

distribution of the C?7~^29 regular steranes is believed to be represen-

tative of the original input of organic matter. The highest molecular

weight compounds, the C 2 g steranes, represent organic matter of terres-

trial origin, while the lower molecular weight analogs originate from

more marine type environments.

Maturity dependant parameters

The biological isomers of the hopanes, the 17g(H), 21g(H)-hopanes, under-

go structural changes during the maturation process. The isomerisation

reactions are thought to be produced via the 17ø(H), 21a(H)-hopanes (more-

tanes) to the most stable 17a(H), 21g(H)-hopanes. At equilibrium 100%

of the 17a(H)-hopanes are seen. The ratio ag/aB+ga is used to describe

this reaction. In the extended hopanes (>C3,), the thermally stable S

configurations at C-22 become increasingly more abundant as compared to

the biological preferred R configurations at increased maturity level.

The equilibrium ratio is approximately 60% of the 22S configuration.

Another ratio that is known to change with maturity is the Tm/Ts

(Seifert et a!., 1978) of the C 2 7 hopanes. The maturable 18a(H)-tris-

norneohopane (Tm) is reduced in intensity relative to the more stable

17a(H)-trisnorhopane (Ts), causing the Tm/Ts to decrease at increased

maturity. This ratio is also believed to be source dependant, and this

should be born in mind when applying the ratio for maturity comparison.

The amount of tricyclic terpanes is also to a certain extent seen to be

maturity dependant.

141/A/anl/10

- 10 -

Two isomerisation reactions taking place in the steranes are most common-ly applied for maturity assignments from the m/z 217 mass chromatograms.The biologically preferred 14a(H), 17a(H)-isomers of the regular steranesis transformed to the thermally stable 14g(H), 17g(H)-steranes, the %ggapproaching 75% at equilibrium. An equilibrium concentration of 50% isseen of the stable S configuration at C-20 as opposed to the 100% ofthe biological 20R epimer (Mackenzie et al., 1980). The abundance ofrearranged steranes increased with increasingly maturity.

One of the reactions taking place at an early stage of diagenesis isthe aromatisation of steranes, leading to the formation of mono- andtri-aromatic analogs. This process is measured as the abundance of tri-aromatic relative to mono-aromatic compounds (% tri/tri + mono) in them/z 231 and 253 mass chromatograms, respectively. In addition the degree

of side chain cracking, as % C 2 Q / C 2 6 27 and °^C21^C28 29 r e sP e c t l v e ly»

is applied. These cracking processes are also taking place during earlydiagenesis, and are used for maturity assignment together with the pre-viously mentioned ratios.

Migration and weathering

The effect on the geochemical fossils of migration and weathering, isless apparent than the maturity induced changes. Migration is believedto cause an increase in the relative amounts of rearranged and 14g(H),17e(H) regular steranes (Seifert and Moldowan, 1978, 1981). Severe bio-logical alteration leads to the formation of desmethyl-hopanes (Seifertand Moldowan, 1979).

GC-MS analysis of saturated steranes and terpanes

The oil sample was analysed for the relative distribution of steranes(m/z 217, 218) and terpanes (m/z 191). Mass chromatograms and tabulateddata are presented in Figures 6 and 7 and Tables 8 and 9, respectively.

The oil is seen to contain biomarkers of high maturity, all the isomeri-sation reactions having reached equilibrium. A certain content of bisnor-hopane (Z in m/z 191) is seen in the sample. This does not, however,necessarily mean that the source rock for this oil contains any bisnor-hopane, since it is known that the relative abundance of this compoundis also dependant on maturity. The relative molecular weight distribu-

141/A/anl/ll

- 11 -

tion of regular steranes, indicates a high proportion of terrestrialinput from the high abundance of C2g steranes.

GC-MS analysis of aromatic hydrocarbons

Total ion and mass chromatograms representing aromatic hydrocarbons arepresented in Figure 8, while maturity ratios from aromatic steranes arepresented in Tables 8 and 9.

This oil sample contains a high proportion of low molecular weight naph-thalenes compared to phenanthrenes. Front end biased distribution ofalkylated mono-aromatic hydrocarbons is seen, and the relatively lowabundance of aromatic steranes suggests mature hydrocarbons.

141/A/anl/12

- 12 -

CONCLUSION

From the analyses carried out the sample provided appears to be a maturebiodegraded paraffinic oil.

The associated gas sample is largely methane (80%) and is noticeablydepleted in C,+ n-alkanes also probably the effect of biodegradation.Some of the methane may be bacterial in origin but as isotopic study ofthe gas was not requested the relative proportions of biogenic v.s. ther-mogenic methane cannot be established.

141/A/anl/13

- 13 -

Table 1. Fraction boiling below 210°C.

Oil 31/5-2

Starting wt. (g) after evaporation (g) wt loss (mg)

2.0801 1.8713 84.0

boiling under 210°C = 4%

141/A/anl/14

- 14 -

T A B L E

Relative weight of the main fractions in the oil sample

1 IKU-No : DEPTHI ;I : (M)

I s

II B Si 16I Oljeproeve

i Crude: Oil

s (mg)•

i 2080.1

>210°

(mg)

1371.3

, Sat,

(mg)

• 829.8

Aro.

(mg)

423.0 •

HC

(mg)

1252.8

Nort 3HC i

t

(mg) :

618.5 :t

ITOC I

I

„ -<.«.« w ,.,„ m •«»• ^

0«0O II

DATE 5 1 - 1 1 - 8 4 .

- 15 -

T A B L E s 3.

Percentage composition of the main fractions in the oil sample

UliU

IKU-No DEPTH

(m)

I1 8 8116I Oljeproeve

Sat

EOM

44.3

Aro

EOM

HC s BAT ; Non HC s HC I

EOM : Aro ; EOM s Non HC 1s I

66.9 196,2! I

33,1 5 202.6 Ir, I

DATE s 1 - 11 - S4-

- 16 -

Table 4. C2-Cg hydrocarbons,pg and %.

B-811631/5-2 C2 to Cg hydrocarbons

p = 0.8934

M I

C2C3

MC3 0.48 0.18

nC4 0.30 0.11

MC4 0.88 0.33

NC5 0.32 0.12

CyC5 + 2.3DMC4 1.08 0.40

2MCg 1.16 0.43

3MCg 0.88 0.33

nCg 2.72 1.01

MCyCg 3.94 1.47benzeneCyCg 6.16 2.30

2MC62.3DMC5 0.73 0.27

3MCg 1.26 0.47

DMCyC5 (1.3, 1.2) 3.23 1.20

nC7

MCyCg 12.45 4.65

toluene 0.44 0.16

2MC, 0.40 0.14

3MC? 0.79 0.29

DMCyCg (1.2) 2.47 0.92

nCg 1.55 0.58

M/P-xylene 4.01 1.50

0-xylene

141/A/anl/15

- 17 -

FIGURE 1

Gas chromatogram, C2-Cg hydrocarbons

/A /•,„! /I C

250.00 -

200.00 -

3 ISO. 00 - iE

>

W Jz.\iih—i—«

100.00 -

SO.00 -

0*00 -

flnalysis JB8116

i

. . • | .

t1

1j

UC

|

• "

s, 1,1

II1il

uud 0? c*uucr

N

8h I1

8c

1 11 •

i

8

HJ• K

B-8116,0.3ul 31/S-2

i»u9u1

8S

!i

!cI

111 > •

1—\I *

1 H Inlluyui—i• i i i

•aX

5 ^ug

i I I K1 1 1 ^g C

JUJLjlUjvit

"• i « > ' •

i

i ' < •' '

1 1I . . i .1 L i t 1 X t II II H i

• i • • • i • • •

00

2.00 4.00 6.00 8.00 10.00 12.00RETENTION TIME (MINUTES)

14.00 16.00

- 19 -

Table 5. Results of gas analysis 31/5-2

B-8971

Percentage composition

80.7

8.1

U3

iC,

nCz

iC c

2.3DMeC,

1.5

1.5

0.23

0.22

0.0460.0240.049

=6.5

iC5/nC5 = 4.8

CyC5

2-MeC

3-MeC

MeCyC52.4-DMeCECyC6

MeCyC

0.039

0.077

0.041

0.009

0.10

0.01

0.10

0.0002

0.069

141/A/anl/17

- 20 -

Table 6. Data from gas analysis.

GVs $'TOP SLJh

5S39ri *f>MU?.L INJECTION 8 1 1 : 3 1 HOV 22? 1984

ST

3.383.389.383.143.283. 744.545,195.487.36"'.323-36.9.699.769.98

19.3113.8111.5111.5911.6811.3312.4112.5312.7212.7912.3912.9613.1713.2513.331 •*. 2 ~1-*. 53i*. 7114.9013. 6715.7216.1317.32

"OTRL RREn•"ULTIPLIER

fiRE*

123777.3324 933.09

7362. i3'35': 1.451501.21

151.731922.87397.66£16.95<r33.l5349.. 36£.36.91369.93

49.29893.3939.6ø61.9129.46

969.1515.7334.6675. 1363.5333.4691.91

140.22S18.41

34. 4122.8417.4334,2417.6315.9212.44

« 175322.S9—» f""• A

T Y P E

SVV365SV8B3BBVEt?BBSVVVVB535BBVVVVVVB5 VVVV VVVVVV 3SVVVV 3SBV 33BSVV VV 3?vVB

W I D T H

3*3ELI^E *THRESHOLD §PEflK HIDTH

3.339.33ii. zsl

3. 039. 333. 33 ie. 339.8313.0333,0333. 3359.339.3339.8333. 3313.035

3. 8433.0343. 038

3. 3353. 3343.940. 334

3.040.8490. 0373. 3363.036

S.3373.339

HEIGHT

STRR7 RUK =STFiftT RUH

§ 3TRRT RUH65149.6314330.80-

5279.93312.7777.77

999.20£91.75i 3 i . e s£07.81155.35324.56173»4i39. 1129.67

393.7736.4522.639.34

431.207.59

33.1134.5529.7733.8339.973.3.80

£39.6214.659.347.53

14.437. 466. 654.96

SriSfcLIHE

69.35= 3

= 3.3463. 9373.23i Ki. a. i79,8279.497-3.4779. 13

• 79.3679.2370.2376.3779.6373.3973.2179.1379.2279.2579.3179.2373.2673.3379.3179.3279.3479.2470.3179.3379. 2978.3779. 1773. 1373. 1779. 1"79. 1973.33

.RREri •;

70.69014.237

"•. -i - 65.4480.35b0.9371. S370.227e. 1240.24B0. 199S.39E0.2118.9470.923B.511— «. f— •

t i • - •-) i .

•0.3350.0128.553B.øØ?

0.3430.3390.9480.052

0.3530. 3200.9130.9J.0£5.9203. S i B9.30?0.987

- 21 -

FIGURE 2

Gas chromatogram of gas sample

141/A/anl/18

- 22 -

RU ViiLVE. 2 * QN

OVEN TEMP 1 FIHfiL TIME * 38.3© MIN

OV" STflRT PRGi* RftTE i

• R T V E # T T H •+ 2 t7 11C5

_ 5..:6 2.2DiMeC4

-

r19

1 2 .

• !'"i 3 1

. £ 1 nCg

41

1 1 . 59 IWeCyC5

1 2 . 5 3 CyC6

14.23 MeCyCg

16-ie

17.02

OV" STflRT FINfiL TIME 1

Gas chromatagram (C^ - Cjg)

31/5 - 2 gas sample B 8971

3 . OD 3. i 4 Cf

- 23 -

FIGURE 3

Saturated fraction gas chromatograms

a - ^17

b - pristanec - phytanenC - n-alkane of that

carbon number

141/A/anl/19

5 00 —

in

00\+}

ao\

ncD

r-n» •

CM

+•>id

TJO

10IDi.

n_iLLJ

zzccIuHO

)QL

(EHtEa

o,_

XoPQ

•P

oa.D

1—

mo

01

«t

0a

ro

ect

c

"-

01•—

£id

01

01CD* -

03PQOinr-• •

us• • —

C4

.—0cor

£

£

X0

I

CM1

in\

CE01

CO' -

00PQ• •

©E0Z0)

a.£0

01

B 8116

31/5 - 2 Oil

Saturated hydrocarbons

400 —

3 00 —

1X5

0 00 ' I 11 I II 111 11 I 111 IM 11 11 I I 11 II H 1111 I I I I I I I I I 1 I I I 1 1 I I I I I I I I I T i I I I I I I I I T 1

34 39 44 49

T i r i 111 T 111111111111111111 f 1111111 f

54 59 64 89

2 00 —

- 25 -

FIGURE 4

Branched and cyclic al kanes gas chromatogram

Pr - pristane

Ph - phytaneiso 16 Isoprenoid alkanes with 16 and 18

i so 18 carbon atoms respectively

Hl/A/anl/20.

Pr

(Sl

or»

c

E3

Xid

ro

•puo•nc

<- X

00N

uo\

co

10in

r-

+*ft)

-a<D

- l

2CCXu1

1 -o

1

a.ett -

a

Xo

PQ

•a.aR*U

Ul

M•p

a

0)—

Ert

01

n10^~

QDCDOinr-• -

«i

«i

>—

X)Car

(Sli

in\n

•v

u\

to

00

raU B

Ut£fl

<D,»—

a£(0

in

7 0 0 -

5-00-

400-

300-

200-

100-

&00-

iso 16I

ISO 1

B 811631/5 - 2 OilBranched/cyclic

Ph

11111 ii 111111111 ii 111111111 ii n 111 H 1

9 14 19 24

111 m 111 ii 111111111,11 n in in 111 m i 11 • 11 in ii ii 1111 t

29 34 39 44 49 54 59

111111 ii in 1111111

64 69

111 11111 11111111

74 79

- 27 -

FIGURE 5

Aromatic fraction gas chromatogram

N - naphthalene

MN - methyl naphthalenesDMN - dimethyl naphthalenesTMN - trimethyl naphthalenes

141/A/anl/21

rDpO

Xo

PQ

Co _i

UJzT Z

<E»J I I

U

•DPidD

O

a:a

m

cro

£

•• XM 10

ro

oo

•t- I

Ul N

Oj U l— \

£ n10 -cn o

<ra: -(0 U>

co cora cao • •mr- o• • £

idw ZM o

— Q.IO £C 10a: tn

300-

B 8116

31/5 - 2 Oil

Aromatic hydrocarbons

2-50 —

2-00 —

1-50-

100 —

0-50 —

OD

LrUU | r i ' | | | |

14 19 24 29 79

- 29 -

Table 7. Results of 6 C analyses on saturated and aromatic fractions

of 31/5-2 oil (B-8116).

Sat. (13$C °/oo) Arom. (136C °/oo)

-28.8 -31.1

141/A/anl/22

- 30 -

Table 8.

Molecular ratios calculated from terpaneand sterane mass chromatograms.Matur i ty r at i os.

[Eia

I I 1)1 2)1 3)1 4)1I KU No. I DEPTH I a8/aS +Ba I *22S I % ftft I &20S I

I (m) I I I ' ' I I

B8116 0 0.89 60.0' 73.9 54.5

1) E/E+F in m/z 191.2) % distribution between first and second

elution isomers of doublet U <m/z 191)3) 2(r+s)/(q+t+2(r+s)) in m/z 217.4) q/q+t in m/z 217.

I

I

- 31 -

Table 9.

Molecular ratios calculated from terpaneand sterane mass chromatograms.Source characteristic and maturity ratios

[Kill

I I 1) II I KU No. I DEPTH I Q/E

I I

2) ITm/Ts I

I

3) IX/E

4) Ia/a+ j I

I

5) IZ/E

B8116 0.09 0.84 0. 11 0.70 0.24

1) Relative abundance2) B/A in m/z 191.3) Relative abundance4) Relative abundance5) Relative abundance

of tricyclic terpanes(Q/E in m/z 191)

of unknown(X/E in m/z 191).of C27 rearranged steranes(a/a+j).of bi snorhopane(Z/E in m/z 191).

- 32 -

Figure

Mass chromatograms representing terpanes (m/z 191)

ABCDEFGH

IJ

K

LMZXP

QRST

T , 18a(H)-trisnorneohopaneT , 17a(H)-trisnorhopane

17a(H)-norhopane

17s(H)-normoretane

17a(H)-hopane

176(H)-tnoretane

17a(H)-homohopane (22S)

17a(H)-homohopane (22R)

+ unknown triterpane (gammacerane?)

17B(H)-homomoretane

17a(H)-bishomohopane (22S.22R)

17a(H)-trishomohopane (22S.22R)

17a(H)-tetrakishomohopane (22S.22R)

17a(H)-pentakishomohopané (22S.22R)

bisnorhopane

unknown triterpane

tricyclic terpane

tricyclic terpane

tricyclic terpane (17R.17S)

tetracyclic terpane

tricyclic terpane (17R.17S)

C27H46C27H46C29H50C29H50C30H52C30H52C31H54C31H54

C31H54C32H56C33H58C34H60C35H62C28H48C30H52C23H42C24H44C25H46C24H42C26H48

. (HI)(I,R=H)

(I,R=C2H5)

(II,R=C2H5)

(I,R=C3H7)

(II,R=C3H7)

(I,R=C4H9)(I,R=C4H9)

(II,R=C4H9)

(I,R=C5Hn)

(I.R-C6H13)

(I,R,=C7H15)

(I,R=C8H17)

(IV,R=C4H9)

(IV,R=C5Hn)

(IV,R=C6H13)

(V)(IV,R=C7H15)

I I I

- 33 -

Figure 7.

Mass chromatograms representing steranes (m/z 217 and 218)

a 13B(H),17a(H)-diasterane (20S)b 13B(H),17a(H)-diasterane (2UR)c 13a(H),17B(H)-diasterane (20S)d 13a(H),17B(H)-diasterane (20R)e 136(H),17a(H}-diasterane (20S)f 13B(H),17ci(H)-diasterane ^OR)g 13u(H),17B(H)-diasterane (2OS)

+ 14a(H),17u(H)-sterane (2OS)h 13B(H),17a(H)-diasterane (2OS)

+ 14B(H),176(H)-sterane (2OR)i 14e(H),17B(H)-sterane (2US)

+ 13a(H),176(H)-diasterane (2OR)j 14u(H),17a(H)-sterane (2OR)k 13B(H),17a(H)-diasterane (2OR)1 13a(H),17B(H)-diasterane (2OS)in 14a(H),17u(H)-sterane (2OS)n 13u(H),17e(H)-diasterane (2OR)

+ 14B (H),176 (H)-sterane (20R)o 148(H),176(H)-sterane (20S)p 14u(H),17a(H)-sterane (20R)q 14a(H),17a(H)-sterane (20S)r 14B(H),17B(H)-sterane (2OR)

+ unknown steranes 14B(H),17B(H)-sterane (20S)t 14B(H),17e(H)-sterane (20R)u 5a(H)-steranev 5a(H)-sterane

IKU

C27H48C27H48'C27H48C27H48C28H50C28H50C28H50C27H48C29H52C27H48C27H48C28H50C27H48C29H52C29H52C28H50C29H52C28H50C28K50C28Hb0C29H52C29H52

C29H52C29H52C..,H.,,ci 36

C22H38

UIItR=H)

(III,R=H)(IV,R=H)

(IV.R-H)(III,R=CH3)

(III,R=CH3)(IV,R=CH3)

(l.R-H)

(III,R=C2H5)

(II.R-H)(II.R-H)

(IV,R=CH3)

(I,R=H)(III,R=C2H5)

(III,R=C2H5)

(I,R=CH3)

(III,R=C2,H5)(II,R=CH3)

(II,R=CH3)

(I,R=CH,)\ * * T/

(I,R=C2H5)

(II,R=C2H5)

(II,R=C2H5)

(I,R=C2H5)

(V,R=C.,HC)(IV,R=C3H7)

I I I

- 34 - I KUB8116SRT 191.1888 01 II Sl

28.

Norr 5435

m/z 191B 8116OilWell 3 1 / 5 - 2

24=88 28 88 32=88 36=88 48=88 44=88 48=88 52=

- 35 - I KUB811SSRT 217.1888 61 II Sl

Nor* 1434

m/z217B 8116OilWell 3 1 / 5 - 2

24=88

- 36 - I KUG8116SRT 218.1888 61 II Sl

188.

28.

for* 1164

m/z218B 8116OilWell 3 1 / 5 - 2

24=88 28=88 32=88 36=88 48=88 44=

- 37 -

FIGURE 8

Mass chromatograms of aromatic hydrocarbons

TIC - total ion chromatogramsm/z 92,106 - monoaromatic hydrocarbonsm/z 142,156,170 - alkylated naphthalenesm/z 178,192,206 - alkylated phenanthrenesm/z 184,198,212 - alkylated dibenzothiophenesm/z 231 - triaromatic steranesm/z 253 - monoaromatic steranesm/z 166,180 - fluorensm/z 202 - pyrene, fluoranthen

141/A/anl/23

- 38 - I KUB8H6RR #1-E4ea Bl TIC

TICB 8116OilWell 31 /5-2

1888 1288 1488 1688B8116RR 11-2488 01=92

m/z92B 8116OilWell 31/5 - 2

IHPB: 17128888:

2888 2288 2488IHPC= 2993481

2288 2488

- 39 - I KUB8116RR I1-24B8 0 M 8 6

1HL B61

28.

m/z106B 8116OilWell 31/6-2

IHP3395981

1288 1488 1688 1888 2888 2288 2488

MN DMN

- 40 -TWIN I KU

BOilBfiR 1288-1888 F M 4 8 Gl 156 HI=178188,

68.

20.

ere

36

li

m/z 142,156,170B 8116

OilWell 3 1 / 5 - 2

IHPF=G-

555138$3518388S18837881

j KM ft

488 588

- 41 -

MP DMPI KU

i rB811GRR IB88-1 II 178 J1192 K1E86

863m/z 178,192,206 IHPB8116 I : 1597588!0" J: 362888,Well 3 1 / 5 - 2 K: g5 5 3 4 g i

- 42 - I KUB8I18RR 1688-1488 LI=184

188, 689

28.

788 888B8116RR «688-1488 H M 9 8

783

m/z 184B 8116

OilWell 31/5 - 2

IHPL- 476530:

1188 1288 1388

m/z 198B 8116OilWell 31/5 - 2

1488IHPfl: 232B88&

- 43 - I KUB3HGRR 1688-1488 Ni-212 m/z212

B 8116OilWell 31/5-2

IHP!•• 149258!

- 44 - I KUB8116RR 11888-2499 01 231

m/z 231B 8116OilWell 3 1 / 5 - 2

IHP0= 451188

B8116RR #1888-2489 0! 2531276

m/z 253B 8116

OilWell 3 1 / 5 - 2

IHP48S68C

- 45 - I KUB8116RR 1388-1688 Ri 166

5188, m/z 166B 8116OilWell 3 1 / 5 - 2

IHPR: 587838C

797

B55348E

m/z 180B 8116OilWell 31/5 - 2

1584 1592

- 46 - I KUB8il6fiR 1388-1888 TI=282

68.

28.

TB

1877

rn/z 202B 8116OilWell 31/5 - 2

1321

IHP99588?

1288 1488 1688

Visual Kerogen AnalysisTABLE NO.: 9.WELL NO.: 3 1 /5 -2

SampleDepth

(m)Composition of residue Particle

sizePreservation

palynomorphsThermal maturation

indexRemarks

B-580

B-583

B-587

B-591

2052 C,W,WR!,Cut,S,P/Am,Cy

Algal

good

2079 W,Cut,C,SsP/Am F-M-L good 1/1+, 2/2+

2115 Cut,P,S,W,WR!/Am F-M-L good 1/1+, 2-/2, 2

2151 Cut,W,P,S,WR!/Am,Cy F-M-L good 1/1+

Abundant pyritic, coalyfragments and sapropelisedwoody fragments Botryococcus.Variable colouring.

Abundant structured woodymaterial and variably colouredspores.

Screening enriches particularlywoody structured materialChasmatosporites.

Tyttodiscus, Tasmanites,Nanrioceratopsis gracilis.

CTlen

ABBREVATIONS

Am AmorphousHe HerbaceousCut Cuticles

Cy Cysts, algaeP Pollen grainsS Spores

W Woody materialC CoalR! Reworked

F FineM MediumL Large

114/D/jbl/5

Visual Kerogen AnalysisTABLE NO.: 9.WELL NO.: 3 1 / 5 " 2

Sample

B-595

B-598

Depth(m)

2187

2214

Composition of residue

C,WsCut,P,S/Am,Cy

C,Cut,P,S,W/Am

Particlesize

F-M-L

Preservationpalynomorphs

good

good

Thermal maturationindex

1/1+

1+/2- , 2-

Remarks

Callialasporites present in theass. described above.

Pyritic residue, coalyfragments. Large very well pre-served cuticles.

O-lCTi

ABBREVATIONS

Am AmorphousHe HerbaceousCut Cuticles

Cy Cysts, algaeP Pollen grainsS Spores

W Woody materialC CoalR! Reworked

F FineM MediumL Large

114/D/jbl/6

- 67 -

Saturated

abcnC15XSq

FIGURE 1

hydrocarbon gas chromatograms

= nC= pristane= phytane

etc. = n-alkane of that number= contaminants= squalane

115/t/ah/4

CMn

It)c

O)

M

£c

• • x«•J It)

co

oCO

TCD\X!0)

u_\i n

co

CDn. .T

"D

+>idIDs_

O

d

_ lLd

~z.CCIOi

'o

'o_oc

ora

en

•«-

Xom

+>o*--0_

(D

idU01

id+>At

a

0),—

£«I01

toCDCMCMfflCDCD

• •

«

^ ~ -

0c

t r

oa:

i

Ul\T—n

a:01

CDCMCM

i

£

z

.—a.e«01

1000H

800-

600 —

4 00 —

2 00 —

000—4

nC20B2261476 - 1485 m

nC25

00

• I "

14 19 24

111 il 1111 11111 il 111 TTTTTTTTTTTTTTTTTTTTTTi

29 34 39 44 49 54 59 64

TJTT

69

Tjn74

II I I I I I

01oo

CD\

©

\i n^~

o

re•sr

^-

+>A

<a

0)

o

n

ILU

tEiu•

i -o

10_

CE\-CEa

CE

O

*~

X0

m

O*—0-

•—mu01

i\

«1

a

zco

oa)c

0)r ^

Q .

Ei t )

01

inCD(M(MCQCDCD

• •

Vt•w-

Vi

.—tocCE

IT)

CCD

S

sX

oCE

i

if)\^_01

1 -CEinCDCM(SI1

0)• •

E10ZL

ai•—Q.

em0)

700—1

600 —

5 0 0 -

400 —

3 0 0 -

2 0 0 -

i 00-

0 00-

cI

B2281494 -1503 m

nC25en

I I I B I I I I I I I I I I I I I

4 9 14 19 24

l l f l l l l l l l l l l l l 111111111111 i n 11 i l i f i i i t i i i 11111 i i i i i i i i i f i i r i n r | i i i i i i i i i i

34 39 44 4 9 54 59 64 69

m

co\

mu.\i n

co

CD

. .•srY —

•»->

n*

730)+>id0)

O

n1

U i

zzCEIo1

h-o_10_

CEHCEa2CEQ:

o

X

oPQ

^>0

.—

a.• —

ido

U)

Al

id

a

co

•p

oID

Ct-H

^~

0)

tnonCslPCD

cn--wm>IT)

cCE

IT)

c

W

£3£

Xid

E:

aCE

\

HCE(X)

OCO(\J

1

m--ID£id

Z

ID, .—

Q.£SO

16 00-

14 0 0 -

1200-

10 0 0 -

8 00-

8 0 0 -

4 00-

2 0 0 -

0 00—4

B2301512-21 m

nC25

nC20

Nl^^I I I I I I I I I 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r i 1 1 T • • i i i i i i r r i i i i i i i i i i i i 1 1 1 1 1 1 I I I I I I I I i n i i i i i i i t i i i r i i i i i i i i i i i i i r r » i i i i i i i i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 19 24 29 34 39 44 49 54 59 64 63

en

in

CO\

LL.

\i nv_

co

_.

~-p

T30).prO<u

o

nI

UJ

~y(LIUI

1 -o

10_

oct -cca

OC

q-o

x -

Xo

O

0_

0)»»idOtnid-pid

a

*-

co

uID

J

cM

4)—

Eid

tn

tn00m(aCDCDr—. .

-—

^

it)

c(T

idCCD

E3£

Pcc

1

Ul\

H0Ltn

CDi ni

CQHD

a)EidZ

.—Q.Eid

tn

5 00 —

400 —

3 00 —

2 0 0 -

1 00 —

B5812052 - 2061 m

nC25

0 0 0 ' i [ 1 1 I I 1 1 1 1 1 j 1 1 I I 1 1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 I I I I H 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 j 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 4 1 9 2 4 2 9 3 4 3 9 4 4 4 9 5 4 5 9 6 4 6 9 74 79

eniflto

in

CD\

IDU_\i n

co

x—

i n

x—

M

T3O

10ID£_

U

co

iLUZzCEIo1

t -o

I0 .

ocHCEa

CE

4 -O

<-

Xom

•»->

0.—0_

mp _

idO

01

jQ

id

a

*-

CO

o01

• — >

cM

•—

eid

01

*-01n00i nCQGO01Y—

. .

w• » -

tt

(—id

cCE

idCCD

W

£

E

X10

aCE,_

Ul\

d

CE01

COCDi n

i

PQ- •

ID£id

ZID

.—aEid

01

5 00 —

400 —

300-

200 —

1 00 —

0 00—«T

nC253 5832070 - 79 m

I

ro

I14

' I 1 1

19

|i i

24 29 34

i i i i i i i i i i i i i i t i i

39 44" " I "

49

i|-n

54 59

11111111 n

64' I 1 1

69

r i i i M i "

(Mcnenn

i rCD\Slm

LL.

\

in

co

IDn.»

v—

id

TJ0>

+ i

id0)

O

m

_JL J

zIo1

oi1

D_

ccl -tEa3a:et

v—

t -o

• « -

Xoro

• p

o.—0-

•—id

oU)id^>

id

a

Co

• p

o0)

c

.—£LEfl)01

tnCDCDi nmcaCD

. .

(9•*-

w> •

id

cCC

i d

CD)

(4

E

£

Xm

OCC

v -

1

UT\

CO" I .

HCCtnCDCDt n

1

> •

£Id

z

,—CL£id

tn

22 00 —

20 00 —

18 00 —

1 6 0 0 -

1 4 0 0 -

1 2 0 0 -

10 DO

S' 00

6 0 0 -

400 —

200 —

0 00—H

B 5882115-2124 m

co

oin

CD\_QQ)

LL.

\i n

co

CD^-. .

•3-

•p

id

TJffi.pMIDS-

U

nl

LU

zz:ccIo1

h-o_JQ.

CC1 -(Ta

cc

_

o

Xo

CO

o

CL

a>it)otnid

idO

c0

•p

o9)

CI-H

^_

g).—

£id01

x—

Ul

mmCQCOen

w•(—

>,—idC

I

idCCD

(4

£3£

Xid

acc

1

i n\^_CO

-s.

HCCin

CDi n

i

a.-ID£

a£id

to

s-oo—

500 —

4 00 —

300 —

2 0 0 -

100-

B5912142-2151 m

0 0 0 ' » ! • - _

4

11111111111111111111111111111111111II1111111111111111111111111111111111II111

9 14 19 2 4 2 9 3 4 3 9 4 4

11111II11111 I 11II11 11111 IIII 111 I 1111II 1111 1111II 111 1111 III II 11 I

4 9 5 4 5 9 6 4 6 9 7 4 ?9

CD\-Q0)

I I .

\t"

CM

C0

[\_

n..

id

- 34)

id0)

O

CO

JUJ22(EX

o1

1—o

1

a.

a:t -

cca3

a:Di

o

X0

cn

• P

0.—

a.

,—•dUtn

i t )^ >

A)

a

• « -

co

o0)—3c

...

.—

£id

Ul

CDtoCDtnffl03cn

(9.,-(4

• —

ff)C

CE

IT)

c

£

Xid

O

i

Ul\^~n

h-CE01

tocni n

i

m• -

£•d

2

0),.—

a.£id

Ul

800 —

600 —

5 0 0 -

4 0 0 -

300 —

200-

1 00-

nC2Q

nC25

JMMM

B596Saturated Fraction2187-96m

nC29

cn

" i 1 " | • 1 1 • 1 1 1 1 1 1 • i

4 9 14

I | r I 1 I I I I I q M I 11 I i rT| Fl I M I FT! p 1 I I I rrTT^p I I 1TTT1 I | I I 1TTTTTTJ1 ITTTTTTT| n

19 24 29 34 39 44 49 54

1 1 1 1 1 1 1 1 1 1

59 64 6 9 ?4r79

inOco

c

£3

-r- £

-- X<+* idco•pu©

CO\

.a0)

U-\

m

co

oT

CO

o

id

"ao+>id

a>s_o

m

_ lUl2

oriui

h-o_1LL

CC1 -CCa2CCa:

X T -

Xo

CO

o

a.oid

uinid

id

a

a)r —

£id

in

toCD01

mmCDa i

. .

6)• ^ ~

W> ,

• —

atc

CC

aCC

,_i

u l\

CO

y-ccinCOCDi n

i

CQ. .

£idZ

ID

a.£id

in

3-50 H

300 H

2-50 H

2 00-H

1 50-

100 —

0-50 —

B5982205-2214 m

f > | i t it it | i h

14

^i i t hi

19

H 1 H # | k i i I > K | I N I l l t h 1

24 29 34 39

rpnT 111111 n rn

44 49 54 53 64" I " " 1 "

69

" ! "?4

I I II ! I I I I

79

- 11 -

FIGURE 2

Aromatic hydrocarbon gas chromatogratns

1 = naphthalene

2 = methyl naphthalenes3 = dimethyl naphthalenes4 = trimethyl naphthalenes5 = phenanthrene6 = methyl phenanthrenes

115/q/ah/5

CD\

\oCM

C

o

M

i_

o

<+•

o

X

o

CEI(J +>I O

t - —O 0__1LL ID

<r mh- O(r tna2 +CK a

in

in

in

cCD

CO

£

^ £t»i id

co

oa)

•r- O

i«) in— \

£ 00« -tn o

<rtr ~t- moi inin im mDO • •m«- a)-• £

A)W Z

— Q.«> £•z to

cc tn

1400H

12-OOH

IOOOH

800 H

6 00H

400 H

200 —\

B5912142-51mAromatic Fraction.

I

TO

0-00 ' 1111|p n r i t i l l 11

4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 19

11111 il i

24

i,.i

29 34

• I "39

1

44M " "

49

1 1 1 1 1 1 1 1 1 1 r i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i i n T I I

54 59 64 69

inn

CM

n

-»-CD\JQID

U-\OCM

Co

CMi n. .

CDO

+»at

T3«>

•P10COi_

O

T

_1LLJ

TZ.<rXo1

O_ l0_

o:\-<Ea

a:

o

• * -

X0

ca

- p

o

a.

*—id

oV)

to

it)

a

• « -

co+>u<aC

H

• e

0).

£•a01

tx10CMCM

mCDen~..M

>• —

A)

c

it)ECD

W

e

eXIt)

occ

1

U"J\

oQ:<r

• \

CDCMCM

1

CM. .

CO£A)

za>Q .

E«J

3000 —B2261476 - 85mAromatic Fraction

25-00 —

20 0 0 -

15 0 0 -

1000 —

5 0 0

0 00—4

to

I

01m01

00\oOj

u.\r-*—

cor-

. .n• « -

id

• a0)

• p•ita>s_

O

_JUl

zza:ioi

H-O

0_

CEt -a:a3CEa.

a

Xom

0•—0_

I )

id

o0)

a

»-

co

oil)

—)C

Si,—

£id

01

v -

CE00CMCMfflCDcn7]w

• ^ ~

(0

.—id

c

id

cO)

w

£

eXid

OCE

i

iTi\

t e -

rn

aa:CE

00CMCM1

m• •

EidZ

0)

£id

tn

16 00 —

1400 —

12 0 0 -

10 0 0 -

8 00 —

6 00-

400 —

2 00 —

B2281494-1503mAromatic Fraction

12

00o

froo ' i |n i

4

i | i i i i i i i i i i i i i i i i i i i i i i i i i i i M i i i i i r i f i

14 19 24 29 34 39 44

I J I I

49 54 59

I I I 1 I I I I I I 1 I I I I f I

64 69

1 1 1 1 1 1 1 1 1 1

?4

COCO

id

c

£3£

Xid

co

o01

CD\j a

mL-\r-

CO

oCM

-«—- • -

(U

id©

O

_1UlZz<EIo1

HO

•1

L.CE1 -a:a3CEa:

Xom

oD.

0).—idO01

id

+>id

a

.—

£id

Hi

v—

CEO01CM

mCDcn

(4

w>.

id

c<E

1UT\

01"S.

oa:CE

onCM1

PQ. .

£id

Z

0)

a.£id

12 00H

B2301512-21mAromatic Fraction

IOOOH

800 —

I00

600 —

400 —

200 —

IT)

c

3•r- £-• X<-u id

co

•po

CO\

S)1,\tfl

Co

• •

m

A)

T30)

IT)

i .

u

_JUl

zzcriuiHO

|0.

cc^-CEa3CCQi

Xom

-po.—

ID.—

IT)O

inid

IT)

Q

T —

a •

. —

Q_

£100)

cnCOin

CO

cnmm

IA-•»«4

w—

toccc

ocn*~in\

n.

oCK(E

COUT1

m..

e10

z

•—£

to

B5812052-61mAromatic Fraction

600-

5 0 0 -

4 00 —

3 00 —

2 00 —

1 00 —

111

4

i i i i i i i i i i i i i i T i i i i i i i i i i i i i i i i i n m i m i j i I I I I M I M i

9 14 19 24 29 34

" " I 1 " I39 44

i n i i i i i i i i i i i i i i f i i i i i i i i i i i i i i i

49 54 59 64' " I '

69

1111111 n

79

roto

co\Sl0)u_\i^-

co

CDi n

r-o+>id

T3o>+>id0)

o

•sr

_ lUJ

zzCEIu1

1 -o

10.

a't -CEO

2(EOi

4-O

""

X0m

•p0

.—0_

0).—id

otn

•pid

a

id

cO)

6)

E

r- E

- • Xc*i id

s :co

+>oHI

cn

a:

i

a) in— \Q.T-E nid *cn o

a:CE nCO CO

CD inin iffl mCD - •01

• • Eid

W Z-.-W 0)> . —— Q.id EC idCC 0)

B5832070 - 79mAromatic HC's

00CO

4 0 0 —

2 0 0

0 0 0

omCM

CO

OD\

<au.\

Co

CD• ^ -

. .

in

at

-a-pta01

o

1LJ

CCIo1H-O

)0_

<ri -aca3CEQi

t -O

r -

Xom

•p0—

a.

•—uU)

10

0

o

co

u0)

c

^ ™

. —

£it)

01

-,—CECDCDin

CDcn

..

co• r -

M>

,—AtcCE

10Crow

£38

Xit)

OCE

i

UT\

roOct(E

CDCDin

1

CQ• »

ai£

Z

0), • —

£

tn

B5882115-24mAromatic Fraction

3000 —

25 GO —

2000 —

1500-

10 0 0 -

5 0 0 -

000

00

114

119

rnrrj

24 29

rpn

34 39 44 r49

11111111111 1111111

54 59

I I 1 I I I I I t I I I I 1 1

64 69 74 79

00\_Q0)

1,

\

(M

Co

m. .n

id

T30)

idID

u

_JLLJ

zzCEIo1

Ho

I1LL

CEH-CEO

CE(X.

"~

H-O

XoPQ

^>o.—

<D• —

idUinid

id

a

'-..U4

CO

O

C

—o

eid0)

CECOcnmCQ00cn

(4• ^ ~

W>

•—idcCE

idC

w

£3E

Xid

2 :

oCE

i

i n\^~n

octCE

tocnIDi

• •

eidZ

0},.—

a.Eid

cn

B596Aromatic Fraction2187-96m

400 —

3-50-

3 0 0

2-50 —

200 —

1 5 0 -

1 00 —

0 5 0 -

0 0 0'I I4 3 14

rrrnyn ii 111 • • | • • i i j i i i n n r| i

19 24 29 34' " " I 1

39

I 1 I I I I I I I I I I I 1 I I 1 1 1 I I I | I I

44 49 54 59

I I I I t I t I I f I I t t I I I t I I 1 I t I I I t I I t I I t I I 1 I I

64 69 74 79

CD

m

T00\j a

U-\O(M

co

CDi n• -

CDO

•pit)

U

id0)j _

U

_JLJ

zzccIo1

h-o

1Q_

crCE

•3CE(K

<+•

o

X0

OQ

^>0

.—0_

0).—idotoid

idQ

• < -

. .

UJ

Co

oID

c1—1

111—

£id

01

CECDCDi n

CDen

..

w

^ i

idC

(T

id

c

£3£

Xid

PCE

i -

i

CM\

n

oCKCC

CDcnm

i

• •

4)£id

"7*

9)( i —

Q.£idto

600 —B5982205 - 14mAromatic Fraction

5 0 0 -

4 0 0 -

3 0 0 -

2 0 0

100 —

0 0 0

- 87 -

FIGURE 3

AF2 hydrocarbon chromatograms (FTP and FPD)

x = contaminant

P = phenanthreneMP = methyl phenanthreneDMP = dimethyl phenanthreneDBT = dibenzothiopheneMDBT = methyldibenzothiopheneDMDBT = dimethyidibenzothiophene

115/q/ah/6

B-228AF2FID{x8)( 1494 - 1503m )

XX X

JUJU*-

co03

B-228AF2 FPD ( x 8 )(1494-1503m)

DBT

, L k

MPil

B-230AF2FID(x16)( 1512-1521m)

B-230AF2 FPD ( x 8 )( 1512-1521m)

00

DBT MDBT

1

DMDBT

382

DBT

MP

T

XB - 580 - 81AF2FID(x16)( 2043 - 2061 m)

DBT DMDBT

2 3

B - 580 - 81AF2 FPD ( x 8 ){ 2043-2061 m)

CD

I

B - 582 - 83AF2FID(x8)( 2061 - 2079m )

B - 582 - 83AF2 FPD ( x 8 )( 2061 - 2079 m )

B-591AF2FID{x16)(2142-2151m)

CD

B - 591AF2 FPD ( x 8 )(2142-2151m)

B-598AF2 FID (x 16)( 2205 - 2214m )

B-598AF2 FPD ( x 8 )( 2205 - 2214m )

- 94 -

FIGURE 4

Pyroiysis-gc chromatograms

115/q/ah/7

B 580/812052761m

C21

JJULuC25

UHAAWU

enl

B5822070m

I

C7i

1 C 8 2

B2321Core1516.35m

I

to

B23201509.40m

I

00

1 C 8 2

B23191506.40m

I

10

1 C 8 2

B2301521m

O

I

B2281503m

i

CD

1

B2261485m

CD

ro

B 586 + 882124m

B5912151m

CD-F*

c1 7

C21

C25

B5952187m

CDCXI

B5962200m

I

CD

I

B5982214m

'17

UJLJAW

- 108 -

FIGURE 5

VITRINITE REFLECTANCE HISTOGRAMS

Key:- A = Grey-black-brown claystone.

Lower case letter is used when

there is some uncertainty about whether

the value is representative.

PP = Primary population

Y = Relevant population

considered reasonably

representative.

N = Not representative (caving,

reworked, contaminant, drilling

effects).

L0W+ HIGH = Population limits

VAL. = Number of measurements in that

population.

Lithology cross-reference table

A = Cist, gy

B = Cist, dk gy

C = Cist, gn

D = Cist, bn

E = Cist, rd

F = Cist. calc.

G = Cist. carb.

H = Shale

I = Sandstone

J = Limestone

K = Coal

L = Lignite

M = Carbargillite

N = Siltstone

0 = Bit

P = X

U = Severely liptinite stained

a,b etc. = same lithology as above but value not included in any

population, possibly because suspected caving, reworking, contamination

or other erroneous recordings.

115/q/ah/8

- 09IKU# B 130 530.OM 31 /5 - i

I •14-1

I12-1

!10-1

I8-I

I6-1

I4 - 1 i

I v "2 - i

I0 | , | • 1 1 ^ I • .— • I I I . . ..—. -•••• n l - U.I.i I.I.I i i . i i • • • • • • • • l l l l - — . J . . I - -I

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIBH LIT #VAL MEAN STDVOVERALL 0 0.00 0.00

ORDERED VALUES FOLLOW:

TK!I# R 147 7nn.HM rX1/"=»-1 - 110 -

14-!

m-

A -

4 -

A f H

n.nn n.1?1^ n.=in n.7s 1 .nn 1 .^s 1 . ^n 1.7=5 ?.nn

PP I OUI HTRH I TT ttUAl MFAWY n.4?! n.44 AM 1 n.4^ ri.nn

OVFRA! I ^ fl.AA n.7^

UAI 1IFR FOI I nW:

IKU# B 164 870.OM 31/5-1

14-i

12-!

10-• I

j

S-li

6-1I

4-1I d

2-1 d D1 ddDDD

0 . .1... I ^ ^ *Lmmm,~» _L.w,<M I L . . . . „, 1 n • t u m n r n i i i • • • • • ! • • rmt-n— i i i.i • rii.i_ i i.i. V

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HISH LIT #VAL ME AIM STDVY 0.37 0.46 ALL 4 0.43 0.04

OVERALL 8 0.37 0.06

ORDERED VALUES FOLLOW:

0.29d 0.32d 0.34d 0.34d 0.37D 0.44D 0.44D 0.45D

IKU# B 177 1000.OM 31/5-2 - 112 -

14-

12-1

10-1

4-

C D a

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIBH LIT #VAL MEAN STDVY 0.32 0.47 ALL 2 0.39 0.10

OVERALL 3 0.53 0.25

ORDERED VALUES FOLLOW:

0.32C 0.46D 0.81a

IKU# B 188 1110.OM 31/5-2 - 113 -I

.14-I1

12-1I

10-1I

8-1I

6-!I

4-iI D

2-1 DI DD

na_M>J-__.«.H-i>*«»M>—~4h—— ,1 ~ M , . , , „.., ..I „ . „]. . . . . i — . . . . . . mil - I nn ..(•• • • . - m . . I . . in nl - ••}•• i . i n . . i n

0.-00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0.32 0.40 ALL 4 0.36 0.Q3

OVERALL 4 0.36 0.03

ORDERED VALUES FOLLOW;

0.32D 0.36D 0.37D 0.39D

IKU# B202 1250.OM 31/5-2 - 114 -

14-

12-1

10-

S-

6-

4-

DC A D

O f j | t . . .t | t | I a , I ••in i . i I. • • ! • • nhn i i i

« M * ^ —|» •«• • •«*# «v» IM^^ - ^ * • • • • • —«* • - * • -Mfc <^w «-•»— •«« ^ i ^ ^ — •*•«* »»^ »«^ * ^ " j — *•»• ««^ —«• — » " - i " ^ ^ ^ " ^ ^ ^ ^ ^ T ^ ^™ T^ " " ! ' " i" I

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0.30 0.60 ALL 4 0.49 0.14

OVERALL 4 0.49 0.14

ORDERED VALUES FOLLOW:

0.30C 0.48A 0.59D 0.59D

IKU# B 2 1 4 1370.DM 3 1 / 5 - 2 - 115 -i

1 4 - I

1 2 -

10— I

3-1

6-

4-1

2 -

D d d d

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HI8H LIT #VAL MEAN STDVY 0.61 0.62 ALL 1 0.61 0.00

OVERALL 4 0.92 0.25

ORDERED VALUES FOLLOW:

0.61D 0.82d l.QSd 1.15d

IKU# B22S 1503.OM 3 1 / 5 - 2 - 116 -I

14-I

12

10- i

S-

6-1

4-

B D d

D AA D a d a

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIBH LIT #VAL MEAN STDVY 0.32 0.60 ALL 6 0.47 0.10

OVERALL 10 0.66 0.28

ORDERED VALUES FOLLOW:

0.32D 0.41A 0.45A 0.45B 0.5SD 0.59D 0.72a O.SOd 1.11a 1.12d

IKU# B23S i593.OH 31/5-2 - 117 -

14-

12— i

10-

8-1

4-1

bd D a dd

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0-48 0.49 ALL 1 0.48-0.00

OVERALL b 0.63 0.21

ORDERED VALUES FOLLOW:

0.33d 0.48D 0.63b 0.63a 0.83d 0.89d

IKU# E 250 1701.OM 31/5-2 - 118 -I

14-1I

12-1I

10-1I

S-l1

6-iI

4-1 . .',I

2-1 KII KKA

0_ _ — . J . • _ . -£..—. u l - ...i i . i - i - - l i • • • - nn • T IIITT ir- n In. . i n •••• -i ln i . T. • -, . - | . . — . . — • — i . . T - TTI.I . . ^ — . . i n - i n + - -

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HI OH LIT #VAL ME AIM STDVY 0.31 0.41 ALL 5 0.35 0.04

OVERALL 5 0.35 0.04

ORDERED VALUES FOLLOW:

0.31K 0.32K 0.371 0.37K 0.40A

IKU# B 551 1791.DM 31/5-2 - 119 -

14-

J, X i

10-

4 -BD

I ccDDC C c szf"^ , I 1 l |M M [ | | | | I M | | . | | M I l < M . ., . „ , ,.t , , . . | | | I i.in „ i . ut i , ut _ . , i n • . . , ni,, „... nlM | | | . . . i , ,t,i . . , . , ,,..,

O.OQ 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIBH LIT #VAL MEAN STDVY 0.38 0.57 ALL 6 0.46 0.06

OVERALL 10 0.51 0.22

ORDERED VALUES FOLLOWS

0.28c 0.32c 0.38D 0.41D 0.45D 0.46B 0.47C 0.56C 0.82c 0.97c

IKU# B559 1863.OM 31/5-2 - 120 -

IA— I

1 0 —

3*~~

6-

4 -A

•?~\ Ad D A a

f^-r,, I i ii ru» . - • •[•• — • i i», -i ii -I IIIII—.ul i i ..•• — - -Irr -TT-T — • . . . . mi iiln i , r r i—• . . . , i - . [ i- — i ,.f , . , . m l l . J . . ••— • II • n n»i njii — i . n -, i i l i i i n..,. i

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0.40 0.54 ALL 4 0.48 0.06

OVERALL 6 0.52 0.18

ORDERED VALUES FOLLOW:

0.31d 0.40D 0.50A 0.50A 0.53A 0.85a

IKU# B 571 1971.OM 31/5-2 " 121 "

14-1

12-

10-1

8-I

4 -

2-1 AA a k a

0 , , i __L. I .if» m , , ..I ii- Jin.inn.il. Il •••il i — — • • • - iiln -i-ii tin- tn I . —

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0.65 0.68 ALL 2 0.66 0.01

OVERALL 5 0.92 0.30

ORDERED VALUES FOLLOW:

0.65A Q.67A 0.79a 1.16k 1.32a

IKU# B 577 2025.OM 31/5-2 - 122 -! - .

14-1I

12-11

10-1I

8-II

6-1I

4-1I

2-1 MDI dAAM m da a

0 ^ I i.. |, .... t ,, i.. , , i „ „ i i I.I.É . . . , — , ••• '

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIBH LIT #VAL MEAN STDVY 0.36 0.49 ALL 5 0.41 0.05

OVERALL 10 0.61 0.29

ORDERED VALUES FOLLOW:

0.32d 0.36M 0.37A 0.41A 0.42D 0.48M 0.71m 0.92d 0.95a 1.11a

IKU# B 586 2106.OM 31/5-2 -123-

14-

12-

10-^

S-i

6-

4-

N i id c i

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIBH LIT #VAL MEAN STDVY 0.49 0.50 ALL 1 0.49 0.00

OVERALL 6 0.92 0.31

ORDERED VALUES FOLLOW:

0.49N 0.77i 0.87i 0.90d 1.09c 1.41i

IKU# B 59S 2214.OM 31/5-2

14-;

12-

10- i

S-l

6-

4-IIA M I k

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0.36 0.59 ALL 5 0.44 0.09

OVERALL 6 0.54 0.27

ORDERED VALUES FOLLOW:

0.361 0.391 0.39A 0.48M 0.581 1.06k

IKU# B607 2295.OM 31/5-2 - 125 -

14-

12-i

10-

a-i

6-1

4— IB B

b B Bb D BD

f ^ 1 ^ | m I ^ I , . | l | l l T f Ml I .In III! .1.. • Ill J l l — • 1 ••! !•• II II 4 M • • • - —• • I • — - • • • - j - -J— }•• IE»

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVY 0.45 0.64 ALL 7 0.54 0.07

OVERALL 9 0.50 0.11

ORDERED VALUES FOLLOW:

0.33b 0.34b 0.45D 0.48B 0.4SB 0.55B 0.60D 0.60B 0.63B

IKU# B 613 2349.OM 31/5-2 - 126 -

14-I

12-!

10-1

a-i

6-1

.4-1

2 - b Ibbb II •

OM H a i l m H H . .J* •••B.inJlllP.H MxJ-Wl» tim MM — __M»«L> W — . _ M_ J> W ~ . M. M. X » — X J^ . I

MMKflMllWM.MKf»—M>W«^>I~HIKW<I| -W>II-~II—•(•«• - • • •« ' • ( •«•MK.MP -J- — — —I- MM Mf» — . — _ — -f- MV - * . ~ ~ _ - | - — • - • • * —* " ^ - • — • - ~ ~

0.00 0.25 0.50:0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH -LIT #VAL MEAN STDVY 0.50 0.59 ALL 3 0.53 0.04

OVERALL 7 0.39 0.14

ORDERED VALUES FOLLOW:

0.24b 0.26b 0.29b 0.34b 0.501 0.521 0.581

IKU# B 623 2439.OM 31/5-2 - 127 -

14-1

10-

6-

2-a a

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDVOVERALL 2 1.05 0.08

ORDERED VALUES FOLLOW:

0.99a 1.11a

IKU# Bt

1 4 -

1 2 -

1 0 -

o imii

4 -

i

1i

1iI1

1f1

1ii

1i1

629

J

493.OM 31/^-2 " 128 "

I I0 1. . . . t . . . I. 1 _ I | . I . _ ^ , , - . Ja | | _ . . . . | , ^ ^m ii ill -

WM HB* «^* ^ ^ W< ^H* • • • • « «~M > B H ' H ~ | ^ ^••t^^—^^—• ^^^w*>^*« ^ W ^ B - > ^ - -**^^V> | — '1 ' ^ ^ "T^ ^™" ^ ^ ^ ^ ^ ™|~ ^™" " • « • " " « ^ ^ ^ ^"» * • *

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HISH LIT #VAL MEAN STDVY 0.44 0.45 ALL 1 0.44 0.00

OVERALL 1 0,44 0.00

ORDERED VALUES FOLLOW:

0.441